I. Starting Out 0. Sales pitches....................................................37 1. Groups...........................................................43 2. Metric spaces....................................................55 II. Basic Abstract Algebra 3. Homomorphisms and quotient groups................................69 4. Rings and ideals.................................................81 5. Flavors of rings.................................................93 III. Basic Topology 6. Properties of metric spaces.....................................109 7. Topological spaces..............................................115 8. Compactness.....................................................125 IV. Linear Algebra 9. Vector spaces...................................................139 10. Eigen-things...................................................157 11. Dual space and trace...........................................167 12. Determinant....................................................175 13. Inner product spaces...........................................183 14. Bonus: Fourier analysis........................................191 15. Duals, adjoint, and transposes.................................201 V. More on Groups 16. Group actions overkill AIME problems...........................211 17. Find all groups................................................217 18. The PID structure theorem......................................223 VI. Representation Theory 19. Representations of algebras....................................235 20. Semisimple algebras............................................247 21. Characters.....................................................255 22. Some applications..............................................263 VII. Quantum Algorithms 23. Quantum states and measurements................................269 24. Quantum circuits...............................................277 25. Shor's algorithm...............................................285 VIII. Calculus 101 26. Limits and series..............................................293 27. Bonus: A hint of p-adic numbers................................305 28. Differentiation................................................317 29. Power series and Taylor series.................................329 30. Riemann integrals..............................................337 IX. Complex Analysis 31. Holomorphic functions..........................................347 32. Meromorphic functions..........................................363 33. Holomorphic square roots and logarithms........................373 34. Bonus: Topological Abel-Ruffini Theorem........................379 X. Measure Theory 35. Measure spaces.................................................385 36. Constructing the Borel and Lebesgue measure....................393 37. Lebesgue integration...........................................403 38. Swapping order with Lebesgue integrals.........................409 39. Bonus: A hint of Pontryagin duality............................417 XI. Probability (TO DO) 40. Random variables (TO DO).......................................425 41. Large number laws (TO DO)......................................427 42. Stopped martingales (TO DO)....................................435 XII. Differential Geometry 43. Multivariable calculus done correctly..........................451 44. Differential forms.............................................459 45. Integrating differential forms.................................471 46. A bit of manifolds.............................................483 XIII. Riemann Surfaces 47. Basic definitions of Riemann surfaces..........................495 48. Morphisms between Riemann surfaces.............................503 49. Affine and projective plane curves.............................509 50. Differential forms.............................................519 51. The Riemann-Roch theorem.......................................523 52. Line bundles...................................................529 XIV. Algebraic NT I: Rings of Integers 53. Algebraic integers.............................................539 54. The ring of integers...........................................545 55. Unique factorization (finally!)................................553 56. Minkowski bound and class groups...............................565 57. More properties of the discriminant............................585 58. Bonus: Let's solve Pell's equation!............................587 XV. Algebraic NT II: Galois and Ramification Theory 59. Things Galois..................................................595 60. Finite fields..................................................607 61. Ramification theory............................................613 62. The Frobenius element..........................................623 63. Bonus: A Bit on Artin Reciprocity..............................635 XVI. Algebraic Topology I: Homotopy 64. Some topological constructions.................................651 65. Fundamental groups.............................................663 66. Covering projections...........................................675 XVII. Category Theory 67. Objects and morphisms..........................................687 68. Functors and natural transformations...........................699 69. Limits in categories (TO DO)...................................711 70. Abelian categories.............................................713 XVIII. Algebraic Topology II: Homology 71. Singular homology..............................................723 72. The long exact sequence........................................737 73. Excision and relative homology.................................749 74. Bonus: Cellular homology.......................................757 75. Singular cohomology............................................769 76. Application of cohomology......................................781 XIX. Algebraic Geometry I: Classical Varieties 77. Affine varieties...............................................801 78. Affine varieties as ringed spaces..............................811 79. Projective varieties...........................................821 80. Bonus: B\'ezout's theorem......................................829 81. Morphisms of varieties.........................................837 XX. Algebraic Geometry II: Affine Schemes 82. Sheaves and ringed spaces......................................849 83. Localization...................................................861 84. Affine schemes: the Zariski topology...........................871 85. Affine schemes: the sheaf......................................879 86. Interlude: eighteen examples of affine schemes.................889 87. Morphisms of locally ringed spaces.............................905 XXI. Set Theory I: ZFC, Ordinals, and Cardinals 88. Interlude: Cauchy's functional equation and Zorn's lemma.......919 89. Zermelo-Fraenkel with choice...................................927 90. Ordinals.......................................................935 91. Cardinals......................................................947 XXII. Set Theory II: Model Theory and Forcing 92. Inner model theory.............................................957 93. Forcing........................................................969 94. Breaking the continuum hypothesis..............................979 XXIII. Appendix