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A Pedagogical comments and references

Here are some higher-level comments on the way specific topics were presented, as well
as pointers to further reading.

§A.1 Basic algebra and topology

§A.1.i Linear algebra and multivariable calculus

Following the comments in Section 9.9, I dislike most presentations of linear algebra and
multivariable calculus since they miss the two key ideas, namely:

• In linear algebra, we study linear maps between spaces.

• In calculus, we approximate functions at points by linear functions.

Thus, I believe linear algebra should always be taught before multivariable calculus. In
particular, I do not recommend most linear algebra or multivariable calculus books.

For linear algebra, I’ve heard that [Ax97] follows this approach, hence the appropriate
name “Linear Algebra Done Right”. I followed with heavy modifications the proceedings
of Math 55a, see [Ga14].

For multivariable calculus and differential geometry, I found the notes [Sj05] to be
unusually well-written. I referred to it frequently while I was enrolled in Math 55b [Ga15].

§A.1.ii General topology

My personal view on spaces is that every space I ever work with is either metrizable or is
the Zariski topology.

I adopted the approach of [Pu02], using metric topology first. I find that metric spaces
are far more intuitive, and are a much better way to get a picture of what open / closed
/ compact etc. sets look like. This is the approach history took; general topology grew
out of metric topology.

I personally dislike starting any general topology class by defining what a general
topological space is, because it doesn’t communicate a good picture of open and closed
sets to draw pictures of.

§A.1.iii Groups and commutative algebra

I teach groups before commutative rings but might convert later. Rings have better
examples, don’t have the confusion of multiplicative notation for additive groups, and
modding out by ideals is more intuitive.

There’s a specific thing I have a qualm with in group theory: the way that the concept
of a normal subgroup is introduced. Only [Go11] does something similar to what I do.
Most other people simply define a normal subgroup N as one with gNg−1 and then
proceed to define modding out, without taking the time to explain where this definition
comes from. I remember distinctly this concept as the first time in learning math where
I didn’t understand what was going on. Only in hindsight do I see where this definition
came from; I tried hard to make sure my own presentation didn’t have this issue.
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978 Napkin, by Evan Chen (v1.6.20241027)

I deliberately don’t include a chapter on just commutative algebra; other than the
chapter on rings and ideals. The reason is that I always found it easier to learn
commutative algebra theorems on the fly, in the context of something like algebraic
number theory or algebraic geometry. For example, I finally understand why radicals and
the Nullstellensatz were important when I saw how they were used in algebraic geometry.
Before then, I never understood why I cared about them.

§A.1.iv Calculus

I do real analysis by using metric and general topology as the main ingredient, since I
think it’s the most useful later on and the most enlightening. In some senses, I am still
following [Pu02].

§A.2 Second-year topics

§A.2.i Measure theory and probability

The main inspiration for these lectures is Vadim Gorin’s 18.175 at MIT; [Go18] has really
nice lecture notes taken by Tony Zhang. I go into a bit more details of the measure
theory, and (for now) less into the probability. But I think probability is a great way to
motivate measure theory anyways, and conversely, it’s the right setting in to which state
things like the central limit theorem.

I also found [Ch08] quite helpful, as another possible reference.

§A.2.ii Complex analysis

I picked the approach of presenting the Cauchy-Goursat theorem as given (rather than
proving a weaker version by Stokes’ theorem, or whatever), and then deriving the key
result that holomorphic functions are analytic from it. I think this most closely mirrors
the “real-life” use of complex analysis, i.e. the computation of contour integrals.

The main reference for this chapter was [Ya12], which I recommend.

§A.2.iii Category theory

I enthusiastically recommend [Le14], from which my chapters are based, and which
contains much more than I had time to cover.

You might try reading chapters 2-4 in reverse order though: I found that limits were
much more intuitive than adjoints. But your mileage may vary.

The category theory will make more sense as you learn more examples of structures: it
will help to have read, say, the chapters on groups, rings, and modules.

§A.2.iv Quantum algorithms

The exposition given here is based off a full semester at MIT taught by Seth Lloyd, in
18.435J [Ll15]. It is written in a far more mathematical perspective.

I only deal with finite-dimensional Hilbert spaces, because that is all that is needed for
Shor’s algorithm, which is the point of this chapter. This is not an exposition intended
for someone who wishes to seriously study quantum mechanics (though it might be a
reasonable first read): the main purpose is to give students a little appreciation for what
this “Shor’s algorithm” that everyone keeps talking about is.
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§A.2.v Representation theory

I staunchly support teaching the representation of algebras first, and then specializing
to the case of groups by looking at k[G]. The primary influence for the chapters here is
[Et11], and you might think of what I have here as just some selections from the first four
chapters of this source.

§A.2.vi Set theory

Set theory is far off the beaten path. The notes I have written are based off the class I
took at Harvard College, Math 145a [Ko14].

My general impression is that the way I present set theory (trying to remain intuitive
and informal in a logical minefield) is not standard. Possible other reference: [Mi14].

§A.3 Advanced topics

§A.3.i Algebraic topology

I cover the fundamental group π1 first, because I think the subject is more intuitive
this way. A possible reference in this topic is [Mu00]. Only later do I do the much
more involved homology groups. The famous standard reference for algebraic topology is
[Ha02], which is what almost everyone uses these days. But I also found [Ma13a] to be
very helpful, particularly in the part about cohomology rings.

I don’t actually do very much algebraic topology. In particular, I think the main reason
to learn algebraic topology is to see the construction of the homology and cohomology
groups from the chain complex, and watch the long exact sequence in action. The concept
of a (co)chain complex comes up often in other contexts as well, like the cohomology of
sheaves or Galois cohomology. Algebraic topology is by far the most natural one.

I use category theory extensively, being a category-lover.

§A.3.ii Algebraic number theory

I learned from [Og10], using [Le02] for the part about the Chebotarev density theorem.
When possible I try to keep the algebraic number theory chapter close at heart to

an “olympiad spirit”. Factoring in rings like Z[i] and Z[
√
−5] is very much an olympiad-

flavored topic at heart: one is led naturally to the idea of factoring in general rings of
integers, around which the presentation is built. As a reward for the entire buildup, the
exposition finishes with the application of the Chebotarev density theorem to IMO 2003,
Problem 6.

§A.3.iii Algebraic geometry

My preferred introduction to algebraic geometry is [Ga03] for a first read and [Va17] for
the serious version. Both sets of lecture notes are essentially self-contained.

I would like to confess now that I know relatively little algebraic geometry, and in my
personal opinion the parts on algebraic geometry are the weakest part of the Napkin.
This is reflected in my work here: in the entire set of notes I only barely finish defining a
scheme, the first central definition of the subject.

Nonetheless, I will foolishly still make some remarks about my own studies. I think
there are three main approaches to beginning the study of schemes:
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• Only looking at affine and projective varieties, as part of an “introductory” class,
typically an undergraduate course.

• Studying affine and projective varieties closely and using them as the motivating
example of a scheme, and then developing algebraic geometry from there.

• Jumping straight into the definition of a scheme, as in the well-respected and
challenging [Va17].

I have gone with the second approach, I think that if you don’t know what a scheme is,
then you haven’t learned algebraic geometry. But on the other hand I think the definition
of a scheme is difficult to digest without having a good handle first on varieties.

These opinions are based on my personal experience of having tried to learn the subject
through all three approaches over a period of a year. Your mileage may vary.

I made the decision to, at least for the second part, focus mostly on affine schemes.
These already generalize varieties in several ways, and I think the jump is too much if
one starts then gluing schemes together. I would rather that the student first feel like
they really understand how an affine scheme works, before going on into the world where
they now have a general scheme X which is locally affine (but probably not itself affine).
The entire chapter dedicated to a gazillion examples of affine schemes is a hint of this.

§A.3.iv Riemann surfaces
My friend recommends [Mi95]. The preface of the book reads as follows:

But I try to stress that the main examples (from the point of view of algebraic
geometry) come from projective curves, and slowly but surely the text evolves
to the algebraic category, culminating in an algebraic proof of the Riemann-
Roch theorem. After returning to the analytic side of things for Abel’s
theorem, the progression is repeated again when sheaves and cohomology are
discussed: first the analytic, then the algebraic category.

Thus you can also use this as a resource to learn algebraic geometry.
Occasionally, a few concepts are not very well-motivated, such as divisors, complex

structure induced on plane curves, or line bundles. In these cases, we try to explain the
motivation clearly in the Napkin.

§A.4 Topics not in Napkin
§A.4.i Analytic number theory
I never had time to write up notes in Napkin for these. If you’re interested though,
I recommend [Hi13]. They are highly accessible and delightful to read. The only real
prerequisites are a good handle on Cauchy’s residue formula.



B Hints to selected problems

1A. Orders.

1B. Copy the proof of Fermat’s little theorem, using Lemma 1.2.5.

1C. For the former, decide where the isomorphism should send r and s, and the rest
will follow through. For the latter, look at orders.

1D⋆. Generated groups.

1F†. Use n = |G|.

1G. For the lower bound, consider orders (note that 1009 is prime). For the upper
bound, consider a 1009-gon.

1H. Draw inspiration from D6.

1I. Look at the group of 2× 2 matrices mod p with determinant ±1.

2B. No. There is not even a continuous injective map from Q to N.

2C. You can do this with bare hands. You can also use composition.

2D. ±x for good choices of ±.

2E. Project gaps onto the y-axis. Use the fact that uncountably many positive reals
cannot have finite sum.

2F. First answer the following question: “is 1/x a function?”.

3A. Write it out: ϕ(ab) = ϕ(a)ϕ(b).

3B. Yes, no.

3C. No.

3D. gcd(1000, 999) = 1.

3F. Find an example of order 8.

3G. Try to show G is the dihedral group of order 18. There is not much group theory
content here — just manipulation.

3H. Get yourself a list of English homophones, I guess. Don’t try too hard. Letter v is
the worst; maybe felt = veldt?

4A. R = R[i].

4B. Show that the map

C[x]→ C× C
p 7→ (p(0), p(1))

is surjective and calculate its kernel.

981
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4E. For (b) homomorphism is uniquely determined by the choice of ψ(x) ∈ R

5A. Yes.

5B. The kernel is an ideal of K!

5C⋆. This is just a definition chase.

5D⋆. Fermat’s little theorem type argument; cancellation holds in integral domains.

5E⋆. Just keep on adding in elements to get an ascending chain.

5F. Use the fact that both are PID’s.

5G†. Show that the quotient Z[
√

2017]/I has finitely many elements for any nonzero
prime ideal I. Therefore, the quotient is an integral domain, it is also a field, and
thus I was a maximal ideal.

6A†. The main task is to show there exists some fixed point. Start at some point x0 and
consider the sequence x1 = T (x0), x2 = T (x1), x3 = T (x2), . . . , and so on.

6B. (a): M is complete and bounded but not totally bounded. N is all no. For (b)
show that M ∼= R ∼= N .

6C†. As a set, we let M be the set of Cauchy sequences (xn) in M , modulo the relation
that (xn) ∼ (yn) if limn d(xn, yn) = 0.

6E. The standard solution seems to be via the so-called “Baire category theorem”.

7D. Let p be any point. If there is a real number r such that d(p, q) ̸= r for any q ∈M ,
then the r-neighborhood of p is clopen.

7E. (a) is yes, and (b) is no even for metric spaces. In fact, a totally disconnected
space is one for which every connected component consists of only a single point,
and there are examples of totally disconnected metric spaces with non-discrete
topologies.

7F. Note that pZ is closed for each p. If there were finitely many primes, then
⋃
pZ =

Z \ {−1, 1} would have to be closed; i.e. {−1, 1} would be open, but all open sets
here are infinite.

7G. The balls at 0 should be of the form n! · Z.

7H. Appeal to Q.

8A. [0, 1] is compact.

8B. If and only if it is finite.

8E. Suppose pi = (xi, yi) is a sequence in X × Y (i = 1, 2, . . . ). Take a sub-sequence
such that the x-coordinate converges (throwing out some terms). Then take a
sub-sequence of that sub-sequence such that y-coordinate converges (throwing out
more terms).

8F†. Mimic the proof of Theorem 8.2.2. The totally bounded condition lets you do
Pigeonhole.
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8H. Assuming M is not compact, construct an unbounded continuous function F : M →
R. Once such a function F is defined, the metric

d′(x, y) := d(x, y) + |F (x)− F (y)|

will establish the contrapositive of the problem.

8I. The answer to both parts is no.
For (a) use Problem 8D.
For (b), color each circle in the partition based on whether it contains p but not q,
q but not p, or both.

9A†. Use the rank-nullity theorem. Also consider the zero map.

9D. a+ b
√

5 7→
√

5a+ 5b.

9F. Plug in y = −1, 0, 1. Use dimensions of R[x].

9G. Interpret as V ⊕ V →W for suitable V , W .

9I⋆. Use the fact that the infinite chain of subspaces

kerT ⊆ kerT 2 ⊆ kerT 3 ⊆ . . .

and the similar chain for imT must eventually stabilize (for dimension reasons).

10D. The answer is yes. In fact, the result is true if C⊕2 is any finite-dimensional C-vector
space.

10F. Only 0 is. Look at degree.

10G. All of them are!

11A. Follows by writing T in an eigenbasis: then the diagonal entries are the eigenvalues.

11B†. Again one can just take a basis.

11C†. One solution is to just take a basis. Otherwise, interpret T ⊗ S 7→ Tr(T ◦ S) as a
linear map (V ∨ ⊗W )⊗ (W∨ ⊗ V )→ k, and verify that it is commutative.

11D. Look at the trace of T .

12A. The point is that

(v1 + cv2) ∧ v2 · · · ∧ vn = v1 ∧ v2 · · · ∧ vn + c(v2 ∧ v2 · · · ∧ vn)

and the latter term is zero.

12B. You can either do this by writing T in matrix form, or you can use the wedge
definition of detT with the basis given by Jordan form.

12C. This is actually immediate by taking any basis in which X is upper-triangular!

12D. You don’t need eigenvalues (though they could work also). In one direction, recall
that (by Problem 9B†) we can replace “isomorphism” by “injective”. In the other,
if T is an isomorphism, let S be the inverse map and look at det(S ◦ T ).
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12E. Consider 1000 × 1000 matrix M with entries 0 on diagonal and ±1 off-diagonal.
Mod 2.

12F. There is a family of solutions other than just a = b = c = d.
One can solve the problem using Cayley-Hamilton. A more “bare-hands” approach
is to show the matrix is invertible (unless a = b = c = d) and then diagonalize the

matrix as M =
[
s −q
−r p

] [
λ1 0
0 λ2

] [
p q
r s

]
=
[
psλ1 − qrλ2 qs(λ1 − λ2)
pr(λ2 − λ1) psλ2 − qrλ1

]
.

12G. Take bases, and do a fairly long calculation.

13B⋆. Fix an orthonormal basis e1, . . . , en. Use the fact that Rn is complete.

13C. Dot products in F2.

13D⋆. Define it on simple tensors then extend linearly.

13E. k = nn. Endow tensor products with an inner form. Note that “zero entry
somewhere on its diagonal” is equivalent to the product of those entries being zero.

14A. Use Parseval again, but this time on f(x) = x2.

14B. Define the Boolean function D : {±1}3 → R by D(a, b, c) = ab+ bc+ ca. Write out
the value of D(a, b, c) for each (a, b, c). Then, evaluate its expected value.

15A⋆. You can prove the result just by taking a basis e1, . . . , en of V and showing that it
is a linear map sending e1 to the basis (e∨

1 )∨.

15B. Use Theorem 9.7.6 and it will be immediate (the four quantities equal the k in the
theorem).

15C†. This actually is just the previous problem in disguise! The row rank is dim imT∨

and the column rank is dim imT .

15F. If there is a polynomial, check TT † = T †T directly. If T is normal, diagonalize it.

16A. Just apply Burnside’s lemma directly to get the answer of 198 (the relevant group
is D14).

16B. There are multiple ways to see this. One is to just do the algebraic manipulation.
Another is to use Cayley’s theorem to embed G into a symmetric group.

16C. Double-count pairs (g, x) with g · x = x.

16E†. Let G act on the left cosets {gH | g ∈ G} by left multiplication: g′ · gH = g′gH.
Consider the orbit O of the coset H. By the orbit-stabilizer theorem, |O| divides
|G|. But |O| ≤ p also. So either O = {H} or O contains all cosets. The first case
is impossible.

17B. Count Sylow 2 and 7 groups and let them intersect.

17C. Construct a non-abelian group such that all elements have order three.

17D. First, if G abelian it’s trivial. Otherwise, let Z(G) be the center of the group, which
is always a normal subgroup of G. Do a mod p argument via conjugation (or use
the class equation).
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18A†. In the structure theorem, k/(si) ∈ {0, k}.

18B†. By theorem V ∼=
⊕

i k[x]/(si) for some polynomials si. Write each block in the
form described.

18C†. Copy the previous proof, except using the other form of the structure theorem.
Since k[x] is algebraically closed each pi is a linear factor.

18D. The structure theorem is an anti-result here: it more or less implies that finitely
generated abelian groups won’t work. So, look for an infinitely generated example.

18E. I think the result is true if you add the assumption A is Noetherian, so look for
trouble by picking A not Noetherian.

19B†. For any a ∈ A, the map v 7→ a · v is intertwining.

19C⋆. For part (b), pick a basis and do T 7→ (T (e1), . . . , T (en)).

19D⋆. Right multiplication.

19E. Apply Problem 9I⋆.

20A. They are all one-dimensional, n of them. What are the homomorphisms Z/nZ→
C×?

20B. The span of (1, 0) is a subrepresentation.

20C. This is actually easy.

20D. There are only two one-dimensional ones (corresponding to the only two homomor-
phisms D10 → C×). So the remaining ones are two-dimensional.

20E. Let r, t ∈ D10 be rotation and reflection respectively. Then we can sum over all
possible bug’s moves with

1
10 Tr(ρ(r) + ρ(t))15.

Then use Problem 20D to compute this trace.

21A†. Obvious. Let W =
⊕
V mi
i (possible since C[G] semisimple) thus χW =

∑
imiχVi .

21B. Use the previous problem, with χW = χ2
refl0

.

21C. Characters. Note that |χW | = 1 everywhere.

21D. There are five conjugacy classes, 1, −1 and ±i, ±j, ±k. Given four of the represen-
tations, orthogonality can give you the fifth one.

21E⋆. Construct two square r × r matrices A and B such that AB is the identity by the
first orthogonality. Then use BA to prove the second orthogonaliy relation.

23A. Rewrite |Ψ−⟩ = − 1√
2 (|→⟩A ⊗ |←⟩B − |←⟩A |→⟩B).

23B. 1, 1, 1, −1 respectively. When we multiply them all together, we get that idA ⊗
idB ⊗ idC has measurement −1, which is the paradox. What this means is that the
values of the measurements can’t be prepared in advance independently. In other
words, this contradicts certain local hidden-variable theories.
This was one of several results for which Zeilinger won a (shared) Nobel Prize in
2022.
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24A. One way is to create CCNOT using a few Fredkin gates.

24B. Plug in |ψ⟩ = |0⟩, |ψ⟩ = |1⟩, |ψ⟩ = |→⟩ and derive a contradiction.

24C. First show that the box sends |x1⟩⊗ · · · ⊗ |xm⟩⊗ |←⟩ to (−1)f(x1,...,xm)(|x1⟩⊗ · · · ⊗
|xm⟩ ⊗ |←⟩).

24D†. This is direct computation.

26B. Iff the sequence is convergent!

26D. The nth partial sum is 1
1−r (1− rn+1).

26F. This is a very tricky algebraic manipulation. Try setting an = x1 + · · · + xn for
xi ≥ 0.

26G. This is trickier than it looks. We have xn = exn − exn+1 but it requires some care
to prove convergences. Helpful hint: et ≥ t+ 1 for all real numbers t, therefore all
xn’s are nonnegative.

26H. The limit always exists and equals zero. Consequently, f is continuous exactly at
irrational points.

28G. First rewrite it as f(x) = ex log x.

29B†. Because you know all derivatives of sin and cos, you can compute their Taylor
series, which converge everywhere on R. At the same time, exp was defined as a
Taylor series, so you can also compute it. Write them all out and compare.

29C†. Use repeated Rolle’s theorem. You don’t need any of the theory in this chapter to
solve this, so it could have been stated much earlier; but then it would be quite
unmotivated.

29D. Use Taylor’s theorem.

30A. Contradiction and mean value theorem (again!).

30B⋆. For every positive integer n, take a partition where every rectangle has width
w = b−a

n . Use the mean value theorem to construct a tagged partition such
that the first rectangle has area f(a + w) − f(a), the second rectangle has area
f(a+ 2w)− f(a+ w), and so on; thus the total area is f(b)− f(a).

30D. Write this as 1
n

∑n
k=1

1
1+ k

n

. Then you can interpret it as a rectangle sum of a certain
Riemann integral.

31A⋆. Look at the Taylor series of f , and use Cauchy’s differentiation formula to show
that each of the larger coefficients must be zero.

31B⋆. Proceed by contradiction, meaning there exists a sequence z1, z2, . . . → z where
0 = f(z1) = f(z2) = . . . all distinct. Prove that f = 0 on an open neighborhood of
z by looking at the Taylor series of f and pulling out factors of z.

31C⋆. Take the interior of the agreeing points; show that this set is closed, which implies
the conclusion.

31E. Liouville. Look at 1
f(z)−w .
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31F. You can adapt part of the proof of Cauchy-Goursat theorem presented above, and
apply ML estimation lemma to prove

∮
γ f(z) dz = 0. In this case however, you

already know f is holomorphic, so you must have |
∮
γi
f dz| ≥ |

∮
γ f dz|, without

the 1
4 factor.

32C. This is called a “wedge contour”. Try to integrate over a wedge shape consisting
of a sector of a circle of radius r, with central angle 2π

n . Take the limit as r →∞
then.

32D. It’s lima→∞
∫ a

−a
cosx
x2+1 dx. For each a, construct a semicircle.

36B. Show that

µ∗(S) =


0 S = ∅
1 S bounded and nonempty
∞ S not bounded.

This lets you solve (b) readily; I think the answer is just unbounded sets, ∅, and
one-point sets.

39A. You can read it off Theorem 39.3.1.

39B. After Pontryagin duality, we need to show G compact implies Ĝ discrete and G
discrete implies Ĝ compact. Both do not need anything fancy: they are topological
facts.

41A. This is actually trickier than it appears, you cannot just push quantifiers (contrary
to the name), but have to focus on ε = 1/m for m = 1, 2, . . . .
The problem is saying for each ε > 0, if n > Nε, we have µ(ω : |X(ω)−Xn(ω)| ≤
ε) = 1. For each m there are some measure zero “bad worlds”; take the union.

42B. There is a cute elementary solution. For the martingale-based solution, show that
the fraction of red cards in the deck at time n is a martingale.

42E. Use Problem 42A.

42F. It occurs with probability 1. If Xn is the number on the board at step n, and
µ = 1

2.01
∫ 2.01

0 log t dt, show that log(Xn)− nµ is a martingale. (Incidentally, using
the law of large numbers could work too.)

43B. Simply induct, with the work having been done on the k = 2 case.

44B. This is just a summation. You will need the fact that mixed partials are symmetric.

45A†. Direct application of Stokes’ theorem to α = f dx+ g dy.

45B. This is just an exercises in sigma notation.

45D. This is a straightforward (but annoying) computation.

45E. We would want αp(v) = ∥v∥.

45F. Show that d2 = 0 implies
∫
∂c α = 0 for exact α. Draw an annulus.

53B. Note that p(x) is a minimal polynomial for r, but so is q(x) = xdeg pp(1/x). So q
and p must be multiples of each other.
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53C⋆.
∣∣∣ 1
n(ε1 + · · ·+ εn)

∣∣∣ ≤ 1.

53D†. Only the obvious ones. Assume cos(qπ) ∈ Q. Let ζ be a root of unity (algebraic
integer as ζN − 1 = 0 for some N) and note that 2 cos(qπ) = ζ + ζN−1 is both an
algebraic integer and a rational number.

53E. View as roots of unity. Note 1
2 isn’t an algebraic integer.

53F. Let α = α1, α2, . . . , αn be its conjugates. Look at the polynomial (x−αe1) . . . (x−αen)
across e ∈ N. Pigeonhole principle on all possible polynomials.

54A⋆. The norm is multiplicative and equal to product of Galois conjugates.

54B⋆. It’s isomorphic to K.

54C. Taking the standard norm on Q(
√

2) will destroy it.

54D. Norm in Q( 3√2).

54E†. Obviously Z[ζp] ⊆ OK , so our goal is to show the reverse inclusion. Show that for any
α ∈ OK , the trace of α(1−ζp) is divisible by p. Given x = a0+a1ζp+· · ·+ap−2ζ

p−2 ∈
OK (where ai ∈ Q), consider (1− ζp)x.

55C. Copy the proof of the usual Fermat’s little theorem.

55D†. Clear denominators!

55E. (a) is straightforward. For (b) work mod p. For (c) use norms.

56A. Repeat the previous procedure.

56B. You should get a group of order three.

56C. Mimic the proof of part (a) of Minkowski’s theorem.

56D. Linear algebra.

56E. Factor in Q(i).

56F. Factor p, show that the class group of Q(
√
−5) has order two.

57A⋆. Direct linear algebra computation.

57B⋆. Let M be the “embedding” matrix. Look at M⊤M , where M⊤ is the transpose
matrix.

57C⋆. Vandermonde matrices.

57D. MK ≥ 1 must hold. Bash.

59A⋆. Look at the image of ζp.

59C. Repeated quadratic extensions have degree 2, so one can only get powers of two.

59E. Hint: σ(x2) = σ(x)2 ≥ 0 plus Cauchy’s Functional Equation.

59F. By induction, suffices to show Q(α, β) = Q(γ) for some γ in terms of α and β. For
all but finitely many rational λ, the choice γ = α+ λβ will work.
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60A†. The Fibonacci sequence is given by Fn = αn−βn

α−β where α = 1+
√

5
2 and β = 1−

√
5

2 are

the two roots of P (X) def= X2 −X − 1. Show the polynomial P (X) is irreducible
modulo 127; then work in the splitting field of P , namely Fp2 .
Show that Fp = −1, Fp+1 = 0, F2p+1 = 1, F2p+2 = 0. (Look at the action of
Gal(Fp2/Fp) on the roots of P .)

61A†. Show that no rational prime p can remain inert if Gal(K/Q) is not cyclic. Indeed,
if p is inert then Dp

∼= Gal(K/Q).

62A. Modify the end of the proof of quadratic reciprocity.

62C†. Chebotarev Density on Q(ζm).

62E. By primitive roots, it’s the same as the action of ×3 on Z/(p − 1)Z. Let ζ be a
(p− 1)st root of unity. Take d =

∏
i<j(ζi − ζj), think about Q(d), and figure out

how to act on it by x 7→ x3.

63A†. Pick m so that f(L/Q) | m∞.

63B†. Apply the Takagi existence theorem with m = 1.

63C. The extension L/Q is not abelian.

64C†. Prove and use the fact that a quotients of compact spaces remain compact.

68A. The category A× 2 has “redundant arrows”.

71A. Take the n− 1st homology groups.

71B. Build F as follows: draw the ray from x through f(x) and intersect it with the
boundary Sn−1.

72A. Induction on m, using hemispheres.

72B. One strategy is induction on p, with base case p = 1. Another strategy is to let U
be the desired space and let V be the union of p non intersecting balls.

72C⋆. Use Theorem 72.2.5. Note that Rn \ {0} is homotopy equivalent to Sn−1.

72D. 0→ A• → B• → C• → 0 is a short exact sequence of chain complexes. Write out
the corresponding long exact sequence. Nearly all terms will vanish.

72E⋆. It’s possible to use two cylinders with U and V . This time the matrix is
[
1 1
1 −1

]
or some variant though; in particular, it’s injective, so H̃2(X) = 0.

72F⋆. Find a new short exact sequence to apply Theorem 72.2.1 to.

73B. Use Theorem 72.2.5.

73E. For any n, prove by induction for k = 1, . . . , n− 1 that (a) if X is a subset of Sn
homeomorphic to Dk then H̃i(Sn \X) = 0; (b) if X is a subset of Sn homeomorphic
to Sk then H̃i(Sn \X) = Z for i = n− k − 1 and 0 otherwise.

74A†. CPn has no cells in adjacent dimensions, so all dk maps must be zero.

74B. The space Sn − {x0} is contractible.
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74D. You won’t need to refer to any elements. Start with

H2(X) ∼= H2(X3) ∼= H2(X2)/ ker
[
H2(X2) ↠ H2(X3)

]
,

say. Take note of the marked injective and surjective arrows.

74E†. There is one cell of each dimension. Show that the degree of dk is deg(id)+deg(−id),
hence dk is zero or ·2 depending on whether k is even or odd.

76A†. Write Hk(M ;Z) in terms of Hk(M) using the UCT, and analyze the ranks.

76B. Use the previous result on Betti numbers.

76C. Use the Z/2Z cohomologies, and find the cup product.

76D. Assume that r : Sm × Sn → Sm ∨ Sn is such a map. Show that the induced map
H•(Sm ∨Sn;Z)→ H•(Sm×Sn;Z) between their cohomology rings is monic (since
there exists an inverse map i).

77B. Squares are nonnegative.

77C. This is actually an equivalent formulation of the Weak Nullstellensatz.

77D. Use the weak Nullstellensatz on n+ 1 dimensions. Given f vanishing on everything,
consider xn+1f − 1.

80B. You will need to know about complex numbers in Euclidean geometry to solve this
problem.

81B†. Use the standard affine charts.

81C. Examine the global regular functions.

81D. Assume f was an isomorphism. Then it gives an isomorphism f ♯ : OV (V ) →
OX(X) = C[x, y]. Thus we may write OV (V ) = C[a, b], where f ♯(a) = x and
f ♯(b) = y. Let f(p) = q where V(a, b) = {q}. Use the definition of pullback to
prove p ∈ V(x, y), contradiction.

82C. The stalk is R at points in the closure of {p}, and 0 elsewhere.

82D. Show that the complement {p | [s]p = 0} is open.

83B. Consider zero divisors.

83C⋆. Only one! A proof will be given a few chapters later.

83D. No. Imagine two axes.

84A. Galois conjugates.

85B. k[x, y]× k[z, z−1].

85D. It’s isomorphic to R!

87A. Use the fact that AffSch ≃ CRing.

88A. Let ε = π − 3.141592653 < 10−9. Find f(ε).

89E. This is an application of Axiom of Choice.
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91A. supk∈ω |Vk|.

91B. Rearrange the cofinal maps to be nondecreasing.

92C†. This is very similar to the proof of Löwenheim-Skolem. For a sentence ϕ, let fϕ
send α to the least β < κ such that for all b⃗ ∈ Vα, if there exists a ∈M such that
Vκ ⊨ ϕ[a, b⃗] then ∃a ∈ Vβ such that Vκ ⊨ ϕ[a, b⃗]. (To prove this β exists, use the fact
that κ is cofinal.) Then, take the supremum over the countably many sentences for
each α.

92D⋆. Use Lemma 92.5.1. To prove Vκ ⊨ PowerSet you need κ to be a strong limit cardinal,
and to prove Vκ ⊨ Replacement you need κ to be inaccessible — this is why we
cared about cofinality and inaccessibility.

93B. Let D1, D2, . . . be the dense sets (there are countably many of them).

94A. Assume not, and take λ > κ regular in M ; if f : λ → λ, use the Possible Values
Argument on f to generate a function in M that breaks cofinality of λ.
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1A. The point is that ♡ is a group, G ⊊ ♡ a subgroup and G ∼= ♡. This can only occur
if |♡| =∞; otherwise, a proper subgroup would have strictly smaller size than the
original.

1B. Let {g1, g2, . . . , gn} denote the elements of G. For any g ∈ G, this is the same as
the set {gg1, . . . , ggn}. Taking the entire product and exploiting commutativity
gives gn · g1g2 . . . gn = g1g2 . . . gn, hence gn = 1.

1C. One can check manually that D6 ∼= S3, using the map r 7→ (1 2 3) and s 7→ (1 2).
(The right-hand sides are in “cycle notation”, as mentioned in Section 6.iv.) On
the other hand D24 contains an element of order 12 while S4 does not.

1D⋆. Let G be a group of order p, and 1 ̸= g ∈ G. Look at the group H generated by g
and use Lagrange’s theorem.

1F†. The idea is that each element g ∈ G can be thought of as a permutation G→ G by
x 7→ gx.

1G. The answer is n = 1009. This solution uses the fact that 1009 is prime.

To show that no smaller m is possible, note that D2018 has elements of order 1009,
a prime. Since Sn has no elements of this order for n < 1009, we need n ≥ 1009.

To give a construction from n = 1009, note that D2018 can be thought of the
symmetries of a 1009-gon. If one labels the vertices of the 1009-gon by S :=
{1, 2, . . . , 1009}, then elements of D2018 induces permutations on S, and the set of
permutations achieved is the desired subgroup.

1H. We have www = bb, bww = wb, wwb = bw, bwb = ww. Interpret these as elements
of D6.

1I. Look at the group G of 2× 2 matrices mod p with determinant ±1 (whose entries

are the integers mod p). Let g =
[
1 1
1 0

]
and then use g|G| = 1G.

2B. Two possible approaches, one using metric definition and one using open sets.

Metric approach: I claim there is no injective map from Q to N that is continuous.
Indeed, suppose f was such a map and f(x) = n. Then, choose ε = 1/2. There
should be a δ > 0 such that everything with δ of x in Q should land within ε of
n ∈ N — i.e., is equal to n. This is a blatant contradiction of injectivity.

Open set approach: In Q, no singleton set is open, whereas in N, they all are
(in fact N is discrete). As you’ll see at the start of Chapter 7, with the new and
improved definition of “homeomorphism”, we found out that the structure of open
sets on Q and N are different, so they are not homeomorphic.

2C. For subtraction, the map x 7→ −x is continuous so you can view it as a composed
map

993
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R× R R× R R

(a, b) (a,−b) a− b.

(id,−x) +

Similarly, if you are willing to believe x 7→ 1/x is a continuous function, then
division is composition

R× R>0 R× R>0 R

(a, b) (a, 1/b) a/b.

(id,1/x) ×

If for some reason you are suspicious that x 7→ 1/x is continuous, then here is a
proof using sequential continuity. Suppose xn → x with xn > 0 and x > 0 (since x
needs to be in R>0 too). Then∣∣∣∣1x − 1

xn

∣∣∣∣ = |xn − x|
|xxn|

.

If n is large enough, then |xn| > x/2; so the denominator is at least x2/2, and
hence the whole fraction is at most 2

x2 |xn − x|, which tends to zero as n→∞.

2D. Let f(x) = x for x ∈ Q and f(x) = −x for irrational x.

2E. Assume for contradiction it is completely discontinuous; by scaling set f(0) = 0,
f(1) = 1 and focus just on f : [0, 1]→ [0, 1]. Since it’s discontinuous everywhere,
for every x ∈ [0, 1] there’s an εx > 0 such that the continuity condition fails. Since
the function is strictly increasing, that can only happen if the function misses all
y-values in the interval (f(x)− εx, f(x)) or (f(x), f(x) + εx) (or both).
Projecting these missing intervals to the y-axis you find uncountably many intervals
(one for each x ∈ [0, 1]) all of which are disjoint. In particular, summing the εx you
get that a sum of uncountably many positive reals is 1.
But in general it isn’t possible for an uncountable family F of positive reals to have
finite sum. Indeed, just classify the reals into buckets 1

k ≤ x <
1

k−1 . If the sum is
actually finite then each bucket is finite, so the collection F must be countable,
contradiction.

2F. Like most Internet “debates” about math, the question revolves around sloppy
definitions. The original posed question (which is ill-formed) is

(1) Is 1/x a continuous function?
To make it well-formed, I want to first bring up the question:

(2) Is 1/x a function?
Technically, this question is also ill-formed because it never specifies the domain of
the function, which is part of the data needed to specify a function. One reasonable
guess what the asker meant would be R \ {0}, i.e. the set of nonzero real numbers,
in which case we get the question

(2’) Does 1/x define a function from R \ {0} to R?
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which has the firm answer YES.
On the other hand, it does not make sense to try to define 1/x as a function on R.
The definition a function requires you to specify an output value for every input,
so at least if you want a real-valued function1, there isn’t any way to construe 1/x
as a function on all of R.
Now, returning to (1), we can now ask a well-formed question

(1’) Does 1/x describe a continuous function from R \ {0} → R?
which again has the firm answer YES.
Of course, you could also consider a question like “does 1/x describe a continuous
function R→ R?”. However, this feels misleading: it would be like asking “is

√
2

an even integer?”. The question doesn’t make sense to begin with because
√

2 isn’t
an integer, and “even” is an adjective used for integers, so trying to ask whether
it applies to

√
2 is a type-error. Similarly, “continuous” is an adjective used for

functions; it doesn’t make sense to ask whether it applies to something that isn’t a
function.
See https://twitter.com/davidcpvm/status/1481024944830046209 for the Twit-
ter post (in Spanish) and the accompanying Reddit post (one of several) at
https://www.reddit.com/r/math/comments/s82vf8.

3A. Abelian groups: abab = a2b2 ⇐⇒ ab = ba.

3B. Yes to (a): you can check this directly from the ghg−1 definition. For example,
for (a) it is enough to compute (ras)rn(ras)−1 = r−n ∈ H. The quotient group is
Z/2Z.
The answer is no for (b) by following Example 3.5.2.

3C. A subgroup of order 3 must be generated by an element of order 3, since 3 is prime.
So we may assume WLOG that H = ⟨(1 2 3)⟩ (by renaming elements appropriately).
But then let g = (3 4); one can check gHg−1 ̸= H.

3D. G/ kerG is isomorphic to a subgroup of H. The order of the former divides 1000;
the order of the latter divides 999. This can only occur if G/ kerG = {1} so
kerG = G.

3F. Quaternion group.

3G. The answer is |G| = 18.
First, observe that by induction we have

anc = ca8n

for all n ≥ 1. We then note that

a(bc) = (ab)c
a · ca6 = c2a4 · c
ca8 · a6 = c2a4 · c

a14 = c(a4c) = c2a32.

1Those of you that know what RP1 is could consider it as a function RP1 → RP1 if you insisted; but it’s
continuous in that case too.

https://qchu.wordpress.com/2013/05/28/the-type-system-of-mathematics/
https://twitter.com/davidcpvm/status/1481024944830046209
https://www.reddit.com/r/math/comments/s82vf8
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Hence we conclude c2 = a−18. Then ab = c2a4 =⇒ b = a−15.
In that case, if c2018 = b2019, we conclude 1 = a2018·18−2019·15 = a6039. Finally,

bc = ca6

a−15c = ca6

a−15c2 = c(a6c) = c2a48

a−33 = a30

=⇒ a63 = 1.

Since gcd(6039, 63) = 9, we find a9 = 1, hence finally c2 = 1. So the presentation
above simplifies to

G =
〈
a, c | a9 = c2 = 1, ac = ca−1

〉
which is the presentation of the dihedral group of order 18. This completes the
proof.

3H. You can find many solutions by searching “homophone group”; one is https:
//math.stackexchange.com/q/843966/229197.

4A. This is just R[i] = C. The isomorphism is given by x 7→ i, which has kernel (x2 + 1).

4B. Note that the map

C[x]→ C× C
p 7→ (p(0), p(1))

is indeed a surjective ring homomorphism. Its kernel consists of those polynomials
p such that p(0) = p(1) = 0; this is the set of polynomials divisible by both x and
x− 1, so it is x(x− 1).

5C⋆. Consider ab ∈ ϕpre(I), meaning ϕ(ab) = ϕ(a)ϕ(b) ∈ I. Since I is prime, either
ϕ(a) ∈ I or ϕ(b) ∈ I. In the former case we get a ∈ ϕpre(I) as needed; the latter
case we get b ∈ ϕpre(I).

5D⋆. Let x ∈ R with x ̸= 0. Look at the powers x, x2, . . . . By pigeonhole, eventually
two of them coincide. So assume xm = xn where m < n, or equivalently

0 = x · x · · · · · x ·
(
xn−m − 1

)
.

Since x ̸= 0, we get xn−m − 1 = 0, or xn−m = 1. So xn−m−1 is an inverse for x.
This means every nonzero element has an inverse, ergo R is a field.

5E⋆. For part (b), look at the poset of proper ideals. Apply Zorn’s lemma (again using a
union trick to verify the condition; be sure to verify that the union is proper!). In
part (a) we are given no ascending infinite chains, so no need to use Zorn’s lemma.

5F. The ideal (0) is of course prime in both. Also, both rings are PID’s.
For C[x] we get a prime ideal (x− z) for each z ∈ C.
For R[x] a prime ideal (x− a) for each a ∈ R and a prime ideal (x2 − ax+ b) for
each quadratic with two conjugate non-real roots.

https://math.stackexchange.com/q/843966/229197
https://math.stackexchange.com/q/843966/229197
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5G†. Only one; the ideal (0) which is not maximal. We contend every other prime ideal
is maximal.
Indeed, let I be any ideal (not necessarily prime), and let a+ b

√
2017 be a nonzero

element of it. Then I also contains (a2− 2017b2). That means when taking modulo
I we may take modulo the integer n := |a2 − 2017b2| ≠ 0.
So every element in R is equivalent modulo I to an element of the form x+y

√
2017,

where x, y ∈ {0, 1, . . . , n− 1}. In other words, the quotient R/I has at most finitely
many elements.
When I is prime, it follows R/I is an integral domain, too. An integral domain
with finitely many elements must be a field. Hence, from R/I being a field, we
conclude I is maximal.

5H. The ideals are (0), (1) = R, and (5n) = 5nR for each n ≥ 1. The ideal (0) is prime
and the ideal (5) is maximal (because the quotient R/(5) ∼= F5 is a field).

6A†. Uniqueness of the fixed point follows from noting that if T (p) = p and T (q) = q and
p ̸= q then we get a direct contradiction by plugging this into the given statement.
Hence the main task is to show there exists some fixed point.
Start with any point x0. Let x1 = T (x0), x2 = T (x1), x3 = T (x2), . . . , and
so on. We contend that (x0, x1, x2, . . . ) is a Cauchy sequence. Indeed, if we let
r := 0.999 < 1 and c := d(x0, x1), then

d(x1, x2) < r · c
d(x2, x3) < r2 · c
d(x3, x4) < r3 · c

...

and so for large M < N we have

d(xM , xN ) <
(
rM + rM+1 + · · ·+ rN

)
· c < rM

1− r · c

which tends to zero once M is large enough.
Hence, because M is complete, the sequence must converge to some limit x. Because
T is continuous, we get

T (x) = T
(

lim
n→∞

xn
)

= lim
n→∞

T (xn) == lim
n→∞

xn+1 = x

as desired.

6B. Part (a) is essentially by definition. The space M is bounded since no distances
exceed 1, but not totally bounded since we can’t cover M with finitely many
1
2 -neighborhoods. The space M is complete since a sequence of real numbers
converges in M if it converges in the usual sense. As for N , the sequence −1, −2,
. . . is Cauchy but fails to converge; and it is obviously not bounded.
To show (b), the identity map (!) is an homeomorphism M ∼= R and R ∼= N , since
it is continuous.
This illustrates that M ∼= N despite the fact that M is both complete and bounded
but N is neither complete nor bounded. On the other hand, we will later see that
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complete and totally bounded implies compact, which is a very strong property
preserved under homeomorphism.

6D. See https://math.stackexchange.com/q/556150/229197.

7E. Part (a) is straightforward: assume for contradiction that the connected component
of p is a disjoint union U ⊔ V of two nonempty sets open in X. WLOG, assume
x ∈ U Let S be one of the subspaces containing X that intersects V . Then
S = (S ∩ U) ⊔ (S ∩ V ) rewrites S as the disjoint union of two sets which are open
in S, contradicting the connectedness of S.
(Though note that as S is not necessarily open in X, the sets S ∩ U and S ∩ V are
not necessarily open in X either.)
For (b), a counterexample is to take any totally disconnected space like the Cantor
set or the p-adic numbers.

7G. Let d(x, y) = 2017−n, where n is the largest integer such that n! divides |x− y|.

7H. You can pick a rational number in each interval and there are only countably many
rational numbers. Done!

8A. Compactness is preserved under homeomorphism, but [0, 1] is compact while (0, 1)
is not.

8E. Suppose pi = (xi, yi) is a sequence in X × Y (i = 1, 2, . . . ). Looking on the X side,
some subsequence converges: for the sake of illustration say it’s x1, x4, x9, x16, · · · →
x. Then look at the corresponding sequence y1, y4, y9, y16, . . . . Using compact-
ness of Y , it has a convergent subsequence, say y1, y16, y81, y256, · · · → y. Then
p1, p16, p81, . . . will converge to (x, y).
One common mistake is to just conclude that (xn) has a convergent subsequence
and that (yn) does too. But these sequences could be totally unrelated. For this
proof to work, you do need to apply compactness of X first, and then compactness
of Y on the resulting filtered sequence like we did here.

8H. The following solution is due to Royce Yao. We show the contrapositive: if M is
not compact, then there exists a homeomorphic unbounded metric.
The main step is to construction an unbounded continuous function F : M → R.
Once such a function F is defined, the metric

d′(x, y) := d(x, y) + |F (x)− F (y)|

will solve the problem.
So, let a1, a2, . . . be a sequence in M with no convergent subsequence. For each
ai, there exists a radius ri such that

0 < ri <
1
2 min

j
d(ai, aj)

Define Ci as an open ball at ai with radius ri. Note that every ball is disjoint.
Then, we define F as follow

F (x) =
{

0 x ̸∈ Ci
i
r1

(ri − d(x, ai)) x ∈ Ci

which can be seen to be continuous. Then, F is unbounded by considering F (ai)
as i goes to infinity.

https://math.stackexchange.com/q/556150/229197
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8I. Part (a) follows by the Cantor intersection theorem (Problem 8D). Assume for
contradiction such a partition existed. Take any of the circles C0, and let K0 denote
the closed disk with boundary C0. Now take the circle C1 passing through the
center of C0, and let K1 denote the closed disk with boundary C1. If we repeat in
this way, we get a nested sequence K0 ⊇ K1 ⊇ . . . and the radii of Ci approach
zero (since each is at most half the previous once). Thus some point p lies in

⋂
nKn

which is impossible.

Now for part (b), again assume for contradiction a partition into circles exists.
Color a circle magenta if it contains p but not q and color a circle cyan if it contains
q but not p. Color p itself magenta and q itself cyan as well. Finally, color a circle
neon yellow if it contains both p and q. (When we refer to coloring a circle, we
mean to color all the points on it.)

By repeating the argument in (a) there are no circles enclosing neither p nor q.
Hence every point is either magenta, cyan, or neon yellow. Now note that given any
magenta circle, its interior is completely magenta. Actually, the magenta circles
can be totally ordered by inclusion (since they can’t intersect). So we consider two
cases:

• If there is a magenta circle which is maximal by inclusion (i.e. a magenta circle
not contained in any other magenta circle) then the set of all magenta points
is just a closed disk.

• If there is no such magenta circle, then the set of magenta points can also be
expressed as the union over all magenta circles of their interiors. This is a
union of open sets, so it is itself open.

We conclude the set of magenta points is either a closed disk or an open set.
Similarly for the set of cyan points. Moreover, the set of such points is convex.

To finish the problem:

• Suppose there are no neon yellow points. If the magenta points form a
closed disk, then the cyan points are R2 minus a disk which is not convex.
Contradiction. So the magenta points must be open. Similarly the cyan points
must be open. But R2 is connected, so it can’t be written as the union of two
open sets.

• Now suppose there are neon yellow points. We claim there is a neon yellow
circle minimal by inclusion. If not, then repeat the argument of (a) to get a
contradiction, since any neon yellow circle must have diameter the distance
from p to q. So we can find a neon yellow circle C whose interior is all magenta
and cyan. Now repeat the argument of the previous part, replacing R2 by the
interior of C .

9A†.

T injective T surjective T isomorphism
If dimV > dimW . . . never sometimes never
If dimV = dimW . . . sometimes sometimes sometimes
If dimV < dimW . . . sometimes never never

Each “never” is by the rank-nullity theorem. Each counterexample is obtained by
the zero map sending every element of V to zero; this map is certainly neither
injective or surjective.

9B†. It essentially follows by Theorem 9.7.6.
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9D. Since 1 7→
√

5 and
√

5 7→ 5, the matrix is
[
0 5
1 0

]
.

9G. Let V be the space of real polynomials with degree at most d/2 (which has
dimension 1 + ⌊d/2⌋), and W be the space of real polynomials modulo P (which
has dimension d). Then dim(V ⊕ V ) > dimW . So the linear map V ⊕ V → W
by (A,B) 7→ A + Q · B has a kernel of positive dimension (by rank-nullity, for
example).

9I⋆. Consider

{0} ⊊ kerS ⊆ kerS2 ⊆ kerS3 ⊆ . . . and V ⊋ imS ⊇ imS2 ⊇ imS3 ⊇ . . . .

For dimension reasons, these subspaces must eventually stabilize: for some large
integer N , kerTN = kerTN+1 = . . . and imTN = imTN+1 = imTN+2 = . . . .
When this happens, kerTN

⋂
imTN = {0}, since TN is an automorphism of imTN .

On the other hand, by Rank-Nullity we also have dim kerTN + dim imTn = dimV .
Thus for dimension reasons, V = kerTN ⊕ imTN .

10A. It’s just dimV = 2018. After all, you are adding the dimensions of the Jordan
blocks. . .

10B. (a): if you express T as a matrix in such a basis, one gets a diagonal matrix. (b):
this is just saying each Jordan block has dimension 1, which is what we wanted.
(We are implicitly using uniqueness of Jordan form here.)

10C. The +1 eigenspace is spanned by e1 + e2. The −1 eigenspace is spanned by e1 − e2.

10E. The +1 eigenspace is spanned by 1 + x2 and x. The −1 eigenspace is spanned by
1− x2.

10F. Constant functions differentiate to zero, and these are the only 0-eigenvectors.
There can be no other eigenvectors, since if deg p > 0 then deg p′ = deg p− 1, so if
p′ is a constant real multiple of p we must have p′ = 0, ergo p is constant.

10G. ecx is an example of a c-eigenvector for every c. If you know differential equations,
these generate all examples!

11A. We saw already the trace is always the sum of the eigenvalues, in any basis. In
particular, choosing the Jordan form basis from the previous chapter gives the
result because the Jordan form has the eigenvalues for its diagonal entries.

11C†. Although we could give a coordinate calculation, we instead opt to give a cleaner
proof. This amounts to drawing the diagram

(W∨ ⊗ V )⊗ (V ∨ ⊗W ) (V ∨ ⊗W )⊗ (W∨ ⊗ V )

Hom(W,W ) W∨ ⊗W V ∨ ⊗ V Hom(V, V )

k k

compose compose

Tr
ev ev Tr
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It is easy to check that the center rectangle commutes, by checking it on pure
tensors ξW ⊗ v ⊗ ξV ⊗ w. So the outer hexagon commutes and we’re done. This is
really the same as the proof with bases; what it amounts to is checking the assertion
is true for matrices that have a 1 somewhere and 0 elsewhere, then extending by
linearity.

11D. See https://mks.mff.cuni.cz/kalva/putnam/psoln/psol886.html.

12D. Recall that (by Problem 9B†) we can replace “isomorphism” by “injective”.
If T (v) = 0 for any nonzero v, then by taking a basis for which e1 = v, we find∧n(T ) will map e1 ∧ . . . to 0∧ T (e2)∧ · · · = 0, hence is the zero map, so detT = 0.
Conversely, if T is an isomorphism, we let S denote the inverse map. Then
1 = det(id) = det(S ◦ T ) = detS detT , so detT ̸= 0.

12E. We proceed by contradiction. Let v be a vector of length 1000 whose entries are
weight of cows. Assume the existence of a matrix M such that Mv = 0, with entries
0 on diagonal and ±1 off-diagonal. But detM (mod 2) is equal to the number of
derangements of {1, . . . , 1000}, which is odd. Thus detM is odd and in particular
not zero, so M is invertible. Thus Mv = 0 =⇒ v = 0, contradiction.

12F. The answer is [
t t
t t

]
and

[
−3t −t
t 3t

]
for t ∈ R. These work by taking k = 3.
Now to see these are the only ones, consider an arithmetic matrix

M =
[

a a+ e
a+ 2e a+ 3e

]
.

with e ̸= 0. Its characteristic polynomial is t2 − (2a+ 3e)t− 2e2, with discriminant
(2a+ 3e)2 + 8e2, so it has two distinct real roots; moreover, since −2e2 ≤ 0 either
one of the roots is zero or they are of opposite signs. Now we can diagonalize M
by writing

M =
[
s −q
−r p

] [
λ1 0
0 λ2

] [
p q
r s

]
=
[
psλ1 − qrλ2 qs(λ1 − λ2)
pr(λ2 − λ1) psλ2 − qrλ1

]

where ps− qr = 1. By using the fact the diagonal entries have sum equalling the
off-diagonal entries, we obtain that

(ps− qr)(λ1 + λ2) = (qs− pr)(λ1 − λ2) =⇒ qs− pr = λ1 + λ2
λ1 − λ2

.

Now if Mk ∈ S too then the same calculation gives

qs− pr = λk1 + λk2
λk1 − λk2

.

Let x = λ1/λ2 < 0 (since −2e2 < 0). We appropriately get

x+ 1
x− 1 = xk + 1

xk − 1 =⇒ 2
x− 1 = 2

xk − 1 =⇒ x = xk =⇒ x = −1 or x = 0

https://mks.mff.cuni.cz/kalva/putnam/psoln/psol886.html


1002 Napkin, by Evan Chen (v1.6.20241027)

and k odd. If x = 0 we get e = 0 and if x = −1 we get 2a+ 3e = 0, which gives
the curve of solutions that we claimed.
A slicker approach is by Cayley-Hamilton. Assume that e ̸= 0, so M has two
distinct real eigenvalues as above. We have Mk = cM + did for some constants c
and d (since M satisfies some quadratic polynomial). Since M ∈ S, Mk ∈ S we
obtain d = 0. Thus Mk = cM , so it follows the eigenvalues of M are negatives of
each other. That means TrM = 0, and the rest is clear.

12G. Pick a basis e1, . . . , en of V . Let T have matrix (xij), and let m = dimV . Let δij
be the Kronecker delta. Also, let Fix(σ) denote the fixed points of a permutation
σ and let NoFix(σ) denote the non-fixed points.
Expanding then gives

det(a · id− T )

=
∑
σ∈Sm

(
sign(σ) ·

m∏
i=1

(
a · δiσ(i) − xiσ(i)

))

=
m∑
s=0

∑
1≤i1<···<is≤m

∑
σ∈Sm

σ fixes ik

(
sign(σ) ·

m∏
i=1

(
a · δiσ(i) − xiσ(i)

))

=
m∑
s=0

∑
1≤i1<···<is≤m

∑
σ∈Sm

σ fixes (ik)

sign(σ) ·
∏
i/∈(ik)

−xiσ(i)

n∏
i∈(ik)

(a · −xii)



=
∑
σ∈Sm

sign(σ) ·
∏

i∈NoFix(σ)
−xiσ(i)

∏
i∈Fix σ

(a− xii)


=

∑
σ∈Sm

sign(σ) ·

 ∏
i∈NoFix(σ)

−xiσ(i)

|Fix(σ)|∑
t=0

a|Fix(σ)|−t ·
∑

i1<···<it∈Fix(σ)

t∏
k=1
−xikik



=
∑
σ∈Sm

sign(σ)


|Fix(σ)|∑
t=0

am−t−|NoFix(σ)| ∑
X⊆{1,...,m}
NoFix(σ)⊆X

X has exactly t fixed

∏
i∈X
−xiσ(i)





=
m∑
n=0

am−n


∑
σ∈Sm

sign(σ)
∑

X⊆{1,...,m}
NoFix(σ)⊆X

|X|=n

∏
i∈X
−xiσ(i)



=
m∑
n=0

am−n(−1)n

 ∑
X⊆{1,...,m}

|X|=n

∑
σ∈Sm

NoFix(σ)⊆X

sign(σ)
∏
i∈X

xiσ(i)

 .

Hence it’s the same to show that

∑
X⊆{1,...,m}

|X|=n

∑
σ∈Sm

NoFix(σ)⊆X

sign(σ)
∏
i∈X

xiσ(i) = Tr∧n(V )

(
n∧

(T )
)
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holds for every n.

We can expand the definition of trace as using basis elements as

Tr
(
n∧

(T )
)

=
∑

1≤i1<···<in≤m

(
n∧
k=1

eik

)∨( n∧
(T )

(
n∧
k=1

eik

))

=
∑

1≤i1<···<in≤m

(
n∧
k=1

eik

)∨( n∧
k=1

T (eik)
)

=
∑

1≤i1<···<in≤m

(
n∧
k=1

eik

)∨
 n∧
k=1

 m∑
j=1

xikjej


=

∑
1≤i1<···<in≤m

∑
π∈Sn

sign(π)
n∏
k=1

xiπ(k)k

=
∑

X⊆{1,...,m}
|X|=n

∑
π∈SX

sign(π)
∏
i∈X

xtπ(t)

Hence it remains to show that the permutations over X are in bijection with the
permutations over Sm which fix {1, . . . ,m} −X, which is clear, and moreover, the
signs clearly coincide.

13C. Interpret clubs as vectors in the vector space Fn2 . Consider a “dot product” to show
that all k vectors are linearly independent: any two different club-vectors have dot
product 0, while each club vector has dot product 1 with itself. So these vectors
are orthonormal and hence linearly independent. Thus k ≤ dimFn2 = n.

13D⋆. The inner form given by

⟨v1 ⊗ w1, v2 ⊗ w2⟩V⊗W = ⟨v1, v2⟩V ⟨w1, w2⟩W

on pure tensors, then extending linearly. For (b) take ei ⊗ fj for 1 ≤ i ≤ n,
1 ≤ j ≤ m.

14B. Define the Boolean function D : {±1}3 → R by

D(a, b, c) = ab+ bc+ ca =
{

3 a, b, c all equal
−1 a, b, c not all equal.

.

Thus paradoxical outcomes arise when D(f(x•), g(y•), h(z•)) = 3. Now, we compute
that for randomly selected x•, y•, z• that

ED(f(x•), g(y•), h(z•)) = E
∑
S

∑
T

(
f̂(S)ĝ(T ) + ĝ(S)ĥ(T ) + ĥ(S)f̂(T )

)
(χS(x•)χT (y•))

=
∑
S

∑
T

(
f̂(S)ĝ(T ) + ĝ(S)ĥ(T ) + ĥ(S)f̂(T )

)
E (χS(x•)χT (y•)) .

Now we observe that:

• If S ̸= T , then EχS(x•)χT (y•) = 0, since if say s ∈ S, s /∈ T then xs affects
the parity of the product with 50% either way, and is independent of any other
variables in the product.



1004 Napkin, by Evan Chen (v1.6.20241027)

• On the other hand, suppose S = T . Then

χS(x•)χT (y•) =
∏
s∈S

xsys.

Note that xsys is equal to 1 with probability 1
3 and −1 with probability 2

3
(since (xs, ys, zs) is uniform from 3! = 6 choices, which we can enumerate).
From this an inductive calculation on |S| gives that

∏
s∈S

xsys =
{

+1 with probability 1
2(1 + (−1/3)|S|)

−1 with probability 1
2(1− (−1/3)|S|).

Thus
E
(∏
s∈S

xsys

)
=
(
−1

3

)|S|
.

Piecing this altogether, we now have that

ED(f(x•), g(y•), h(z•)) =
(
f̂(S)ĝ(T ) + ĝ(S)ĥ(T ) + ĥ(S)f̂(T )

)(
−1

3

)|S|
.

Then, we obtain that

E
1
4 (1 +D(f(x•), g(y•), h(z•)))

=1
4 + 1

4
∑
S

(
f̂(S)ĝ(T ) + ĝ(S)ĥ(T ) + ĥ(S)f̂(T )

)
f̂(S)2

(
−1

3

)|S|
.

Comparing this with the definition of D gives the desired result.

15B. By Theorem 9.7.6, we may select e1, . . . , en a basis of V and f1, . . . , fm a basis of
W such that T (ei) = fi for i ≤ k and T (ei) = 0 for i > k. Then T∨(f∨

i ) = e∨
i for

i ≤ k and T∨(f∨
i ) = 0 for i > k. All four quantities are above are then equal to k.

15F. First, suppose T ∗ = p(T ). Then T ∗T = p(T ) · T = T · p(T ) = TT ∗ and we’re done.
Conversely, suppose T is diagonalizable in a way compatible with the inner form
(OK since V is finite dimensional). Consider the orthonormal basis. Then T consists
of eigenvalues on the main diagonals and zeros elsewhere, say

T =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn

 .
In that case, we find that for any polynomial q we have

q(T ) =


q(λ1) 0 . . . 0

0 q(λ2) . . . 0
...

... . . . ...
0 0 . . . q(λn)

 .
and

T ∗ =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn

 .
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So we simply require a polynomial q such that q(λi) = λi for every i. Since there are
finitely many λi, we can construct such a polynomial using Lagrange interpolation.

16E†. https://math.stackexchange.com/a/3012179/229197

17B. Suppose |G| = 56 and G is simple. Consider the Sylow 7-subgroups; if there are
n7 of them we assume n7 > 1 (since G is simple) and n7 ≡ 1 (mod 7), so n7 = 8.
That means there are (7− 1) · 8 = 48 elements of order 7 in G.
But consider the Sylow 2-subgroups. These have 8 elements each, and we conclude
therefore that there is at exactly one Sylow 2-subgroup. That subgroup is normal,
contradiction.

17C. One example is the group of 3× 3 matrices with entries in F3 that are of the form1 x y
1 z

1

.

17D. Let G be said group. If G is abelian then all subgroups are normal, and since G is
simple, G can’t have any subgroups at all. We can clearly find an element of order
p, hence G has a subgroup of order p, which can only happen if n = 1, G ∼= Z/pZ.
Thus it suffices to show G can’t be abelian. For this, we can use the class equation,
but let’s avoid that and do it directly:
Assume not and let Z(G) = {g ∈ G | xg = gx ∀x ∈ G} be the center of the group.
Since Z(G) is normal in G, and G is simple, we see Z(G) = {1G}. But then let G
act on itself by conjugation: g · x = gxg−1. This breaks G into a bunch of orbits
O0 = {1G}, O1, O2, . . . , and since 1G is the only fixed point by definition, all other
orbits have size greater than 1. The Orbit-stabilizer theorem says that each orbit
now has size dividing pn, so they must all have size zero mod p.
But then summing across all orbits (which partition G), we obtain |G| ≡ 1 (mod p),
which is a contradiction.

18D. Take G = Z/3Z ⊕ Z/9Z ⊕ Z/9Z ⊕ Z/9Z ⊕ . . . and H = Z/9Z ⊕ Z/9Z ⊕ Z/9Z ⊕
Z/9Z ⊕ . . . . Then there are maps G ↪→ H and H ↪→ G, but the groups are not
isomorphic since e.g. G has an element g ∈ G of order 3 for which there’s no g′ ∈ G
with g = 3g′.

18E. Nope! Pick

A = Z[x1, x2, . . . ]
B = Z[x1, x2, . . . , εx1, εx2, . . . ]
C = Z[x1, x2, . . . , ε].

where ε ̸= 0 but ε2 = 0. I think the result is true if you add the assumption A is
Noetherian.

19D⋆. The operators are those of the form T (a) = ab for some fixed b ∈ A. One can check
these work, since for c ∈ A we have T (c · a) = cab = c · T (a). To see they are the
only ones, note that T (a) = T (a · 1A) = a · T (1A) for any a ∈ A.

20C. Pick any v ∈ V , then the subspace spanned by elements g ·v for v ∈ V is G-invariant;
this is a finite-dimensional subspace, so it must equal all of V .

21B. Csign ⊕ C2 ⊕ refl0⊕(refl0⊗Csign).

https://math.stackexchange.com/a/3012179/229197
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21C. First, observe that |χW (g)| = 1 for all g ∈ G.

⟨χV⊗W , χV⊗W ⟩ = ⟨χV χW , χV χW ⟩

= 1
|G|

∑
g∈G
|χV (g)|2 |χW (g)|2

= 1
|G|

∑
g∈G
|χV (g)|2

= ⟨χV , χV ⟩ = 1.

21D. The table is given by
Q8 1 −1 ±i ±j ±k
Ctriv 1 1 1 1 1
Ci 1 1 1 −1 −1
Cj 1 1 −1 1 −1
Ck 1 1 −1 −1 1
C2 2 −2 0 0 0

The one-dimensional representations (first four rows) follows by considering the
homomorphism Q8 → C×. The last row is two-dimensional and can be recovered
by using the orthogonality formula.

23A. By a straightforward computation, we have |Ψ−⟩ = − 1√
2 (|→⟩A ⊗ |←⟩B − |←⟩A |→⟩B).

Now, |→⟩A⊗|→⟩B , |→⟩A⊗|←⟩B span one eigenspace of σAx ⊗idB, and |←⟩A⊗|→⟩B,
|←⟩A ⊗ |←⟩B span the other. So this is the same as before: +1 gives |←⟩B and −1
gives |←⟩A.

24A. To show the Fredkin gate is universal it suffices to reversibly create a CCNOT gate
with it. We write the system

(z,¬z,−) = Fred(z, 1, 0)
(x, a,−) = Fred(x, 1, 0)
(y, b,−) = Fred(y, a, 0)
(−, c,−) = Fred(b, 0, 1)
(−, d,−) = Fred(c, z,¬z).

Direct computation shows that d = z + xy (mod 2).

24C. Put |←⟩ = 1√
2(|0⟩ − |1⟩). Then we have that Uf sends

|x1⟩ . . . |xm⟩ |0⟩ − |x1⟩ . . . |xm⟩ |1⟩
Uf7−−→ ± |x1⟩ . . . |xm⟩ |0⟩ ∓ |x1⟩ . . . |xm⟩ |1⟩

the sign being +, − exactly when f(x1, . . . , xm) = 1.
Now, upon inputting |0⟩ . . . |0⟩ |1⟩, we find that H⊗m+1 maps it to

2−n/2 ∑
x1,...,xn

|x1⟩ . . . |xn⟩ |←⟩ .

Then the image under Uf is

2−n/2 ∑
x1,...,xn

(−1)f(x1,...,xn) |x1⟩ . . . |xn⟩ |←⟩ .
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We now discard the last qubit, leaving us with

2−n/2 ∑
x1,...,xn

(−1)f(x1,...,xn) |x1⟩ . . . |xn⟩ .

Applying H⊗m to this, we get

2−n/2 ∑
x1,...,xn

(−1)f(x1,...,xn) ·
(

2−n/2 ∑
y1,...,yn

(−1)x1y1+···+xnyn |y1⟩ |y2⟩ . . . |yn⟩
)

since H |0⟩ = 1√
2(|0⟩+ |1⟩) while H |1⟩ = 1√

2(|0⟩ − |1⟩), so minus signs arise exactly
if xi = 1 and yi = 1 simultaneously, hence the term (−1)x1y1+···+xnyn . Swapping
the order of summation, we get

2−n ∑
y1,...,yn

C(y1, . . . , yn) |y1⟩ |y2⟩ . . . |yn⟩

where Cy1,...,yn =
∑
x1,...,xn

(−1)f(x1,...,xn)+x1y1+···+xnyn . Now, we finally consider
two cases.

• If f is the constant function, then we find that

C(y1, . . . , yn) =
{
±1 y1 = · · · = yn = 0
0 otherwise.

To see this, note that the result is clear for y1 = · · · = yn = 0; otherwise, if
WLOG y1 = 1, then the terms for x1 = 0 exactly cancel the terms for x1 = 1,
pair by pair. Thus in this state, the measurements all result in |0⟩ . . . |0⟩.

• On the other hand if f is balanced, we derive that

C(0, . . . , 0) = 0.

Thus no measurements result in |0⟩ . . . |0⟩.
In this way, we can tell whether f is balanced or not.

26E. This is an application of Cauchy convergence, since one can show that∣∣∣∣∣
N∑

n=M
(−1)nan

∣∣∣∣∣ ≤ amin{M,N}.

Indeed, if M and N are even (for simplicity; other cases identical) then

aM − aM+1 + aM+2 − . . . = aM − (aM+1 − aM+2)− (aM+3 − aM+4)
− · · · − (aN−1 − aN )
≤ aM

aM − aM+1 + aM+2 − . . . = aM − aM+1 + (aM+2 − aM+3) + (aM+4 − aM+5)
+ · · ·+ (aN−2 − aN+1) + aN

≥ −aM+1.

In this way we see that the sequence of partial sums is Cauchy, hence converges to
some limit.
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26F. To capture the hypothesis of monotonic and bounded, write an = x1 + · · · + xn
for some xi. Then x2, . . . are all the same sign and so

∑
|xi| = A <∞ for some

constant A.
We now prove that the partial sums of

∑
anbn are a Cauchy sequence. Consider

any ε > 0. Let K be such that the tails of bn starting after K have absolute value
less than ε

A . Then for any N > M ≥ K we have∣∣∣∣∣
N∑

k=M
akbk

∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

k=M

k∑
j=1

bkxj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
j=1

N∑
k=max{j,M}

bkxj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
j=1

xj ·
N∑

k=max{j,M}
bk

∣∣∣∣∣∣
≤

N∑
j=1
|xj |

∣∣∣∣∣∣
N∑

k=max{j,M}
bk

∣∣∣∣∣∣
<

N∑
j=1
|xj | ·

ε

A

< ε

as desired.

26G. The answer is e− 1.
We begin by noting xn+1 = log(exn − xn) ≥ log 1 = 0, owing to et ≥ 1 + t. So
xn ≥ 0 for all n.
Next notice that

xn+1 = log (exn − xn) < log exn = xn.

So x1, x2, . . . is strictly decreasing in addition to nonnegative. Thus it must
converge to some limit L.
Third, observe that

xn = exn − exn+1 =⇒ x0 + x1 + · · ·+ xn = ex0 − exn = e− exn < e.

Since the partial sums are bounded by e, and xi ≥ 0, we conclude L = 0.
Finally, the limit of the partial sums is then

lim
n→∞

e− exn = e− e0 = e− 1.

28G. Write f(x) = ex log x and then apply the chain rule and product rule:

f ′(x) = ex log x · (x log x)′

= ex log x · (1 + log x)
= xx (1 + log x) .

29E. See https://mathoverflow.net/q/81613 and in particular https://web.archive.
org/web/20161009194815/http://mathforum.org/kb/message.jspa?messageID=
387148.

https://mathoverflow.net/q/81613
https://web.archive.org/web/20161009194815/http://mathforum.org/kb/message.jspa?messageID=387148
https://web.archive.org/web/20161009194815/http://mathforum.org/kb/message.jspa?messageID=387148
https://web.archive.org/web/20161009194815/http://mathforum.org/kb/message.jspa?messageID=387148
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31B⋆. Proceed by contradiction, meaning there exists a sequence z1, z2, . . . → z where
0 = f(z1) = f(z2) = . . . all distinct. WLOG set z = 0. Look at the Taylor
series of f around z = 0. Since it isn’t uniformly zero by assumption, write it as
aNz

N + aN+1z
N+1 + · · · , aN ≠ 0. But by continuity of h(z) = aN + aN+1z + · · ·

there is some open neighborhood of zero where h(z) ̸= 0.

31C⋆. Let S be the interior of the points satisfying f = g. By definition S is open. By
the previous part, S is closed: if zi → z and zi ∈ S, then f = g in some open
neighborhood of z, hence z ∈ S. Since S is clopen and nonempty, S = U .

31E. Suppose we want to show that there’s a point in the image within ε of a given a
point w ∈ C. Look at 1

f(z)−w and use Liouville’s theorem.

32C. See https://math.stackexchange.com/q/242514/229197, which does it with
2019 replaced by 3.

39A. It is the counting measure.

41A. For each positive integer m, consider what happens when ε = 1/m. Then, by
hypothesis, there is a threshold Nm such that the anomaly set

Am :=
{
ω : |X(ω)−Xn(ω)| ≥ 1

m
for some n > Nm

}
has measure µ(Am) = 0. Hence, the countable union A =

⋃
m≥1Am has measure

zero too.
So the complement of A has measure 1. For any world ω /∈ A, we then have

lim
n
|X(ω)−Xn(ω)| = 1

because when n > Nm that absolute value is always at most 1/m (as ω /∈ Am).

41B. https://math.stackexchange.com/a/2201906/229197

55C. If α ≡ 0 (mod p) it’s clear, so assume this isn’t the case. Then OK/p is a finite
field with N(p) elements. Looking at (OK/p)∗, it’s a multiplicative group with
N(p)− 1 elements, so αN(p)−1 ≡ 1 (mod p), as desired.

55D†. Suppose it’s generated by some elements in K; we can write them as βi
αi

for
αi, βi ∈ A. Hence

J =
{∑

i

γi ·
βi
αi
| αi, βi, γi ∈ OK

}
.

Now “clear denominators”. Set α = α1 . . . αn, and show that αJ is an integral ideal.

55E. For part (a), note that the pi are prime just because

OK/pi ∼= (Z[x]/f)/(p, fi) ∼= Fp[x]/(fi)

is a field, since the fi are irreducible.
We check (b). Computing the product modulo p yields2

g∏
i=1

(fi(θ))ei ≡ (f(θ)) ≡ 0 (mod p)

2For example, suppose we want to know that (3, 1 +
√

7)(3, 1 −
√

7) is contained in (3). We could
do the full computation and get (9, 3 + 3

√
7, 3 − 3

√
7, 6). But if all we care about is that every

element is divisible by 3, we could have just taken “mod 3” at the beginning and looked at just
(1 +

√
7)(1 −

√
7) = (6); all the other products we get will obviously have factors of 3.

https://math.stackexchange.com/q/242514/229197
https://math.stackexchange.com/a/2201906/229197
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so we’ve shown that I ⊆ (p).

Finally, we prove (c) with a size argument. The idea is that I and (p) really should
have the same size; to nail this down we’ll use the ideal norm. Since (p) divides I, we
can write (p) =

∏g
i=1 p

e′
i
i where e′

i ≤ ei for each i. Remark OK/(p) ∼= Z/pZ[x]/(f)
has size pdeg f . Similarly, OK/(pi) has degree pdeg fi for each i. Compute N((p))
using the e′

i now and compare the results.

56F. Let K = Q(
√
−5). Check that ClK has order two using the Minkowski bound;

moreover ∆K = 20. Now note that OK = Z[
√
−5], and x2 + 5 factors mod p as

(x+ k)(x− k); hence in OK we have (p) = (p,
√
−5 + k)(p,

√
−5− k) = p1p2, say.

For p > 5 the prime p does not ramify and we have p1 ̸= p2, since ∆K = 20.

Then (p2) = p2
1 · p2

2. Because the class group has order two, both p2
1 and p2

2 are
principal, and because p1 ̸= p2 they are distinct. Thus p2 is a nontrivial product of
two elements of OK ; from this we can extract the desired factorization.

59A⋆. It’s just Z/p − 1Z, since ζp needs to get sent to one (any) of the p − 1 primitive
roots of unity.

59D. A similar (but not identical) problem is solved here: https://aops.com/community/
c6h149153p842956.

59F. https://www.math.cornell.edu/~kbrown/6310/primitive.pdf

60A†. Recall that the Fibonacci sequence is given by

Fn = αn − βn

α− β

where α = 1+
√

5
2 and β = 1−

√
5

2 are the two roots of P (X) := X2 −X − 1.

Let p = 127 and work modulo p. As

(5
p

)
=
(
p

5

)
=
(2

5

)
= −1

we see 5 is not a quadratic residue mod 127. Thus the polynomial P (X), viewed as
a polynomial in Fp[X], is irreducible (intuitively, α and β are not elements of Fp).
Accordingly we will work in the finite field Fp2 , which is the Fp-splitting field of
P (X). In other words we interpret α and β as elements of Fp2 which do not lie in
Fp.

Let σ : Fp2 → Fp2 by t 7→ tp be the nontrivial element of Gal
(
Fp2/Fp

)
; in other

words, σ is the non-identity automorphism of Fp2 . Since the fixed points of σ are
the elements of Fp, this means σ does not fix either root of P ; thus we must have

αp = σ(α) = β

βp = σ(β) = α.

https://aops.com/community/c6h149153p842956
https://aops.com/community/c6h149153p842956
https://www.math.cornell.edu/~kbrown/6310/primitive.pdf
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Now, compute

Fp = αp − βp

α− β
= β − α
α− β

= −1.

Fp+1 = αp+1 − βp+1

α− β
= αβ − βα

α− β
= 0.

F2p+1 = α2p+1 − β2p+1

α− β
= β2α− α2β

α− β
= −αβ = 1.

F2p+2 = α2p+2 − β2p+2

α− β
= β2α2 − α2β2

α− β
= 0.

Consequently, the period must divide 2p+ 2 but not p+ 1.
We now use for the first time the exact numerical value p = 127 to see the period
divides 2p+ 2 = 256 = 28, but not p+ 1 = 128 = 27. (Previously we only used the
fact that (5/p) = −1.) Thus the period must be exactly 256.

62A. It is still true that(2
q

)
= 1 ⇐⇒ σ2 ∈ H ⇐⇒ 2 splits in Z

[
1
2(1 +

√
q∗)
]
.

Now, 2 splits in the ring if and only if t2− t− 1
4(1−q∗) factors mod 2. This happens

if and only if q∗ ≡ 1 (mod 8). One can check this is exactly if q ≡ ±1 (mod 8),
which gives the conclusion.

62C†. Let K = Gal(Q(ζm)/Q). One can show that Gal(K/Q) ∼= (Z/mZ)× exactly as
before. In particular, Gal(K/Q) is abelian and therefore its conjugacy classes are
singleton sets; there are ϕ(m) of them.
As long as p is sufficiently large, it is unramified and σp = Frobp for any p above p
(as mth roots of unity will be distinct modulo p; differentiate xm − 1 mod p again).

62E. This solution is by David Corwin. By primitive roots, it’s the same as the action of
×3 on Z/(p− 1)Z. Let ζ be a (p− 1)st root of unity.
Consider

d =
∏

0≤i<j<p−1
(ζi − ζj).

This is the square root of the discriminant of the polynomial Xp−1 − 1; in other
words d2 ∈ Z. In fact, by elementary methods one can compute

(−1)(
p−1

2 )d2 = −(p− 1)p−1

Now take the extension K = Q(d), noting that

• If p ≡ 3 (mod 4), then d = (p− 1)
1
2 (p−1), so K = Q.

• If p ≡ 1 (mod 4), then d = i(p− 1)
1
2 (p−1), so K = Q(i).

Either way, in OK , let p be a prime ideal above (3) ⊆ OK . Let σ = Frobp then be
the unique element such that σ(x) = x3 (mod p) for all x. Then, we observe that

σ(d) ≡
∏

0≤i<j<p−1
(ζ3i − ζ3j) ≡

{
+d if π is even
−d if π is odd

(mod p).
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Now if K = Q, then σ is the identity, thus σ even. Conversely, if K = Q(i), then 3
does not split, so σ(d) = −d (actually σ is complex conjugation) thus π is odd.
Note the condition that p ≡ 2 (mod 3) is used only to guarantee that π is actually a
permutation (and thus d ̸= 0); it does not play any substantial role in the solution.

63A†. Suppose f(L/Q) | m∞ for some m. Then by the example from earlier we have the
chain

PQ(m∞) = H(Q(ζ)/Q,m∞) ⊆ H(L/Q,m) ⊆ IQ(m∞).

So by inclusion reversal we’re done.

63B†. Apply the Takagi existence theorem with m = 1 to obtain an unramified extension
E/K such that H(E/K, 1) = PK(1). We claim this works:

• To see it is maximal by inclusion, note that any other extension M/K with
this property has conductor 1 (no primes divide the conductor), and then we
have PK(1) = H(E/K, 1) ⊆ H(M/K, 1) ⊆ IK(1), so inclusion reversal gives
M ⊆ E.

• We have Gal(L/K) ∼= IK(1)/PK(1) = CK(1) the class group.
• The isomorphism in the previous part is given by the Artin symbol. So p

splits completely if and only if
(
L/K
p

)
= id if and only if p is principal (trivial

in CK(1)).
This completes the proof.

68A. The main observation is that in A × 2, you have the arrows in A (of the form
(f, id2)), and then the arrows crossing the two copies of A (of the form (idA, 0 ≤ 1)).
But there are some more arrows (f, 0 ≤ 1): nonetheless, they can be thought of as
compositions

(f, 0 ≤ 1) = (f, id2) ◦ (idA, 0 ≤ 1) = (idA, 0 ≤ 1) ◦ (f, id2).

Now to specify a functor α : A × 2 → B, we only have to specify where each of
these two more basic things goes. The conditions on α already tells us that (f, id2)
should be mapped to F (f) or G(f) (depending on whether the arrow above is in
A× {0} or A× {1}), and specifying the arrow (idA, 0 ≤ 1) amounts to specifying
the Ath component. Where does naturality come in?
The above discussion transfers to products of categories in general: you really only
have to think about (f, id) and (id, g) arrows to get the general arrow (f, g) =
(f, id) ◦ (id, g) = (id, g) ◦ (f, id).

70A. Let c ∈ C with γ(c) = 0. We show c = 0. This proceeds in a diagram chase:
• Note that 0 = r′(γ(c)) = δ(r(c)), and since δ is injective, it follows that
r(c) = 0.

• Since the top row is exact, it follows c = q(b) for some b ∈ B.
• Then q′(β(b)) = 0, so if we let b′ = β(b), then b′ ∈ ker(q′). As the bottom row

is exact, there exists a′ with p′(a′) = b′.
• Since α is injective, there is a ∈ A with α(a) = a′.
• Since β is injective, it follows that p(a) = b.
• Since the top row is exact, and b is in the image of p, it follows that 0 = q(b) = c

as needed.
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71A. Applying the functor Hn−1 we get that the composition Z→ 0→ Z is the identity
which is clearly not possible.

72B. The answer is H̃n−1(X) ∼= Z⊕p, with all other groups vanishing. For p = 1,
Rn − {∗} ∼= Sn−1 so we’re done. For all other p, draw a hyperplane dividing the
p points into two halves with a points on one side and b points on the other (so
a+ b = p). Set U and V and use induction.

Alternatively, let U be the desired space and let V be the union of p disjoint balls,
one around every point. Then U ∪ V = Rn has all reduced homology groups trivial.
From the Mayer-Vietoris sequence we can read H̃k(U ∩V ) ∼= H̃k(U)∩ H̃k(V ). Then
U ∩ V is p punctured balls, which are each the same as Sn−1. One can read the
conclusion from here.

72C⋆. It is Z for k = n and 0 otherwise.

72F⋆. Use the short exact sequence

0→ C•(B,A)→ C•(X,A)→ C•(X,B)→ 0

of chain complexes.

73B. We have an exact sequence

H̃1(R)︸ ︷︷ ︸
=0

→ H̃1(R,Q)→ H̃0(Q)→ H̃0(R)︸ ︷︷ ︸
=0

.

Now, since Q is path-disconnected (i.e. no two of its points are path-connected) it
follows that H̃0(Q) consists of countably infinitely many copies of Z.

73E. This is shown in detail in Section 2.B of Hatcher.

74D. For concreteness, let’s just look at the homology at H2(X2, X1) and show it’s
isomorphic to H2(X). According to the diagram

H2(X) ∼= H2(X3)
∼= H2(X2)/ ker

[
H2(X2) ↠ H2(X3)

]
∼= H2(X2)/ im ∂3

∼= im
[
H2(X2) ↪→ H2(X2, X1)

]
/ im ∂3

∼= ker(∂2)/ im ∂3
∼= ker d2/ im d3.

76D. See [Ma13a, Example 3.3.14, pages 68-69].

77B. If V = V(I) with I = (f1, . . . , fm) (as usual there are finitely many polynomials
since R[x1, . . . , xn] is Noetherian) then we can take f = f2

1 + · · ·+ f2
m.

77C. Let I be an ideal, and let m be a maximal ideal contained in it. (If you are worried
about the existence of m, it follows from Krull’s Theorem, Problem 5E⋆). Then
m = (x1 − a1, . . . , xn − an) by Weak Nullstellensatz. Consequently, (a1, . . . , an) is
the unique point of V(m), and hence this point is also in V(I).
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77D. The point is to check that if f vanishes on all of V(I), then f ∈
√
I.

Take a set of generators f1, . . . , fm, in the original ring C[x1, . . . , xn]; we may
assume it’s finite by the Hilbert basis theorem.
We’re going to do a trick now: consider S = C[x1, . . . , xn, xn+1] instead. Consider
the ideal I ′ ⊆ S in the bigger ring generated by {f1, . . . , fm} and the polynomial
xn+1f − 1. The point of the last guy is that its zero locus does not touch our copy
xn+1 = 0 of An nor any point in the “projection” of f through An+1 (one can think
of this as V(I) in the smaller ring direct multiplied with C). Thus V(I ′) = ∅, and
by the weak Nullstellensatz we in fact have I ′ = C[x1, . . . , xn+1]. So

1 = g1f1 + · · ·+ gmfm + gm+1 (xn+1f − 1) .

Now the hack: replace every instance of xn+1 by 1
f , and then clear all denomi-

nators. Thus for some large enough integer N we can get

fN = fN (g1f1 + · · ·+ gmfm)

which eliminates any fractional powers of f in the right-hand side. It follows that
fN ∈ I.

80A. From the exactness, hI(d) = hI(d− k) + hI+(f)(d), and it follows that

χI+(f)(d) = χI(d)− χI(d− k).

Let m = dimVpr(I) ≥ 1. Now dimVpr(I + (f)) = m− 1, so and cnew = deg I + (f)
then we have

deg(I + (f))dm−1 + . . .

(m− 1)! = 1
m! (deg I(dm − (d− k)m) + lower order terms)

from which we read off

deg(I + (f)) = (m− 1)!
m! · k

(
m

1

)
deg I = k deg I

as needed.

80B. In complex numbers with ABC the unit circle, it is equivalent to solving the two
cubic equations

(p− a)(p− b)(p− c) = (abc)2(q − 1/a)(q − 1/b)(q − 1/c)
0 =

∏
cyc

(p+ c− b− bcq) +
∏
cyc

(p+ b− c− bcq)

in p and q = p. Viewing this as two cubic curves in (p, q) ∈ C2, by Bézout’s theorem
it follows there are at most nine solutions (unless both curves are not irreducible,
but one can check the first one cannot be factored). Moreover it is easy to name
nine solutions (for ABC scalene): the three vertices, the three excenters, and I, O,
H. Hence the answer is just those three triangle centers I, O and H.

81C. If they were isomorphic, we would have OV (V ) ∼= OW (W ). For irreducible pro-
jective varieties, OW (W ) ∼= C, while for affine varieties OV (V ) ∼= C[V ]. Thus we
conclude V must be a single point.
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81D. Assume for contradiction there is an affine variety V and an isomorphism

f : X → V.

Then taking the pullback we get a ring isomorphism

f ♯ : OV (V )→ OX(X) = C[x, y].

Now let OV (V ) = C[a, b] where f ♯(a) = x, f ♯(b) = y. In particular, we actually
have to have V ∼= A2.
Now in the affine variety V we can take V(a) and V(b); these have nonempty
intersection since (a, b) is a maximal ideal in OV (V ). Call this point q, and let p
be a point with f(p) = q.
Then

0 = a(q) = (f ♯a)(p) = x(p)

and so p ∈ V(x) ⊆ X. Similarly, p ∈ V(y) ⊆ X, but this is a contradiction since
V(x, y) = ∅.

82A. Because the stalks are preserved by sheafification, there is essentially nothing to
prove: both sides correspond to sequences of compatible F -germs over U .

83A. One should get A[1/60] = Z/7Z.

83B. If and only if S has no zero divisors.

83D. Take A = C[x, y]/(xy).

85B. Let V = D(x) ∪D(y) ⊂ U denote the punctured plane, so its complement D(z)
looks like a punctured line. Then V ∩ D(z) = ∅ and the following diagram of
restriction maps commutes

OX(X) = A

OX(U)

OX(D(z)) OX(V )

OX(∅) = 0

By sheaf axioms we should actually have

OX(U) = OX(D(z))×OX(V ).

We have OX(D(z)) = Az = k[x, y, z, z−1]/(xz, yz) ∼= k[z, z−1]. On the other hand
OX(V ) = k[x, y] as shown in §4.4.1 of Vakil. So

OX(U) = k[x, y]× k[z, z−1].

87A. Since Z is the initial object of CRing, it follows SpecZ is the final object of AffSch.
p gets sent to the characteristic of the field OX,p/mX,p.
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88A. Let ε = π − 3.141592653 < 10−9. Then

22
7 = f(π) = f(3.141592653) + f(ε) = 3.141592653 + f(ε).

Therefore,

f(ε) = 22
7 − 3.141592653 = 22− 21.991148571

7 >
0.008

7 > 10−3.

So
f(108ε) = 108f(ε) > 105 > 9000

and 108ε < 1, as needed.

88B. Every statement is true.

The first statement follows by simply extending f via

x 7→


f(x) x > 0
0 x = 0
−f(−x) x < 0.

The second statement is true for any additive function R → R. Indeed, f(0) =
f(0) + f(0) =⇒ f(0) = 0, and odd follows.

The third and fourth statement follow from https://en.wikipedia.org/wiki/
Cauchy%27s_functional_equation#Properties_of_nonlinear_solutions_over_
the_real_numbers.

The fifth statement is kind of stupid. If f was surjective, there should exist a > 0
such that f(a) = 0. But then f(2a) = f(a) + f(a) = 0, so f is not injective.

For the rest, fix a Hamel basis

E = {eα | α ∈ S := {0, 1, 2, . . . } . . . }.

Here S is an uncountable set of ordinals. WLOG, e0 = 1 and eα > 0 for all α ∈ S.
Then f is uniquely determined by the value of f(eα) for each α ∈ S.

• For the sixth statement, let f(e0) = e1, f(e1) = e0, and f(eα) = eα for all
other α ≥ 2.

• The seventh statement is the most complicated. Since S is infinite, it’s possible
to construct a 2-to-1 map ψ : S → S, meaning every element of the codomain
is the image of exactly two elements in the domain. Then if ψ(α) = ψ(β) = γ
for α ̸= β, set f(eα) = eγ , f(eβ) = −eγ .

• For the eighth statement, let f(eα) = 1 for every α ∈ S.

• For the ninth statement, let f(eα) =
√

2 for every α ∈ S.

89E. Define an equivalence relation equating two hat configurations if they differ in only
finitely many places. Now for each equivalence class, everyone pre-agrees on a
particular representative. Finally, note that a person can determine which equiv
class the group is in even without their own hat color. Hence they unanimously
select the same representative, QED.

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation#Properties_of_nonlinear_solutions_over_the_real_numbers
https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation#Properties_of_nonlinear_solutions_over_the_real_numbers
https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation#Properties_of_nonlinear_solutions_over_the_real_numbers
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92C†. For a sentence ϕ let
fϕ : κ→ κ

send α to the least β < κ such that for all b⃗ ∈ Vα, if there exists a ∈ Vκ such that
Vκ ⊨ ϕ[a, b⃗] then ∃a ∈ Vβ such that Vκ ⊨ ϕ[a, b⃗].

We claim this is well-defined. There are only |Vα|n many possible choices of b⃗,
and in particular there are fewer than κ of these (since we know that |Vα| < κ;
compare Problem 91C⋆). Otherwise, we can construct a cofinal map from |V n

α | into
κ by mapping each vector b⃗ into a β for which the proposition fails. And that’s
impossible since κ is regular!
In other words, what we’ve done is fix ϕ and then use Tarski-Vaught on all the
b⃗ ∈ V n

α . Now let g : κ→ κ be defined by

α 7→ sup fϕ(α).

Since κ is regular and there are only countably many formulas, g(α) is well-defined.
Check that if α has the property that g maps α into itself (in other words, α is
closed under g), then by the Tarski-Vaught test, we have Vα ≺ Vκ.
So it suffices to show there are arbitrarily large α < κ which are closed under g.
Fix α0. Let α1 = g(α0), et cetera and define

α = sup
n<ω

αn.

This α is closed under g, and by making α0 arbitrarily large we can make α as
large as we like.

93B. Since M is countable, there are only countably many dense sets (they live in M !),
say

D1, D2, . . . , Dn, . . . ∈M.

Using Choice, let p1 ∈ D1, and then let p2 ≤ p1 such that p2 ∈ D2 (this is possible
since D2 is dense), and so on. In this way we can inductively exhibit a chain

p1 ≥ p2 ≥ p3 ≥ . . .

with pi ∈ Di for every i.
Hence, we want to generate a filter from the {pi}. Just take the upwards closure –
let G be the set of q ∈ P such that q ≥ pn for some n. By construction, G is a filter
(this is actually trivial). Moreover, G intersects all the dense sets by construction.

94A. It suffices to show that P preserves regularity greater than or equal to κ. Consider
λ > κ which is regular in M , and suppose for contradiction that λ is not regular
in M [G]. That’s the same as saying that there is a function f ∈M [G], f : λ→ λ
cofinal, with λ < λ. Then by the Possible Values Argument, there exists a function
F ∈M from λ→ P(λ) such that f(α) ∈ F (α) and |F (α)|M < κ for every α.
Now we work in M again. Note for each α ∈ λ, F (α) is bounded in λ since λ is
regular in M and greater than |F (α)|. Now look at the function λ→ λ in M by
just

α 7→ ∪F (α) < λ.

This is cofinal in M , contradiction.





D Glossary of notations

§D.1 General
• ∀: for all

• ∃: there exists

• sign(σ): sign of permutation σ

• X =⇒ Y : X implies Y

§D.2 Functions and sets
• f img(S) is the image of f : X → Y for S ⊆ X.

• f−1(y) is the inverse for f : X → Y when y ∈ Y .

• fpre(T ) is the pre-image for f : X → Y when T ⊆ Y .

• f↾S is the restriction of f : X → Y to S ⊆ X.

• fn is the function f applied n times

Below are some common sets. These may also be thought of as groups, rings, fields
etc. in the obvious way.

• C: set of complex numbers

• R: set of real numbers

• N: set of positive integers

• Q: set of rational numbers

• Z: set of integers

• ∅: empty set

Some common notation with sets:

• A ⊂ B: A is any subset of B

• A ⊆ B: A is any subset of B

• A ⊊ B: A is a proper subset of B

• S × T : Cartesian product of sets S and T

• S \ T : difference of sets S and T

• S ∪ T : set union of S and T

• S ∩ T : set intersection of S and T

1019



1020 Napkin, by Evan Chen (v1.6.20241027)

• S ⊔ T : disjoint union of S and T

• |S|: cardinality of S

• S/∼: if ∼ is an equivalence relation on S, this is the set of equivalence classes

• x+ S: denotes the set {x+ s | s ∈ S}.

• xS: denotes the set {xs | s ∈ S}.

§D.3 Abstract and linear algebra
Some common groups/rings/fields:

• Z/nZ: cyclic group of order n

• (Z/nZ)×: set of units of Z/nZ.

• Sn: symmetric group on {1, . . . , n}

• D2n: dihedral group of order 2n.

• 0, 1: trivial group (depending on context)

• Fp: integers modulo p

Notation with groups:

• 1G: identity element of the group G

• N ⊴ G: subgroup N is normal in G.

• G/N : quotient group of G by the normal subgroup N

• Z(G): center of group G

• NG(H): normalizer of the subgroup H of G

• G×H: product group of G and H

• G⊕H: also product group, but often used when G and H are abelian (and hence
we can think of them as Z-modules)

• StabG(x): the stabilizer of x ∈ X, if X is acted on by G

• FixPt g, the set of fixed points by g ∈ G (under a group action)

Notation with rings:

• R/I: quotient of ring R by ideal I

• (a1, . . . , an): ideal generated by the ai

• R×: the group of units of R

• R[x1, . . . , xn]: polynomial ring in xi, or ring obtained by adjoining the xi to R

• F (x1, . . . , xn): field obtained by adjoining xi to F

• Rd: dth graded part of a graded (pseudo)ring R



D Glossary of notations 1021

Linear algebra:

• id: the identity matrix

• V ⊕W : direct sum

• V ⊕n: direct sum of V , n times

• V ⊗W : tensor product

• V ⊗n: tensor product of V , n times

• V ∨: dual space

• T∨: dual map (for T a vector space)

• T †: conjugate transpose (for T a vector space)

• ⟨−,−⟩: a bilinear form

• Mat(V ): endomorphisms of V , i.e. Homk(V, V )

• e1, . . . , en: the “standard basis” of k⊕n

§D.4 Quantum computation
• |ψ⟩: a vector in some vector space H

• ⟨ψ|: a vector in some vector space H∨, dual to |ψ⟩.

• ⟨ϕ|ψ⟩: evaluation of an element ⟨ϕ| ∈ H∨ at |ϕ⟩ ∈ H.

• |↑⟩, |↓⟩: spin z-up, spin z-down

• |→⟩, |←⟩: spin x-up, spin x-down

• |⊗⟩, |⊙⟩: spin y-up, spin y-down

§D.5 Topology and real/complex analysis
Common topological spaces:

• S1: the unit circle

• Sn: surface of an n-sphere (in Rn+1)

• Dn+1: closed n+ 1 dimensional ball (in Rn+1)

• RPn: real projective n-space

• CPn: complex projective n-space

Some topological notation:

• ∂Y : boundary of a set Y (in some topological space)

• X/S: quotient topology of X by S ⊆ X

• X × Y : product topology of spaces X and Y
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• X ⨿ Y : disjoint union of spaces X and Y

• X ∨ Y : wedge product of (pointed) spaces X and Y

Real analysis (calculus 101):

• lim inf: limit infimum

• lim sup: limit supremum

• inf: infimum

• sup: supremum

• Zp: p-adic integers

• Qp: p-adic numbers

• f ′: derivative of f

•
∫ b
a f(x) dx: Riemann integral of f on [a, b]

Complex analysis:

•
∫
α f dz: contour integral of f along path α

• Res(f ; p): the residue of a meromorphic function f at point p

• I(γ, p): winding number of γ around p.

§D.6 Measure theory and probability
• A cm: the σ-algebra of Caratheory-measurable sets

• B(X): the Borel space for X

• µcm: the induced measure on A cm.

• λ: Lebesgue measure

• 1A: the indicator function for A

•
∫

Ω f dµ: the Lebesgue integral of f

• limn→∞ fn: pointwise limit of fn

• Ĝ: Pontryagin dual for G

§D.7 Algebraic topology
• α ≃ β: for paths, this indicates path homotopy

• ∗: path concatenation

• π1(X) = π1(X,x0): the fundamental group of (pointed) space X

• πn(X) = πn(X,x0): the nth homotopy group of (pointed) space X

• f♯: the induced map π1(X)→ π1(Y ) of f : X → Y
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• ∆n: the standard n-simplex

• ∂σ: the boundary of a singular n-simplex σ

• Hn(A•): the nth homology group of the chain complex A•

• Hn(X): the nth homology group of a space X

• H̃n(X): the nth reduced homology group of X

• Hn(X,A): the nth relative homology group of X and A ⊆ X

• f∗: the induced map on Hn(A•) → Hn(B•) of f : A• → B•, or Hn(X) → Hn(Y )
for f : X → Y

• χ(X): Euler characteristic of a space X

• Hn(A•): the nth cohomology group of a cochain complex A•

• Hn(A•;G): the nth cohomology group of the cochain complex obtained by applying
Hom(−, G) to A•

• Hn(X;G): the nth cohomology group/ring of X with G-coefficients

• H̃n(X;G): the nth reduced cohomology group/ring of X with G-coefficients

• Hn(X,A;G): the nth relative cohomology group/ring of X and A ⊂ X with
G-coefficients

• f ♯: the induced map on Hn(A•)→ Hn(B•) of f : A• → B•, or Hn(X)→ Hn(Y )
for f : X → Y

• Ext(−,−): the Ext functor

• ϕ ⌣ ψ: cup product of cochains ϕ and ψ

§D.8 Category theory
Some common categories (in alphabetical order):

• Grp: category of groups

• CRing: category of commutative rings

• Top: category of topological spaces

• Top∗: category of pointed topological spaces

• Vectk: category of k-vector spaces

• FDVectk: category of finite-dimensional vector spaces

• Set: category of sets

• hTop: category of topological spaces, whose morphisms are homotopy classes of
maps

• hTop∗: pointed version of hTop
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• hPairTop: category of pairs (X,A) with morphisms being pair-homotopy equivalence
classes

• OpenSets(X): the category of open sets of X, as a poset

Operations with categories:

• objA: objects of the category A

• Aop: opposite category

• A× B: product category

• [A,B]: category of functors from A to B

• ker f : Ker f → B: for f : A→ B, categorical kernel

• coker f : A→ Coker f : for f : A→ B, categorical cokernel

• im f : A→ Im f : for f : A→ B, categorical image

§D.9 Differential geometry
• Df : total derivative of f

• (Df)p: total derivate of f at point p

• ∂f
∂ei

: ith partial derivative

• αp: evaluating a k-form α at p

•
∫
c α: integration of the differential form α over a cell c

• dα: exterior derivative of a k-form α

• ϕ∗α: pullback of k-form α by ϕ

§D.10 Algebraic number theory
• Q: ring of algebraic numbers

• Z: ring of algebraic integers

• F : algebraic closure of a field F

• NK/Q(α): the norm of α in extension K/Q

• TrK/Q(α): the trace of α in extension K/Q

• OK : ring of integers in K

• a + b: sum of two ideals a and b

• ab: ideal generated by products of elements in ideals a and b

• a | b: ideal a divides ideal b

• a−1: the inverse of a in the ideal group
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• N(I): ideal norm

• ClK : class group of K

• ∆K : discriminant of number field K

• µ(OK): set of roots of unity contained in OK

• [K : F ]: degree of a field extension

• Aut(K/F ): set of field automorphisms of K fixing F

• Gal(K/F ): Galois group of K/F

• Dp: decomposition group of prime ideal p

• Ip: inertia group of prime ideal p

• Frobp: Frobenius element of p (element of Gal(K/Q))

• PK(m): ray of principal ideals of a modulus m

• IK(m): fractional ideals of a modulus m

• CK(m): ray class group of a modulus m

•
(
L/K

•

)
: the Artin symbol

• Ram(L/K): primes of K ramifying in L

• f(L/K): the conductor of L/K

§D.11 Representation theory
• k[G]: group algebra

• V ⊕W : direct sum of representations V = (V, ρV ) and W = (W,ρW ) of an algebra
A

• V ∨: dual representation of a representation V = (V, ρV )

• Reg(A): regular representation of an algebra A

• Homrep(V,W ): algebra of morphisms V →W of representations

• χV : the character A→ k attached to an A-representation V

• Classes(G): set of conjugacy classes of G

• Funclass(G): the complex vector space of functions Classes(G)→ C

• V ⊗W : tensor product of representations V = (V, ρV ) and W = (W,ρW ) of a
group G (rather than an algebra)

• Ctriv: the trivial representation

• Csign: the sign representation
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§D.12 Algebraic geometry

• V(−): vanishing locus of a set or ideal

• An: n-dimensional (complex) affine space

•
√
I: radical of an ideal I

• C[V ]: coordinate ring of an affine variety V

• OV (U): ring of rational functions on U

• D(f): distinguished open set

• CPn: complex projective n-space (ambient space for projective varieties)

• (x0 : · · · : xn): coordinates of projective space

• Ui: standard affine charts

• Vpr(−): projective vanishing locus.

• hI , hV : Hilbert function of an ideal I or projective variety V

• π♯ or π♯U : the pullback OY → OX(πpre(U)) obtained from π : X → Y

• Fp: the stalk of a (pre-)sheaf F at a point p

• [s]p : the germ of s ∈ F (U) at the point p

• OX,p: shorthand for (OX)p.

• F sh: sheafification of pre-sheaf F

• αp : Fp → Gp: morphism of stalks obtained from α : F → G

• mX,p: the maximal ideal of OX,p

• SpecA: the spectrum of a ring A

• S−1A: localization of ring A at a set S

• A[1/f ]: localization of ring A away from element f

• Ap: localization of ring A at prime ideal p

• f(p): the value of f at p, i.e. f (mod p)

• κ(p): the residue field of SpecA at the element p.

• π♯p: the induced map of stalks in π♯.
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§D.13 Set theory
• ZFC: standard theory of ZFC

• ZFC+: standard theory of ZFC, plus the sentence “there exists a strongly inaccessible
cardinal”

• 2S or P(S): power set of S

• A ∧B: A and B

• A ∨B: A or B

• ¬A: not A

• V : class of all sets (von Neumann universe)

• ω: the first infinite ordinal, also the set of nonnegative integers

• Vα: level of the von Neumann universe

• On: class of ordinals

•
⋃
A: the union of elements inside A

• A ≈ B: sets A and B are equinumerous

• ℵα: the aleph numbers

• cof λ: the cofinality of λ

• M ⊨ ϕ[b1, . . . , bn]: model M satisfies sentence ϕ with parameters b1, . . . , bn

• ∆n, Σn, Πn: levels of the Levy hierarchy

• M1 ⊆M2: M1 is a substructure of M2

• M1 ≺M2: M1 is an elementary substructure of M2

• p ∥ q: elements p and q of a poset P are compatible

• p ⊥ q: elements p and q of a poset P are incompatible

• Nameα: the hierarchy of P-names

• τG: interpretation of a name τ by filter G

• M [G]: the model obtained from a forcing poset G ⊆ P

• p ⊩ φ(σ1, . . . , σn): p ∈ P forces the sentence φ

• x̌: the name giving an x ∈M when interpreted

• Ġ: the name giving G when interpreted





E Terminology on sets and functions

This appendix will cover some notions on sets and functions such as “bijections”,
“equivalence classes”, and so on.

Remark for experts: I am not dealing with foundational issues in this chapter. See
Chapter 89 (and onwards) if that’s what you’re interested in. Consequently I will not
prove most assertions.

§E.1 Sets
A set for us will just be a collection of elements (whatever they may be). For example,
the set N = {1, 2, 3, 4, . . . } is the positive integers, and Z = {. . . ,−2,−1, 0, 1, 2, . . . } is
the set of all integers. As another example, we have a set of humans:

H = {x | x is a featherless biped} .

(Here the “|” means “such that”.)
There’s also a set with no elements, which we call the empty set. It’s denoted by ∅.
It’s conventional to use capital letters for sets (like H), and lowercase letters for

elements of sets (like x).

Definition E.1.1. We write x ∈ S to mean “x is in S”, for example 3 ∈ N.

Definition E.1.2. If every element of a set A is also in a set B, then we say A is a
subset of B, and denote this by A ⊆ B. If moreover A ̸= B, we say A is a proper
subset and write A ⊊ B. (This is analogous to ≤ and <.)

Given a set A, the set of all subsets is denoted 2A or P(A) and called the power set
of A.

Example E.1.3 (Examples of subsets)
(a) {1, 2, 3} ⊆ N ⊆ Z.

(b) ∅ ⊆ A for any set A. (Why?)

(c) A ⊆ A for any set A.

(d) If A = {1, 2} then 2A = {∅, {1}, {2}, {1, 2}}.

Definition E.1.4. We write

• A ∪B for the set of elements in either A or B (possibly both), called the union of
A and B.

• A ∩B for the set of elements in both A and B, and called the intersection of A
and B.

• A \B for the set of elements in A but not in B.
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Example E.1.5 (Examples of set operations)
Let A = {1, 2, 3} and B = {3, 4, 5}. Then

A ∪B = {1, 2, 3, 4, 5}
A ∩B = {3}
A \B = {1, 2}.

Exercise E.1.6. Convince yourself: for any sets A and B, we have A ∩B ⊆ A ⊆ A ∪B.

Here are some commonly recurring sets:

• C is the set of complex numbers, like 3.2 +
√

2i.

• R is the set of real numbers, like
√

2 or π.

• N is the set of positive integers, like 5 or 9.

• Q is the set of rational numbers, like 7/3.

• Z is the set of integers, like −2 or 8.

(These are pronounced in the way you would expect: “see”, “are”, “en”, “cue”, “zed”.)

§E.2 Functions
Given two sets A and B, a function f from A to B is a mapping of every element of A
to some element of B.

We call A the domain of f , and B the codomain. We write this as f : A → B or
A

f−→ B.

Abuse of Notation E.2.1. If the name f is not important, we will often just write
A→ B.

We write f(a) = b or a 7→ b to signal that f takes a to b.
If B has 0 as an element and f(a) = 0, we often say a is a root or zero of f , and that

f vanishes at a.

§E.2.i Injective / surjective / bijective functions
Definition E.2.2. A function f : A→ B is injective if it is “one-to-one” in the following
sense: if f(a) = f(a′) then a = a′. In other words, for any b ∈ B, there is at most one
a ∈ A such that f(a) = b.

Often, we will write f : A ↪→ B to emphasize this.

Definition E.2.3. A function f : A→ B is surjective if it is “onto” in the following
sense: for any b ∈ B there is at least one a ∈ A such that f(a) = b.

Often, we will write f : A↠ B to emphasize this.

Definition E.2.4. A function f : A→ B is bijective if it is both injective and surjective.
In other words, for each b ∈ B, there is exactly one a ∈ A such that f(a) = b.
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Example E.2.5 (Examples of functions)
By “human” I mean “living featherless biped”.

(a) There’s a function taking every human to their age in years (rounded to the
nearest integer). This function is not injective, because for example there are
many people with age 20. This function is also not surjective: no one has age
10000.

(b) There’s a function taking every USA citizen to their social security number. This
is also not surjective (no one has SSN equal to 3), but at least it is injective
(no two people have the same SSN).

Example E.2.6 (Examples of bijections)
(a) Let A = {1, 2, 3, 4, 5} and B = {6, 7, 8, 9, 10}. Then the function f : A→ B by

a 7→ a+ 5 is a bijection.

(b) In a classroom with 30 seats, there is exactly one student in every seat. Thus the
function taking each student to the seat they’re in is a bijection; in particular,
there are exactly 30 students.

Remark E.2.7 — Assume for convenience that A and B are finite sets. Then:

• If f : A ↪→ B is injective, then the size of A is at most the size of B.

• If f : A↠ B is surjective, then the size of A is at least the size of B.

• If f : A→ B is a bijection, then the size of A equals the size of B.

Now, notice that if f : A→ B is a bijection, then we can “apply f backwards”: (for
example, rather than mapping each student to the seat they’re in, we map each seat to
the student sitting in it). This is called an inverse function; we denote it f−1 : B → A.

§E.2.ii Images and pre-images

Let X f−→ Y be a function.

Definition E.2.8. Suppose T ⊆ Y . The pre-image fpre(T ) is the set of all x ∈ X such
that f(x) ∈ T . Thus, fpre(T ) is a subset of X.

Example E.2.9 (Examples of pre-image)
Let f : H → Z be the age function from earlier. Then

(a) fpre({13, 14, 15, 16, 17, 18, 19}) is the set of teenagers.

(b) fpre({0}) is the set of newborns.

(c) fpre({1000, 1001, 1002, . . . }) = ∅, as I don’t think anyone is that old.

Abuse of Notation E.2.10. By abuse of notation, we may abbreviate fpre({y}) to
fpre(y). So for example, fpre({0}) above becomes shortened to fpre(0).
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The dual notion is:

Definition E.2.11. Suppose S ⊆ X. The image f img(S) is the set of all things of the
form f(s).

Example E.2.12 (Examples of images)
Let A = {1, 2, 3, 4, 5} and B = Z. Consider a function f : A→ B given by

f(1) = 17 f(2) = 17 f(3) = 19 f(4) = 30 f(5) = 234.

(a) The image f img({1, 2, 3}) is the set {17, 19}.

(b) The image f img(A) is the set {17, 19, 30, 234}.

Question E.2.13. Suppose f : A↠ B is surjective. What is f img(A)?

§E.3 Equivalence relations
Let X be a fixed set now. A binary relation ∼ on X assigns a truth value “true” or “false”
to x ∼ y for each x or y. Now an equivalence relation ∼ on X is a binary relation
which satisfies the following axioms:

• Reflexive: we have x ∼ x.

• Symmetric: if x ∼ y then y ∼ x

• Transitive: if x ∼ y and y ∼ z then x ∼ z.

An equivalence class is then a set of all things equivalent to each other. One can show
that X becomes partitioned by these equivalence classes:

Example E.3.1 (Example of an equivalence relation)
Let N denote the set of positive integers. Then suppose we declare a ∼ b if a and b
have the same last digit, for example 131 ∼ 211, 45 ∼ 125, and so on.

Then ∼ is an equivalence relation. It partitions N into ten equivalence classes, one
for each trailing digit.

Often, the set of equivalence classes will be denoted X/∼ (pronounced “X mod sim”).
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