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77 Affine varieties

In this chapter we introduce affine varieties. We introduce them in the context of
coordinates, but over the course of the other chapters we’ll gradually move away from
this perspective to viewing varieties as “intrinsic objects”, rather than embedded in
coordinates.

For simplicity, we’ll do almost everything over the field of complex numbers, but the
discussion generalizes to any algebraically closed field.

§77.1 Affine varieties
Prototypical example for this section: V(y − x2) is a parabola in A2.

Definition 77.1.1. Given a set of polynomials S ⊆ C[x1, . . . , xn] (not necessarily finite
or even countable), we let V(S) denote the set of points vanishing on all the polynomials
in S. Such a set is called an affine variety. It lives in n-dimensional affine space,
denoted An (to distinguish it from projective space later).

For example, a parabola is the zero locus of the polynomial y − x2. Picture:

y

x

V(y − x2)

A2

Example 77.1.2 (Examples of affine varieties)
These examples are in two-dimensional space A2, whose points are pairs (x, y).

(a) A straight line can be thought of as V(Ax+By + C).

(b) A parabola as above can be pictured as V(y − x2).

(c) A hyperbola might be V(xy − 1).

(d) The two axes can be thought of as V(xy); this is the set of points such that
x = 0 or y = 0.

(e) A point (x0, y0) can be thought of as V(x− x0, y − y0).

(f) The entire space A2 can be thought of as V(0).

(g) The empty set is the zero locus of the constant polynomial 1, that is V(1).

793
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§77.2 Naming affine varieties via ideals

Prototypical example for this section: V(I) is a parabola, where I = (y − x2).

As you might have already noticed, a variety can be named by V(−) in multiple ways.
For example, the set of solutions to

x = 3 and y = 4

is just the point (3, 4). But this is also the set of solutions to

x = 3 and y = x+ 1.

So, for example

{(3, 4)} = V(x− 3, y − 4) = V(x− 3, y − x− 1).

That’s a little annoying, because in an ideal1 world we would have one name for every
variety. Let’s see if we can achieve this.

A partial solution is to use ideals rather than small sets. That is, consider the ideal

I = (x− 3, y − 4) = {p(x, y) · (x− 3) + q(x, y) · (y − 4) | p, q ∈ C[x, y]}

and look at V(I).

Question 77.2.1. Convince yourself that V(I) = {(3, 4)}.

So rather than writing V(x− 3, y − 4) it makes sense to think about this as V(I), where
I = (x− 3, y − 4) is the ideal generated by the two polynomials x− 3 and y − 4. This is
an improvement because

Question 77.2.2. Check that (x− 3, y − x− 1) = (x− 3, y − 4).

Needless to say, this pattern holds in general.

Question 77.2.3. Let {fi} be a set of polynomials, and consider the ideal I generated by
these {fi}. Show that V({fi}) = V(I).

Thus we will only consider V(I) when I is an ideal. Of course, frequently our ideals
are generated by one or two polynomials, which leads to:

Abuse of Notation 77.2.4. Given a set of polynomials f1, . . . , fm we let V(f1, . . . , fm)
be shorthand for V ((f1, . . . , fm)). In other words we let V(f1, . . . , fm) abbreviate V(I),
where I is the ideal I = (f1, . . . , fm).

This is where the Noetherian condition really shines: it guarantees that every ideal
I ⊆ C[x1, . . . , xn] can be written in the form above with finitely many polynomials,
because it is finitely generated. (The fact that C[x1, . . . , xn] is Noetherian follows from
the Hilbert basis theorem, which is Theorem 4.9.5). This is a relief, because dealing with
infinite sets of polynomials is not much fun.

1Pun not intended but left for amusement value.
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§77.3 Radical ideals and Hilbert’s Nullstellensatz

Prototypical example for this section:
√

(x2) = (x) in C[x],
√

(12) = (6) in Z.

You might ask whether the name is unique now: that is, if V(I) = V(J), does it follow
that I = J? The answer is unfortunately no: the counterexample can be found in just
A1. It is

V(x) = V(x2).

In other words, the set of solutions to x = 0 is the same as the set of solutions to x2 = 0.
Well, that’s stupid. We want an operation which takes the ideal (x2) and makes it into

the ideal (x). The way to do so is using the radical of an ideal.

Definition 77.3.1. Let R be a ring. The radical of an ideal I ⊆ R, denoted
√
I, is

defined by √
I = {r ∈ R | rm ∈ I for some integer m ≥ 1} .

If I =
√
I, we say the ideal I itself is radical.

For example,
√

(x2) = (x). You may like to take the time to verify that
√
I is actually

an ideal.

Remark 77.3.2 (Number theoretic motivation) — This is actually the same as the
notion of “radical” in number theory. In Z, the radical of an ideal (n) corresponds
to just removing all the duplicate prime factors, so for example√

(12) = (6).

In particular, if you try to take
√

(6), you just get (6) back; you don’t squeeze out
any new prime factors.

This is actually true more generally, and there is a nice corresponding alternate
definition: for any ideal I, we have

√
I =

⋂
I⊆p prime

p.

Although we could prove this now, it will be proved later in Theorem 84.4.2, when
we first need it.

Here are the immediate properties you should know.

Proposition 77.3.3 (Properties of radical)
In any ring:

• If I is an ideal, then
√
I is always a radical ideal.

• Prime ideals are radical.

• For I ⊆ C[x1, . . . , xn] we have V(I) = V(
√
I).

Proof. These are all obvious.

• If fm ∈
√
I then fmn ∈ I, so f ∈

√
I.
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• If fn ∈ p for a prime p, then either f ∈ p or fn−1 ∈ p, and in the latter case we
may continue by induction.

• We have f(x1, . . . , xn) = 0 if and only if f(x1, . . . , xn)m = 0 for some integer m.

The last bit makes sense: you would never refer to x = 0 as x2 = 0, and hence we would
always want to call V(x2) just V(x). With this, we obtain a theorem called Hilbert’s
Nullstellensatz.

Theorem 77.3.4 (Hilbert’s Nullstellensatz)
Given an affine variety V = V(I), the set of polynomials which vanish on all points
of V is precisely

√
I. Thus if I and J are ideals in C[x1, . . . , xn], then

V(I) = V(J) if and only if
√
I =
√
J.

In other words

Radical ideals in C[x1, . . . , xn] correspond exactly to n-dimensional affine
varieties.

The proof of Hilbert’s Nullstellensatz will be given in Problem 77D; for now it is worth
remarking that it relies essentially on the fact that C is algebraically closed. For example,
it is false in R[x], with (x2 + 1) being a maximal ideal with empty vanishing set.

§77.4 Pictures of varieties in A1

Prototypical example for this section: Finite sets of points (in fact these are the only
nontrivial examples).

Let’s first draw some pictures. In what follows I’ll draw C as a straight line. . . sorry.
First of all, let’s look at just the complex line A1. What are the various varieties on it?

For starters, we have a single point 9 ∈ C, generated by (x− 9).

V(x− 9)

9A1

Another example is the point 4. And in fact, if we like we can get an ideal consisting
of just these two points; consider V ((x− 4)(x− 9)).

V((x− 4)(x− 9))

4 9A1

In general, in A1 you can get finitely many points {a1, . . . , an} by just taking

V ((x− a1)(x− a2) . . . (x− an)) .

On the other hand, you can’t get the set {0, 1, 2, . . . } as an affine variety; the only
polynomial vanishing on all those points is the zero polynomial. In fact, you can convince
yourself that these are the only affine varieties, with two exceptions:

• The entire line A1 is given by V(0), and

• The empty set is given by V(1).
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Exercise 77.4.1. Show that these are the only varieties of A1. (Let V(I) be the variety
and pick a 0 ̸= f ∈ I.)

As you might correctly guess, we have:

Theorem 77.4.2 (Intersections and unions of varieties)
(a) The intersection of affine varieties (even infinitely many) is an affine variety.

(b) The union of finitely many affine varieties is an affine variety.

In fact we have

⋂
α

V(Iα) = V
(∑

α

Iα

)
and

n⋃
k=1
V(Ik) = V

(
n⋂
k=1

Ik

)
.

You are welcome to prove this easy result yourself.

Remark 77.4.3 — Part (a) is a little misleading in that the sum I + J need not
be radical: take for example I = (y − x2) and J = (y) in C[x, y], where x ∈

√
I + J

and x /∈ I + J . But in part (b) for radical ideals I and J , the intersection I ∩ J is
radical.

As another easy result concerning the relation between the ideal and variety, we
have:

Proposition 77.4.4 (V(−) is inclusion reversing)
If I ⊆ J then V(I) ⊇ V(J). Thus V(−) is inclusion-reversing.

Question 77.4.5. Verify this.

Thus, bigger ideals correspond to smaller varieties.
These results will be used a lot throughout the chapter, so it would be useful for you

to be comfortable with the inclusion-reversing nature of V.

Exercise 77.4.6. Some quick exercises to help you be more familiar with the concepts.

1. Let I = (y − x2) and J = (x+ 1, y + 2). What is V(I) and V(J)?

2. What is the ideal K such that V(K) is the union of the parabola y = x2 and the point
(−1,−2)?

3. Let L = (y − 1). What is V(L)?

4. The intersection V(I)∩V(L) consist of two points (1, 1) and (−1, 1). What’s the ideal
corresponding to it, in terms of I and L?

5. What is V(I ∩ L)? What about V(IL)?

Question 77.4.7. Note that the intersection of infinitely many ideals is still an ideal, but
the union of infinitely many affine varieties may not be an affine variety.
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Consider Ik = (x− k) in C[x], and take the infinite intersection I =
⋂

k∈N Ik. What is
V(I) and

⋃
k∈N V(Ik)?

§77.5 Prime ideals correspond to irreducible affine varieties
Prototypical example for this section: (xy) corresponds to the union of two lines in A2.

Note that most of the affine varieties of A1, like {4, 9}, are just unions of the simplest
“one-point” ideals. To ease our classification, we can restrict our attention to the case of
irreducible varieties:

Definition 77.5.1. A variety V is irreducible if it cannot be written as the union of
two proper sub-varieties V = V1 ∪ V2.

Abuse of Notation 77.5.2. Warning: in other literature, irreducible is part of the
definition of variety.

Example 77.5.3 (Irreducible varieties of A1)
The irreducible varieties of A1 are:

• the empty set V(1),

• a single point V(x− a), and

• the entire line A1 = V(0).

Example 77.5.4 (The union of two axes)
Let’s take a non-prime ideal in C[x, y], such as I = (xy). Its vanishing set V(I) is
the union of two lines x = 0 and y = 0. So V(I) is reducible.

In general:

Theorem 77.5.5 (Prime ⇐⇒ irreducible)
Let I be a radical ideal, and V = V(I) a nonempty variety. Then I is prime if and
only if V is irreducible.

Proof. First, assume V is irreducible; we’ll show I is prime. Let f, g ∈ C[x1, . . . , xn] so
that fg ∈ I. Then V is a subset of the union V(f) ∪ V(g); actually, V = (V ∩ V(f)) ∪
(V ∩ V(g)). Since V is irreducible, we may assume V = V ∩ V(f), hence f vanishes on
all of V . So f ∈ I.

The reverse direction is similar.

§77.6 Pictures in A2 and A3

Prototypical example for this section: Various curves and hypersurfaces.
With this notion, we can now draw pictures in “complex affine plane”, A2. What are

the irreducible affine varieties in it?
As we saw in the previous discussion, naming irreducible affine varieties in A2 amounts

to naming the prime ideals of C[x, y]. Here are a few.
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• The ideal (0) is prime. V(0) as usual corresponds to the entire plane.

• The ideal (x − a, y − b) is prime, since C[x, y]/(x − a, y − b) ∼= C is an integral
domain. (In fact, since C is a field, the ideal (x − a, y − b) is maximal). The
vanishing set of this is V(x− a, y − b) = {(a, b)} ∈ C2, so these ideals correspond
to a single point.

• Let f(x, y) be an irreducible polynomial, like y − x2. Then (f) is a prime ideal!
Here V(I) is a “degree one curve”.

By using some polynomial algebra (again you’re welcome to check this; Euclidean
algorithm), these are in fact the only prime ideals of C[x, y]. Here’s a picture.

y

x

V(y − x2)

V(x− 1, y + 2)

As usual, you can make varieties which are just unions of these irreducible ones. For
example, if you wanted the variety consisting of a parabola y = x2 plus the point (20, 15)
you would write

V
(
(y − x2)(x− 20), (y − x2)(y − 15)

)
.

The picture in A3 is harder to describe. Again, you have points V(x− a, y − b, z − c)
corresponding to be zero-dimensional points (a, b, c), and two-dimensional surfaces V(f)
for each irreducible polynomial f (for example, x+ y + z = 0 is a plane). But there are
more prime ideals, like V(x, y), which corresponds to the intersection of the planes x = 0
and y = 0: this is the one-dimensional z-axis. It turns out there is no reasonable way to
classify the “one-dimensional” varieties; they correspond to “irreducible curves”.

Thus, as Ravi Vakil [Va17] says: the purely algebraic question of determining the prime
ideals of C[x, y, z] has a fundamentally geometric answer.

§77.7 Maximal ideals
Prototypical example for this section: All maximal ideals are (x1 − a1, . . . , xn − an).

Recall that bigger ideals correspond to smaller varieties.
As the above pictures might have indicated, the smallest varieties are single points.

Moreover, as you might guess from the name, the biggest ideals are the maximal ideals.
As an example, all ideals of the form

(x1 − a1, . . . , xn − an)

are maximal, since the quotient

C[x1, . . . , xn]/ (x1 − a1, . . . , xn − an) ∼= C

is a field. The question is: are all maximal ideals of this form?
The answer is in the affirmative.
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Theorem 77.7.1 (Weak Nullstellensatz, phrased with maximal ideals)
Every maximal ideal of C[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an).

The proof of this is surprisingly nontrivial, so we won’t include it here yet; see [Va17,
§7.4.3]. Again this uses the fact that C is algebraically closed. (For example (x2 + 1) is a
maximal ideal of R[x].) Thus:

Over C, maximal ideals correspond to single points.

Consequently, our various ideals over C correspond to various flavors of affine varieties:
Algebraic flavor Geometric flavor

radical ideal affine variety
prime ideal irreducible variety

maximal ideal single point
any ideal (scheme?)

There’s one thing I haven’t talked about: what’s the last entry?

§77.8 Motivating schemes with non-radical ideals
One of the most elementary motivations for the scheme is that we would like to use them
to count multiplicity. That is, consider the intersection

V(y − x2) ∩ V(y) ⊆ A2

This is the intersection of the parabola with the tangent x-axis, this is the green dot
below.

y

x

V(y − x2)

A2

Unfortunately, as a variety, it is just a single point! However, we want to think of this
as a “double point”: after all, in some sense it has multiplicity 2. You can detect this
when you look at the ideals:

(y − x2) + (y) = (x2, y)

and thus, if we blithely ignore taking the radical, we get

C[x, y]/(x2, y) ∼= C[ε]/(ε2).

So the ideals in question are noticing the presence of a double point.
In order to encapsulate this, we need a more refined object than a variety, which (at

the end of the day) is just a set of points; it’s not possible using topology along to encode
more information (there is only one topology on a single point!). This refined object is
the scheme.
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§77.9 A few harder problems to think about
some actual
computation
here would
be good

Problem 77A. Show that I ⊆
√
I and

√
I ∩
√
J =
√
IJ ⊆

√
I ∩ J , for two ideals I and

J .

Problem 77B. Show that a real affine variety V ⊆ AnR can always be written in the
form V(f).

Problem 77C (Complex varieties can’t be empty). Prove that if I is a proper ideal in
C[x1, . . . , xn] then V(I) ̸= ∅.

Problem 77D. Show that Hilbert’s Nullstellensatz in n dimensions follows from the
Weak Nullstellensatz. (This solution is called the Rabinowitsch Trick.)





78 Affine varieties as ringed spaces

As in the previous chapter, we are working only over affine varieties in C for simplicity.

§78.1 Synopsis
Group theory was a strange creature in the early 19th century. During the 19th century,
a group was literally defined as a subset of GL(n) or of Sn. Indeed, the word “group”
hadn’t been invented yet. This may sound ludicrous, but it was true – Sylow developed
his theorems without this notion. Only much later was the abstract definition of a group
given, an abstract set G which was independent of any embedding into Sn, and an object
in its own right.

We are about to make the same type of change for our affine varieties. Rather than
thinking of them as an object locked into an ambient space An we are instead going to
try to make them into an object in their own right. Specifically, for us an affine variety
will become a topological space equipped with a ring of functions for each of its open
sets: this is why we call it a ringed space.

The bit about the topological space is not too drastic. The key insight is the addition
of the ring of functions. For example, consider the double point from last chapter.

y

x

V(y − x2)

A2

As a set, it is a single point, and thus it can have only one possible topology. But the
addition of the function ring will let us tell it apart from just a single point.

This construction is quite involved, so we’ll proceed as follows: we’ll define the structure
bit by bit onto our existing affine varieties in An, until we have all the data of a ringed
space. In later chapters, these ideas will grow up to become the core of modern algebraic
geometry: the scheme.

§78.2 The Zariski topology on An

Prototypical example for this section: In A1, closed sets are finite collections of points. In
A2, a nonempty open set is the whole space minus some finite collection of curves/points.

We begin by endowing a topological structure on every variety V . Since our affine
varieties (for now) all live in An, all we have to do is put a suitable topology on An, and
then just view V as a subspace.

However, rather than putting the standard Euclidean topology on An, we put a much
more bizarre topology.

803
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Definition 78.2.1. In the Zariski topology on An, the closed sets are those of the
form

V(I) where I ⊆ C[x1, . . . , xn].

Of course, the open sets are complements of such sets.

Example 78.2.2 (Zariski topology on A1)
Let us determine the open sets of A1, which as usual we picture as a straight line
(ignoring the fact that C is two-dimensional).

Since C[x] is a principal ideal domain, rather than looking at V(I) for every
I ⊆ C[x], we just have to look at V(f) for a single f . There are a few flavors of
polynomials f :

• The zero polynomial 0 which vanishes everywhere: this implies that the entire
space A1 is a closed set.

• The constant polynomial 1 which vanishes nowhere. This implies that ∅ is a
closed set.

• A polynomial c(x− t1)(x− t2) . . . (x− tn) of degree n. It has n roots, and so
{t1, . . . , tn} is a closed set.

Hence the closed sets of A1 are exactly all of A1 and finite sets of points (including
∅). Consequently, the open sets of A1 are

• ∅, and

• A1 minus a finite collection (possibly empty) of points.

Thus, the picture of a “typical” open set A1 might be

A1

It’s everything except a few marked points!

Example 78.2.3 (Zariski topology on A2)
Similarly, in A2, the interesting closed sets are going to consist of finite unions
(possibly empty) of

• Closed curves, like V(y − x2) (which is a parabola), and

• Single points, like V(x− 3, y − 4) (which is the point (3, 4)).

Of course, the entire space A2 = V(0) and the empty set ∅ = V(1) are closed sets.
Thus the nonempty open sets in A2 consist of the entire plane, minus a finite

collection of points and one-dimensional curves.

Question 78.2.4. Draw a picture (to the best of your artistic ability) of a “typical” open
set in A2.

All this is to say
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The nonempty Zariski open sets are huge.

This is an important difference than what you’re used to in topology. To be very clear:

• In the past, if I said something like “has so-and-so property in an open neighborhood
of point p”, one thought of this as saying “is true in a small region around p”.

• In the Zariski topology, “has so-and-so property in an open neighborhood of point
p” should be thought of as saying “is true for virtually all points, other than those
on certain curves”.

Indeed, “open neighborhood” is no longer really a accurate description. Nonetheless, in
many pictures to follow, it will still be helpful to draw open neighborhoods as circles.

It remains to verify that as I’ve stated it, the closed sets actually form a topology.
That is, I need to verify briefly that

• ∅ and An are both closed.

• Intersections of closed sets (even infinite) are still closed.

• Finite unions of closed sets are still closed.

Well, closed sets are the same as affine varieties, so we already know this!

§78.3 The Zariski topology on affine varieties
Prototypical example for this section: If V = V(y− x2) is a parabola, then V minus (1, 1)
is open in V . Also, the plane minus the origin is D(x) ∪D(y).

As we said before, by considering a variety V as a subspace of An it inherits the Zariski
topology. One should think of an open subset of V as “V minus a few Zariski-closed
sets”. For example:

Example 78.3.1 (Open set of a variety)
Let V = V(y − x2) ⊆ A2 be a parabola, and let U = V \ {(1, 1)}. We claim U is
open in V .

y

x

V(y − x2)

Indeed, Ũ = A2 \ {(1, 1)} is open in A2 (since it is the complement of the closed set
V(x− 1, y − 1)), so U = Ũ ∩ V is open in V . Note that on the other hand the set U
is not open in A2.
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We will go ahead and introduce now a definition that will be very useful later.

Definition 78.3.2. Given V ⊆ An an affine variety and f ∈ C[x1, . . . , xn], we define the
distinguished open set D(f) to be the open set in V of points not vanishing on f :

D(f) = {p ∈ V | f(p) ̸= 0} = V \ V(f).

In [Va17], Vakil suggests remembering the notation D(f) as “doesn’t-vanish set”.

Example 78.3.3 (Examples of (unions of) distinguished open sets)
(a) If V = A1 then D(x) corresponds to a line minus a point.

(b) If V = V(y − x2) ⊆ A2, then D(x− 1) corresponds to the parabola minus (1, 1).

(c) If V = A2, then D(x) ∪D(y) = A2 \ {(0, 0)} is the punctured plane. You can
show that this set is not distinguished open.

You can think of the concept as an analog to principal ideal: all open sets can be written
in the form V \ V(I) for some ideal I, but if I = (f) is principal then the set can be
written as a distinguished open set D(f). Similarly, the intersection of two distinguished
open sets is distinguished, just as the product (not intersection!) of two principal ideals
is principal.

Proposition 78.3.4 (Properties of distinguished open set)
Recall that V is inclusion-reversing, so being the complement of V , we would expect
D to be “inclusion-preserving”. Indeed:

• If (f) ⊆ (g) (that is, g | f), then D(f) ⊆ D(g).

• Recall that (fg) ⊆ (f) ∩ (g). For distinguished open set, we have D(fg) =
D(f) ∩D(g).

It is useful to be familiar with the behavior of D.

Question 78.3.5. If V = A2, then D(x) is the plane minus the y-axis, and D(y) is the
plane minus the x-axis. What is D(xy)?

§78.4 Coordinate rings
Prototypical example for this section: If V = V(y − x2) then C[V ] = C[x, y]/(y − x2).

The next thing we do is consider the functions from V to the base field C. We restrict
our attention to algebraic (polynomial) functions on a variety V : they should take every
point (a1, . . . , an) on V to some complex number P (a1, . . . , an) ∈ C. For example, a
valid function on a three-dimensional affine variety might be (a, b, c) 7→ a; we just call
this projection “x”. Similarly we have a canonical projection y and z, and we can create
polynomials by combining them, say x2y + 2xyz.

Definition 78.4.1. The coordinate ring C[V ] of a variety V is the ring of polynomial
functions on V . (Notation explained next section.)
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Remark 78.4.2 (Meaning of the name “coordinate ring”) — We call the functions x,
y and z above as the coordinate functions, as they maps each point in the variety
V to its coordinate. So, the coordinate ring C[V ] is simply the ring generated by C
and the coordinate functions.

At first glance, we might think this is just C[x1, . . . , xn]. But on closer inspection
we realize that on a given variety, some of these functions are the same. For example,
consider in A2 the parabola V = V(y − x2). Then the two functions

V → C
(x, y) 7→ x2

(x, y) 7→ y

are actually the same function! We have to “mod out” by the ideal I which generates V .
This leads us naturally to:

Theorem 78.4.3 (Coordinate rings correspond to ideal)
Let I be a radical ideal, and V = V(I) ⊆ An. Then

C[V ] ∼= C[x1, . . . , xn]/I.

Proof. There’s a natural surjection as above

C[x1, . . . , xn] ↠ C[V ]

and the kernel is I.

Thus properties of a variety V correspond to properties of the ring C[V ].

§78.5 The sheaf of regular functions
Prototypical example for this section: Let V = A1, U = V \ {0}. Then 1/x ∈ OV (U) is
regular on U .

Let V be an affine variety and let C[V ] be its coordinate ring. As mentioned in the
start of the chapter, we want to define a variety based on its intrinsic properties only,
which is done by studying the collection of algebraic functions on it.

In [Va17] “Motivating example: The sheaf of differentiable functions” section, you
can see a comparison of how a differentiable manifold can be studied by studying the
differentiable functions on it.

Denote the set of all rational functions on V by OV (as will be seen later, this
terminology is not quite accurate as we need to allow multiple representations). We
can view this as a set, however this does not capture the full structure of the rational
functions:

Question 78.5.1. For any two elements f and g in C[V ], show that the set where f(x)
g(x) is

well-defined is open in the Zariski topology. (Hint: gpre(0) is closed.)

So, we want to define a notion of OV (U) for any open set U : the “nice” functions on
any open subset. Obviously, any function in C[V ] will work as a function on OV (U).
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However, to capture more of the structure we want to loosen our definition of “nice”
function slightly by allowing rational functions.

The chief example is that 1/x should be a regular function on A1 \ {0}. The first
natural guess is:

Definition 78.5.2. Let U ⊆ V be an open set of the variety V . A rational function
on U is a quotient f(x)/g(x) of two elements f and g in C[V ], where we require that
g(x) ̸= 0 for x ∈ U .

However, the definition is slightly too restrictive; we have to allow for multiple repre-
sentations:

Definition 78.5.3. Let U ⊆ V be open. We say a function ϕ : U → C is a regular
function if for every point p ∈ U , we can find an open set Up ⊆ U containing p and a
rational function fp/gp on Up such that

ϕ(x) = fp(x)
gp(x) ∀x ∈ Up.

In particular, we require gp(x) ̸= 0 on the set Up. We denote the set of all regular
functions on U by OV (U).

Thus,

ϕ is regular on U if it is locally a rational function.

This definition is misleadingly complicated, and the examples should illuminate it
significantly. Firstly, in practice, most of the time we will be able to find a “global”
representation of a regular function as a quotient, and we will not need to fuss with the
p’s. For example:

Example 78.5.4 (Regular functions)
(a) Any function in f ∈ C[V ] is clearly regular, since we can take gp = 1, fp = f for

every p. So C[V ] ⊆ OV (U) for any open set U .

(b) Let V = A1, U0 = V \ {0}. Then 1/x ∈ OV (U0) is regular on U0.

(c) Let V = A1, U12 = V \ {1, 2}. Then

1
(x− 1)(x− 2) ∈ OV (U12)

is regular on U12.

The “local” clause with p’s is still necessary, though.

Example 78.5.5 (Requiring local representations)
Consider the variety

V = V(ab− cd) ⊆ A4

and the open set U = V \ V(b, d). There is a regular function on U given by

(a, b, c, d) 7→
{
a/d d ̸= 0
c/b b ̸= 0.
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Clearly these are the “same function” (since ab = cd), but we cannot write “a/d”
or “c/b” to express it because we run into divide-by-zero issues. That’s why in the
definition of a regular function, we have to allow multiple representations.

In fact, we will see later on that the definition of a regular function is a special case of
a more general construction called sheafification, in which “presheaves of functions which
are P” are transformed into “sheaves of functions which are locally P”.

§78.6 Regular functions on distinguished open sets

Prototypical example for this section: Regular functions on A1 \ {0} are P (x)/xn.

The division-by-zero, as one would expect, essentially prohibits regular functions on
the entire space V ; i.e. there are no regular functions in OV (V ) that were not already in
C[V ]. Actually, we have a more general result which computes the regular functions on
distinguished open sets:

Theorem 78.6.1 (Regular functions on distinguished open sets)
Let V ⊆ An be an affine variety and D(g) a distinguished open subset of it. Then

OV (D(g)) =
{
f

gk
| f ∈ C[V ] and k ∈ Z

}
.

In particular, OV (V ) = OV (D(1)) ∼= C[V ].

The proof of this theorem requires the Nullstellensatz, so it relies on C being algebraically
closed. In fact, a counter-example is easy to find if we replace C by R: consider 1

x2+1 .

Proof. Obviously, every function of the form f/gn works, so we want the reverse direction.
This is long, and perhaps should be omitted on a first reading.

Here’s the situation. Let U = D(g). We’re given a regular function ϕ, meaning at
every point p ∈ D(g), there is an open neighborhood Up on which ϕ can be expressed as
fp/gp (where fp, gp ∈ C[V ]). Then, we want to construct an f ∈ C[V ] and an integer n
such that ϕ = f/gn.

First, look at a particular Up and fp/gp. Shrink Up to a distinguished open set D(hp).
Then, let f̃p = fphp and g̃p = gphp. Thus we have that

f̃p
g̃p

is correct on D(hp) ⊆ U ⊆ X.

The upshot of using the modified fp and gp is that:

f̃pg̃q = f̃q g̃p ∀p, q ∈ U.

Indeed, it is correct on D(hp)∩D(hq) by definition, and outside this set both the left-hand
side and right-hand side are zero.

Now, we know that D(g) =
⋃
p∈U D(g̃p), i.e.

V(g) =
⋂
p∈U
V(g̃p).
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So by the Nullstellensatz we know that

g ∈
√

(g̃p : p ∈ U) =⇒ ∃n : gn ∈ (g̃p : p ∈ U).

In other words, for some n and kp ∈ C[V ] we have

gn =
∑
p

kpg̃p

where only finitely many kp are not zero. Now, we claim that

f :=
∑
p

kpf̃p

works. This just observes by noting that for any q ∈ U , we have

fg̃q − gnf̃q =
∑
p

kp(f̃pg̃q − g̃pf̃q) = 0.

This means that the global regular functions are just the same as those in the coordinate
ring: you don’t gain anything new by allowing it to be locally a quotient. (The same
goes for distinguished open sets.)

Example 78.6.2 (Regular functions on distinguished open sets)
(a) As said already, taking g = 1 we recover OV (V ) ∼= C[V ] for any affine variety V .

(b) Let V = A1, U0 = V \ {0}. Then

OV (U0) =
{
P (x)
xn
| P ∈ C[x], n ∈ Z

}
.

So more examples are 1/x and (x+ 1)/x3.

Question 78.6.3. Why doesn’t our theorem on regular functions apply to Example 78.5.5?

The regular functions will become of crucial importance once we define a scheme in
the next chapter.

§78.7 Baby ringed spaces
In summary, given an affine variety V we have:

• A structure of a set of points,

• A structure of a topological space V on these points, and

• For every open set U ⊆ V , a ring OV (U). Elements of the rings are functions
U → C.

Let us agree that:

Definition 78.7.1. A baby ringed space is a topological space X equipped with a
ring OX(U) for every open set U . It is required that elements of the ring OX(U) are
functions f : U → C; we call these the regular functions of X on U .

Therefore, affine varieties are baby ringed spaces.
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Remark 78.7.2 — This is not a standard definition. Hehe.

The reason this is called a “baby ringed space” is that in a ringed space, the rings OV (U)
can actually be any rings, but they have to satisfy a set of fairly technical conditions.
When this happens, it’s the OV that does all the work; we think of OV as a type of
functor called a sheaf.

Since we are only studying affine/projective/quasi-projective varieties for the next
chapters, we will just refer to these as baby ringed spaces so that we don’t have to deal
with the entire definition. The key concept is that we want to think of these varieties
as intrinsic objects, free of any embedding. A baby ringed space is philosophically the
correct thing to do.

Anyways, affine varieties are baby ringed spaces (V,OV ). In the next chapter we’ll
meet projective and quasi-projective varieties, which give more such examples of (baby)
ringed spaces. With these examples in mind, we will finally lay down the complete
definition of a ringed space, and use this to define a scheme.

§78.8 A few harder problems to think about
Problem 78A†. Show that for any n ≥ 1 the Zariski topology of An is not Hausdorff.

Problem 78B†. Let V be an affine variety, and consider its Zariski topology.

(a) Show that the Zariski topology is Noetherian, meaning there is no infinite descending
chain Z1 ⊋ Z2 ⊋ Z3 ⊋ . . . of closed subsets.

(b) Prove that a Noetherian topological space is compact. Hence varieties are topologically
compact.

Problem 78C⋆ (Punctured Plane). Let V = A2 and let X = A2 \ {(0, 0)} be the
punctured plane (which is an open set of V ). Compute OV (X).
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Having studied affine varieties in An, we now consider CPn. We will also make it into
a baby ringed space in the same way as with An.

§79.1 Graded rings

Prototypical example for this section: C[x0, . . . , xn] is a graded ring.

We first take the time to state what a graded ring is, just so that we have this language
to use (now and later).

This definition is the same as Definition 76.3.2.

Definition 79.1.1. A graded ring R is a ring with the following additional structure:
as an abelian group, it decomposes as

R =
⊕
d≥0

Rd

where R0, R1, . . . , are abelian groups. The ring multiplication has the property that if
r ∈ Rd and s ∈ Re, we have rs ∈ Rd+e. Elements of an Rd are called homogeneous
elements; we write “d = deg r” to mean “r ∈ Rd”.

We denote by R+ the ideal R \R0 generated by the homogeneous elements of nonzero
degree, and call it the irrelevant ideal.

Remark 79.1.2 — For experts: all our graded rings are commutative with 1.

Example 79.1.3 (Examples of graded rings)
(a) The ring C[x] is graded by degree: as abelian groups, C[x] ∼= C⊕xC⊕x2C⊕ . . . .

(b) More generally, the polynomial ring C[x0, . . . , xn] is graded by degree.

Abuse of Notation 79.1.4. The notation deg r is abusive in the case r = 0; note that
0 ∈ Rd for every d. So it makes sense to talk about “the” degree of r except when r = 0.

We will frequently refer to homogeneous ideals:

Definition 79.1.5. An ideal I ⊆ C[x0, . . . , xn] is homogeneous if it can be written as
I = (f1, . . . , fm) where each fi is a homogeneous polynomial.

Remark 79.1.6 — If I and J are homogeneous, then so are I + J , IJ , I ∩ J ,
√
I.

813
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Lemma 79.1.7 (Graded quotients are graded too)
Let I be a homogeneous ideal of a graded ring R. Then

R/I =
⊕
d≥0

Rd/(Rd ∩ I)

realizes R/I as a graded ring.

Since these assertions are just algebra, we omit their proofs here.

Remark 79.1.8 — In some other books, a homogeneous ideal (or graded ideal) is
sometimes equivalently defined as an ideal I such that I =

⊕
d≥0(Rd ∩ I) as abelian

group. In fact, we can verify that graded ideals are precisely the ones such that the
quotient is naturally graded.

Example 79.1.9 (Example of a graded quotient ring)
Let R = C[x, y] and set I = (x3, y2). Let S = R/I. Then

S0 = C
S1 = Cx⊕ Cy
S2 = Cx2 ⊕ Cxy
S3 = Cx2y

Sd = 0 ∀d ≥ 4.

So in fact S = R/I is graded, and is a six-dimensional C-vector space.

§79.2 The ambient space
Prototypical example for this section: Perhaps Vpr(x2 + y2 − z2).

The set of points we choose to work with is CPn this time, which for us can be thought
of as the set of n-tuples

(x0 : x1 : · · · : xn)

not all zero, up to scaling. Equivalently, it is the set of lines through the origin in Cn+1.
Projective space is defined in full in Section 64.6, and you should refer there if you aren’t
familiar with projective space.

The right way to think about it is “An plus points at infinity”:

Definition 79.2.1. We define the set

Ui = {(x0 : · · · : xn) | xi ̸= 0} ⊆ CPn.

These are called the standard affine charts.

The name comes from:
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Exercise 79.2.2 (Mandatory). Give a natural bijection from Ui to An. Thus we can think
of CPn as the affine set Ui plus “points at infinity”.

Remark 79.2.3 — In fact, these charts Ui make CPn with its usual topology into a
complex manifold with holomorphic transition functions.

Example 79.2.4 (Colloquially, CP1 = A1 ∪ {∞})
The space CP1 consists of pairs (s : t), which you can think of as representing the
complex number z/1. In particular U1 = {(z : 1)} is basically another copy of A1.
There is only one new point, (1 : 0).

However, like before we want to impose a Zariski topology on it. For concreteness,
let’s consider CP2 = {(x0 : x1 : x2)}. We wish to consider zero loci in CP2, just like we
did in affine space, and hence obtain a notion of a projective variety.

But this isn’t so easy: for example, the function “x0” is not a well-defined function on
points in CP2 because (x0 : x1 : x2) = (5x0 : 5x1 : 5x2)! So we’d love to consider these
“pseudo-functions” that still have zero loci. These are just the homogeneous polynomials
f , because f is homogeneous of degree d if and only if

f(λx0, . . . , λxn) = λdf(x0, . . . , xn).

In particular, the relation “f(x0, . . . , xn) = 0” is well-defined if F is homogeneous. Thus,
we can say:

Definition 79.2.5. If f is homogeneous, we can then define its vanishing locus as

Vpr(f) = {(x0 : · · · : xn) | f(x0, . . . , xn) = 0} .

The homogeneous condition is really necessary. For example, to require “x0 − 1 = 0”
makes no sense, since the points (1 : 1 : 1) and (2015 : 2015 : 2015) are the same.

It’s trivial to verify that homogeneous polynomials do exactly what we want; hence we
can now define:

Definition 79.2.6. A projective variety in CPn is the common zero locus of an
arbitrary collection of homogeneous polynomials in n+ 1 variables.

Example 79.2.7 (A conic in CP2, or a cone in C3)
Let’s try to picture the variety

Vpr(x2 + y2 − z2) ⊆ CP2

which consists of the points [x : y : z] such that x2 + y2 = z2. If we view this as
subspace of C3 (i.e. by thinking of CP2 as the set of lines through the origin), then
we get a “cone”:
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If we take the standard affine charts now, we obtain:

• At x = 1, we get a hyperbola V(1 + y2 − z2).

• At y = 1, we get a hyperbola V(1 + x2 − z2).

• At z = 1, we get a circle V(x2 + y2 − 1).

That said, over C a hyperbola and circle are the same thing; I’m cheating a little by
drawing C as one-dimensional, just like last chapter.

Question 79.2.8. Draw the intersection of the cone above with the z = 1 plane, and check
that you do in fact get a circle. (This geometric picture will be crucial later.)

§79.3 Homogeneous ideals
Now, the next thing we want to do is define Vpr(I) for an ideal I. Of course, we again
run into an issue with things like x0 − 1 not making sense.

The way out of this is to use only homogeneous ideals.

Definition 79.3.1. If I is a homogeneous ideal, we define

Vpr(I) = {x | f(x) = 0 ∀f ∈ I}.

Exercise 79.3.2. Show that the notion “f(x) = 0 ∀f ∈ I” is well-defined for a homogeneous
ideal I.

So, we would hope for a Nullstellensatz-like theorem which bijects the homogeneous
radical ideals to projective varieties. Unfortunately:

Example 79.3.3 (Irrelevant ideal)
To crush some dreams and hopes, consider the ideal

I = (x0, x1, . . . , xn).

This is called the irrelevant ideal; it is a homogeneous radical yet Vpr(I) = ∅.

However, other than the irrelevant ideal:
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Theorem 79.3.4 (Homogeneous Nullstellensatz)
Let I and J be homogeneous ideals.

(a) If Vpr(I) = Vpr(J) ̸= ∅ then
√
I =
√
J .

(b) If Vpr(I) = ∅, then either I = (1) or
√
I = (x0, x1, . . . , xn).

Thus there is a natural bijection between:

• projective varieties in CPn, and

• homogeneous radical ideals of C[x0, . . . , xn] except for the irrelevant ideal.

Proof. For the first part, let V = Vpr(I) and W = Vpr(J) be projective varieties in CPn.
We can consider them as affine varieties in An+1 by using the interpretation of CPn as
lines through the origin in Cn.

Algebraically, this is done by taking the homogeneous ideals I, J ⊆ C[x0, . . . , xn] and
using the same ideals to cut out affine varieties Vaff = V(I) and Waff = V(J) in An+1.
For example, the cone x2 + y2 − z2 = 0 is a conic (a one-dimensional curve) in CP2, but
can also be thought of as a cone (which is a two-dimensional surface) in A3.

Then for (a), we have Vaff = Waff, so
√
I =
√
J .

For (b), either Vaff is empty or it is just the origin of An+1, so the Nullstellensatz
implies either I = (1) or

√
I = (x0, . . . , xn) as desired.

Projective analogues of Theorem 77.4.2 (on intersections and unions of varieties) hold
verbatim for projective varieties as well.

§79.4 As ringed spaces
Prototypical example for this section: The regular functions on CP1 minus a point are
exactly those of the form P (s/t).

Now, let us make every projective variety V into a baby ringed space. We already have
the set of points, a subset of CPn.

The topology is defined as follows.

Definition 79.4.1. We endow CPn with the Zariski topology by declaring the sets of
the form Vpr(I), where I is a homogeneous ideal, to be the closed sets.

Every projective variety V then inherits the Zariski topology from its parent CPn. The
distinguished open sets D(f) are V \ Vpr(f).

Thus every projective variety V is now a topological space. It remains to endow it
with a sheaf of regular functions OV . To do this we have to be a little careful. In the
affine case we had a nice little ring of functions, the coordinate ring C[x0, . . . , xn]/I, that
we could use to provide the numerator and denominators. So, it seems natural to then
define:

Definition 79.4.2. The homogeneous coordinate ring of a projective variety V =
Vpr(I) ⊆ CPn, where I is homogeneous radical, is defined as the ring

C[V ] = C[x0, . . . , xn]/I.
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Remark 79.4.3 — Unlike the case of Remark 78.4.2, an element of C[V ] no longer
correspond to a function from V to C; nevertheless, it is a function from V(I) ⊆ An+1

to C.

However, when we define a rational function we must impose a new requirement that
the numerator and denominator are the same degree.

Definition 79.4.4. Let U ⊆ V be an open set of a projective variety V . A rational
function ϕ on a projective variety V is a quotient f/g, where f, g ∈ C[V ], and f and
g are homogeneous of the same degree, and Vpr(g) ∩ U = ∅. In this way we obtain a
function ϕ : U → C.

Example 79.4.5 (Examples of rational functions)
Let V = CP1 have coordinates (s : t).

(a) If U = V , then constant functions c/1 are the only rational functions on U .

(b) Now let U1 = V \ {(1 : 0)}. Then, an example of a regular function is

s2 + 9t2

t2
=
(
s

t

)2
+ 9.

If we think of U1 as C (i.e. CP1 minus an infinity point, hence like A1) then
really this is just the function x2 + 9.

Then we can repeat the same definition as before:

Definition 79.4.6. Let U ⊆ V be an open set of a projective variety V . We say a
function ϕ : U → C is a regular function if for every point p, we can find an open set
Up containing p and a rational function fp/gp on Up such that

ϕ(x) = fp(x)
gp(x) ∀x ∈ Up.

In particular, we require Up ∩ Vpr(gp) = ∅. We denote the set of all regular functions on
U by OV (U).

Of course, the rational functions from the previous example are examples of regular
functions as well. This completes the definition of a projective variety V as a baby ringed
space.

§79.5 Examples of regular functions
Naturally, I ought to tell you what the regular functions on distinguished open sets are;
this is an analog to Theorem 78.6.1 from last time.

Theorem 79.5.1 (Regular functions on distinguished open sets for projective varieties)
Let V be a projective variety, and let g ∈ C[V ] be homogeneous of positive degree
(thus g is nonconstant). Then

OV (D(g)) =
{
f

gr
| f ∈ C[V ] homogeneous of degree r deg g

}
.
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What about the case g = 1? A similar result holds, but we need the assumption that V
is irreducible.

Definition 79.5.2. A projective variety V is irreducible if it can’t be written as the
union of two proper (projective) sub-varieties.

Theorem 79.5.3 (Only constant regular functions on projective space)
Let V be an irreducible projective variety. Then the only regular functions on V are
constant, thus we have

OV (V ) ∼= C.

This relies on the fact that C is algebraically closed.

Proofs of these are omitted for now.

Example 79.5.4 (Irreducibility is needed above)
The reason we need V irreducible is otherwise we could, for example, take V to be
the union of two points; in this case OV (V ) ∼= C⊕2.

Remark 79.5.5 — It might seem strange that OV (D(g)) behaves so differently
when g = 1. One vague explanation is that in a projective variety, a distinguished
open D(g) looks much like an affine variety if deg g > 0. For example, in CP1 we
have CP1 \ {0} ∼= A1 (where ∼= is used in a sense that I haven’t made precise). Thus
the claim becomes related to the corresponding affine result. But if deg g = 0 and
g ≠ 0, then D(g) is the entire projective variety, which does not look affine, and
thus the analogy breaks down.

Example 79.5.6 (Regular functions on CP1)
Let V = CP1, with coordinates (s : t).

(a) By Theorem 79.5.1, if U1 is the standard affine chart omitting the point (1 : 0),
we have OV (U1) =

{
f
tn | deg f = n

}
. One can write this as

OV (U1) ∼= {P (s/t) | P ∈ C[x]} ∼= OA1(A1).

This conforms with our knowledge that U1 “looks very much like A1”.

(b) As V is irreducible, OV (V ) = C: there are no nonconstant functions on CP1.

Example 79.5.7 (Regular functions on CP2)
Let CP2 have coordinates (x : y : z) and let U0 =

{
(x : y : 1) ∈ CP2

}
be the
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distinguished open set D(z). Then in the same vein,

OCP2(U0) =
{
P (x, y)
zn

| degP = n

}
∼= {P (x/z, y/z) | P ∈ C[x, y]} .

§79.6 A few harder problems to think about
Problems:
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In this chapter we discuss Bézout’s theorem. It makes precise the idea that two degree
d and e curves in CP2 should intersect at “exactly” de points. (We work in projective
space so e.g. any two lines intersect.)

§80.1 Non-radical ideals

Prototypical example for this section: Tangent to the parabola.

We need to account for multiplicities. So we will whenever possible work with homoge-
neous ideals I, rather than varieties V , because we want to allow the possibility that I is
not radical. Let’s see how we might do so.

For a first example, suppose we intersect y = x2 with the line y = 1; or more accurately,
in projective coordinates of CP2, the parabola zy = x2 and y = z. The ideal of the
intersection is

(zy − x2, y − z) = (x2 − z2, y − z) ⊆ C[x, y, z].

So this corresponds to having two points; this gives two intersection points: (1 : 1 : 1)
and (−1 : 1 : 1). Here is a picture of the two varieties in the affine z = 1 chart:

V(y − z)

V(zy − x2)

CP2

That’s fine, but now suppose we intersect zy = x2 with the line y = 0 instead. Then we
instead get a “double point”:

V(y)

V(zy − x2)

CP2

The corresponding ideal is this time

(zy − x2, y) = (x2, y) ⊆ C[x, y, z].

This ideal is not radical, and when we take
√

(x2, y) = (x, y) we get the ideal which
corresponds to a single projective point (0 : 0 : 1) of CP2. This is why we work with
ideals rather than varieties: we need to tell the difference between (x2, y) and (x, y).

821



822 Napkin, by Evan Chen (v1.6.20241027)

§80.2 Hilbert functions of finitely many points
Prototypical example for this section: The Hilbert function attached to the double point
(x2, y) is eventually the constant 2.

Definition 80.2.1. Given a nonempty projective variety V , there is a unique radical
ideal I such that V = Vpr(I). In this chapter we denote it by Irad(V ). For an empty
variety we set Irad(∅) = (1), rather than choosing the irrelevant ideal.
Definition 80.2.2. Let I ⊆ C[x0, . . . , xn] be homogeneous. We define the Hilbert
function of I, denoted hI : Z≥0 → Z≥0 by

hI(d) = dimC (C[x0, . . . , xn]/I)d

i.e. hI(d) is the dimension of the dth graded part of C[x0, . . . , xn]/I.
Definition 80.2.3. If V is a projective variety, we set hV = hIrad(V ), where I = Irad(V )
is the radical ideal satisfying V = Vpr(I) as defined above.

In this case, C[x0, . . . , xn]/I is just C[V ].

Example 80.2.4 (Examples of Hilbert functions in zero dimensions)
For concreteness, let us use CP2.

(a) If V is the single point (0 : 0 : 1), with ideal Irad(V ) = (x, y), then

C[V ] = C[x, y, z]/(x, y) ∼= C[z] ∼= C⊕ zC⊕ z2C⊕ z3C . . .

which has dimension 1 in all degrees. Consequently, we have

hI(d) ≡ 1.

(b) Now suppose we use the “double point” ideal I = (x2, y). This time, we have

C[x, y, z]/(x2, y) ∼= C[z]⊕ xC[z]
∼= C⊕ (xC⊕ zC)⊕ (xzC⊕ z2C)⊕ (xz2C⊕ z3C)⊕ . . . .

From this we deduce that

hI(d) =
{

2 d = 1, 2, 3, . . .
1 d = 0.

(c) Let’s now take the variety V = {(1 : 1 : 1), (−1 : 1 : 1)} consisting of two points,
with Irad(V ) = (x2 − z2, y − z). Then

C[x, y, z]/(x2 − z2, y − z) ∼= C[x, z]/(x2 − z2)
∼= C[z]⊕ xC[z].

So this example has the same Hilbert function as the previous one.

Abuse of Notation 80.2.5. I’m abusing the isomorphism symbol C[z] ∼= C⊕ zC⊕ z2C
and similarly in other examples. This is an isomorphism only on the level of C-vector
spaces. However, in computing Hilbert functions of other examples I will continue using
this abuse of notation.



80 Bonus: Bézout’s theorem 823

Example 80.2.6 (Hilbert functions for empty varieties)
Suppose I ⊊ C[x0, . . . , xn] is an ideal, possibly not radical but such that

Vpr(I) = ∅

hence
√
I = (x0, . . . , xn) is the irrelevant ideal. Thus there are integers di for i =

0, . . . , n such that xdi
i ∈ I for every i; consequently, hI(d) = 0 for any d > d0+· · ·+dn.

We summarize this by saying that

hI(d) = 0 for all d≫ 0.

Here the notation d≫ 0 means “all sufficiently large d”.
From these examples we see that if I is an ideal, then the Hilbert function appears

to eventually be constant, with the desired constant equal to the size of Vpr(I), “with
multiplicity” in the case that I is not radical.

Let’s prove this. Before proceeding we briefly remind the reader of short exact
sequences: a sequence of maps of 0 → V ↪→ W ↠ X → 0 is one such that the
im(V ↪→W ) = ker(W ↠ X) (and of course the maps V ↪→W and W ↠ X are injective
and surjective). If V , W , X are finite-dimensional vector spaces over C this implies that
dimW = dimV + dimX.

Proposition 80.2.7 (Hilbert functions of I ∩ J and I + J)
Let I and J be homogeneous ideals in C[x0, . . . , xn]. Then

hI∩J + hI+J = hI + hJ .

Proof. Consider any d ≥ 0. Let S = C[x0, . . . , xn] for brevity. Then

0 [S/(I ∩ J)]d [S/I]d ⊕ [S/J ]d [S/(I + J)]d 0

f (f, f)

(f, g) f − g

⊃

is a short exact sequence of vector spaces. Therefore, for every d ≥ 0 we have that

dim [S/I]d ⊕ [S/J ]d = dim [S/(I ∩ J)]d + dim [S/(I + J)]d

which gives the conclusion.

Example 80.2.8 (Hilbert function of two points in CP1)
In CP1 with coordinate ring C[s, t], consider I = (s) the ideal corresponding to
the point (0 : 1) and J = (t) the ideal corresponding to the point (1 : 0). Then
I ∩J = (st) is the ideal corresponding to the disjoint union of these two points, while
I + J = (s, t) is the irrelevant ideal. Consequently hI+J(d) = 0 for d≫ 0. Therefore,
we get

hI∩J(d) = hI(d) + hJ(d) for d≫ 0
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so the Hilbert function of a two-point projective variety is the constant 2 for d≫ 0.

This example illustrates the content of the main result:

Theorem 80.2.9 (Hilbert functions of zero-dimensional varieties)
Let V be a projective variety consisting of m points (where m ≥ 0 is an integer).
Then

hV (d) = m for d≫ 0.

Proof. We already did m = 0, so assume m ≥ 1. Let I = Irad(V ) and for k = 1, . . . ,m
let Ik = Irad(kth point of V ).

Exercise 80.2.10. Show that hIk
(d) = 1 for every d. (Modify Example 80.2.4(a).)

Hence we can proceed by induction on m ≥ 2, with the base case m = 1 already done
above. For the inductive step, we use the projective analogues of Theorem 77.4.2. We
know that hI1∩···∩Im−1(d) = m − 1 for d ≫ 0 (this is the first m − 1 points; note that
I1 ∩ · · · ∩ Im−1 is radical). To add in the mth point we note that

hI1∩···∩Im(d) = hI1∩...Im−1(d) + hIm(d)− hJ(d)

where J = (I1∩· · ·∩Im−1)+Im. The ideal J may not be radical, but satisfies Vpr(J) = ∅
by an earlier example, hence hJ = 0 for d≫ 0. This completes the proof.

In exactly the same way we can prove that:

Corollary 80.2.11 (hI eventually constant when dimVpr(I) = 0)
Let I be an ideal, not necessarily radical, such that Vpr(I) consists of finitely many
points. Then the Hilbert hI is eventually constant.

Proof. Induction on the number of points, m ≥ 1. The base case m = 1 was essentially
done in Example 80.2.4(b) and Exercise 80.2.10. The inductive step is literally the same
as in the proof above, except no fuss about radical ideals.

§80.3 Hilbert polynomials
So far we have only talked about Hilbert functions of zero-dimensional varieties, and
showed that they are eventually constant. Let’s look at some more examples.

Example 80.3.1 (Hilbert function of CPn)
The Hilbert function of CPn is

hCPn(d) =
(
d+ n

n

)
= 1
n! (d+ n)(d+ n− 1) . . . (d+ 1)

by a “balls and urns” argument. This is a polynomial of degree n.
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Example 80.3.2 (Hilbert function of the parabola)
Consider the parabola zy − x2 in CP2 with coordinates C[x, y, z]. Then

C[x, y, z]/(zy − x2) ∼= C[y, z]⊕ xC[y, z].

A combinatorial computation gives that

h(zy−x2)(0) = 1 Basis 1
h(zy−x2)(1) = 3 Basis x, y, z
h(zy−x2)(2) = 5 Basis xy, xz, y2, yz, z2.

We thus in fact see that h(zy−x2)(d) = 2d− 1.

In fact, this behavior of “eventually polynomial” always works.

Theorem 80.3.3 (Hilbert polynomial)
Let I ⊆ C[x0, . . . , xn] be a homogeneous ideal, not necessarily radical. Then

(a) There exists a polynomial χI such that hI(d) = χI(d) for all d≫ 0.

(b) degχI = dimVpr(I) (if Vpr(I) = ∅ then χI = 0).

(c) The polynomial m! · χI has integer coefficients.

Proof. The base case was addressed in the previous section.
For the inductive step, consider Vpr(I) with dimension m. Consider a hyperplane H

such that no irreducible component of Vpr(I) is contained inside H (we quote this fact
without proof, as it is geometrically obvious, but the last time I tried to write the proof I
messed up). For simplicity, assume WLOG that H = Vpr(x0).

Let S = C[x0, . . . , xn] again. Now, consider the short exact sequence

0 [S/I]d−1 [S/I]d [S/(I + (x0))]d 0

f f · x0

f f.

⊃

(The injectivity of the first map follows from the assumption about irreducible components
of Vpr(I).) Now exactness implies that

hI(d)− hI(d− 1) = hI+(x0)(d).

The last term geometrically corresponds to Vpr(I) ∩H; it has dimension m− 1, so by
the inductive hypothesis we know that

hI(d)− hI(d− 1) = c0d
m−1 + c1d

m−2 + · · ·+ cm−1
(m− 1)! d≫ 0

for some integers c0, . . . , cm−1. Then we are done by the theory of finite differences of
polynomials.
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§80.4 Bézout’s theorem

Definition 80.4.1. We call χI the Hilbert polynomial of I. If χI is nonzero, we call
the leading coefficient of m!χI the degree of I, which is an integer, denoted deg I.

Of course for projective varieties V we let hV = hIrad(V ), and deg V = deg Irad(V ).

Remark 80.4.2 — Note that the degree of an ideal deg I is not the same as deg hI !

Let us show some properties of the degrees, which will allow us to compute the degree
of any projective variety from its irreducible components.

Proposition 80.4.3 (Properties of degrees)
For two varieties V and W , we have the following:

• If V and W are disjoint and have the same dimension, then deg(V ∪W ) =
deg V + degW .

• If dimV < dimW , then deg(V ∪W ) = degW .

So,

The degree is additive over components, and it measures the “degree” of
the highest-dimensional component.

Proof. Follows from the properties of Hilbert polynomial in Theorem 80.3.3 and Propo-
sition 80.2.7, and that the leading coefficient only depends on the largest-degree sum-
mand.

Example 80.4.4 (Examples of degrees)
(a) If V is a finite set of n ≥ 1 points, it has degree n.

(b) If I corresponds to a double point, it has degree 2.

(c) CPn has degree 1.

(d) Any line or plane, being “isomorphic” to CP1 and CP2 respectively, has degree 1.

(e) The parabola has degree 2. (Note that, as an algebraic variety, the parabola is
isomorphic to a line!)

(f) The union of the parabola and a point has degree 2.

Now, you might guess that if f is a homogeneous quadratic polynomial then the degree
of the principal ideal (f) is 2, and so on. (Thus for example we expect a circle to have
degree 2.) This is true:
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Theorem 80.4.5 (Bézout’s theorem)
Let I be a homogeneous ideal of C[x0, . . . , xn], such that dimVpr(I) ≥ 1. Let
f ∈ C[x0, . . . , xn] be a homogeneous polynomial of degree k which does not vanish
on any irreducible component of Vpr(I). Then

deg (I + (f)) = k deg I.

Geometrically,

If V is any projective variety, V(f) is a hyperplane of degree k, then
their intersection V ∩ V(f) has degree k deg V — unless some irreducible
component of V is contained inside V(f).

This is what we mentioned at the beginning of the chapter.
Because the ideal I may not be radical, the geometric interpretation statement is not

the most general possible — the problem will be rectified later with the generalization to
schemes.

Proof. Let S = C[x0, . . . , xn] again. This time the exact sequence is

0 [S/I]d−k [S/I]d [S/(I + (f))]d 0.

⊃

We leave this olympiad-esque exercise as Problem 80A.

§80.5 Applications
First, we show that the notion of degree is what we expect.

Corollary 80.5.1 (Hypersurfaces: the degree deserves its name)
Let V be a hypersurface, i.e. Irad(V ) = (f) for f a homogeneous polynomial of
degree k. Then deg V = k.

Proof. Recall deg(0) = degCPn = 1. Take I = (0) in Bézout’s theorem.

The common special case in CP2 is:

Corollary 80.5.2 (Bézout’s theorem for curves)
For any two curves X and Y in CP2 without a common irreducible component,

|X ∩ Y | ≤ degX · deg Y.

Now, we use this to prove Pascal’s theorem.

Theorem 80.5.3 (Pascal’s theorem)
Let A, B, C, D, E, F be six distinct points which lie on a conic C in CP2. Then
the points AB ∩DE, BC ∩ EF , CD ∩ FA are collinear.
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Proof. Let X be the variety equal to the union of the three lines AB, CD, EF , hence
X = Vpr(f) for some cubic polynomial f (which is the product of three linear ones).
Similarly, let Y = Vpr(g) be the variety equal to the union of the three lines BC, DE,
FA.

A

B

C

D

E

F

Now let P be an arbitrary point on the conic on C , distinct from the six points A, B,
C, D, E, F . Consider the projective variety

V = Vpr(αf + βg)

where the constants α and β are chosen such that P ∈ V .

Question 80.5.4. Show that V also contains the six points A, B, C, D, E, F as well as
the three points AB ∩DE, BC ∩ EF , CD ∩ FA regardless of which α and β are chosen.

Now, note that |V ∩ C | ≥ 7. But deg V = 3 and deg C = 2. This contradicts Bézout’s
theorem unless V and C share an irreducible component. This can only happen if V is
the union of a line and conic, for degree reasons; i.e. we must have that

V = C ∪ line.

Finally note that the three intersection points AB ∩DE, BC ∩ EF and CD ∩ FA do
not lie on C , so they must lie on this line.

We’d like to remark that the Pascal’s theorem is just a special case of the Cayley-
Bacharach theorem, which can be used to prove that the addition operation on an elliptic
curve is associative. Interested readers may want to try proving the Cayley-Bacharach
theorem using the same technique.

§80.6 A few harder problems to think about
Problem 80A. Complete the proof of Bézout’s theorem from before.

Problem 80B (USA TST 2016/6). Let ABC be an acute scalene triangle and let P be
a point in its interior. Let A1, B1, C1 be projections of P onto triangle sides BC, CA,
AB, respectively. Find the locus of points P such that AA1, BB1, CC1 are concurrent
and ∠PAB + ∠PBC + ∠PCA = 90◦.



81 Morphisms of varieties

In preparation for our work with schemes, we will finish this part by talking about
morphisms between affine and projective varieties, given that we have taken the time to
define them.

Idea: we know both affine and projective varieties are special cases of baby ringed
spaces, so in fact we will just define a morphism between any two baby ringed spaces.

§81.1 Defining morphisms of baby ringed spaces

Prototypical example for this section: See next section.

Let (X,OX) and (Y,OY ) be baby ringed spaces, and think about how to define a
morphism between them.

The guiding principle in algebra is that we want morphisms to be functions on
underlying structure, but also respect the enriched additional data on top. To give some
examples from the very beginning of time:

Example 81.1.1 (How to define a morphism)
• Consider groups. A group G has an underlying set (of elements), which we

then enrich with a multiplication operation. So a homomorphism is a map of
the underlying sets, plus it has to respect the group multiplication.

• Consider R-modules. Each R-module has an underlying abelian group, which
we then enrich with scalar multiplication. So we require that a linear map
respects the scalar multiplication as well, in addition to being a homomorphism
of abelian groups.

• Consider topological spaces. A space X has an underlying set (of points),
which we then enrich with a topology of open sets. So we consider maps of the
set of points which respect the topology (pre-images of open sets are open).

This time, the ringed spaces (X,OX) have an underlying topological space, which we
have enriched with a structure sheaf. So, we want a continuous map f : X → Y of these
topological spaces, which we then need to respect the sheaf of regular functions.

How might we do this? Well, if we let ψ : Y → C be a regular function, then composition
gives a natural way to write a map X → Y → C. We then want to require that this is
also a regular function.

More generally, we can take any regular function on Y and obtain some function on
X, which we call a pullback. We then require that all the pullbacks are regular on X.

Definition 81.1.2. Let (X,OX) and (Y,OY ) be baby ringed spaces. Given a map
f : X → Y and a regular function ϕ ∈ OY (U), we define the pullback of ϕ, denoted f ♯ϕ,
to be the composed function

fpre(U) f−→ U
ϕ−→ C.

The use of the word “pullback” is the same as in our study of differential forms.

829
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Definition 81.1.3. Let (X,OX) and (Y,OY ) be baby ringed spaces. A continuous map
of topological spaces f : X → Y is a morphism if every pullback of a regular function
on Y is a regular function on X.

Two baby ringed spaces are isomorphic if there are mutually inverse morphisms
between them, which we then call isomorphisms.

In particular, the pullback gives us a (reversed) ring homomorphism

f ♯ : OY (U)→ OX(fpre(U))

for every U ; thus our morphisms package a lot of information. Here’s a picture of a
morphism f , and the pullback of ϕ : U → C (where U ⊆ Y ).

X

fpre(U)

Y

U
f

φ ∈ OY (U)

C

f ♯φ ∈ OX(fpre(U))

Example 81.1.4 (The pullback of 1
y−25 under t 7→ t2)

The map
f : X = A1 → Y = A1 by t 7→ t2

is a morphism of varieties. For example, consider the regular function φ = 1
y−25 on

the open set Y \ {25} ⊆ Y . The f -inverse image is X \ {±5}. Thus the pullback is

f ♯φ : X \ {±5} → Y \ {25}

by x 7→ 1
x2 − 25

which is regular on X \ {±5}.

§81.2 Classifying the simplest examples
Prototypical example for this section: Theorem 81.2.2; they’re just polynomials.

On a philosophical point, we like the earlier definition because it adheres to our
philosophy of treating our varieties as intrinsic objects, rather than embedded ones.
However, it is somewhat of a nuisance to actually verify it.
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So in this section, we will

• classify all the morphisms from Am → An, and

• classify all the morphisms from CPm → CPn.

It what follows I will wave my hands a lot in claiming that something is a morphism, since
doing so is mostly detail checking. The theorems which follow will give us alternative
definitions of morphism which are more coordinate-based and easier to use for actual
computations.

§81.2.i Affine classification
Earlier we saw how t 7→ t2 gives us a map. More generally, given any polynomial P (t),
the map t 7→ P (t) will work. And in fact, that’s all:

Exercise 81.2.1. Let X = A1, Y = A1. By considering id ∈ OY (Y ), show that no other
regular functions exist.

In fact, let’s generalize the previous exercise:

Theorem 81.2.2 (Regular maps of affine varieties are globally polynomials)
Let X ⊆ Am and Y ⊆ An be affine varieties. Every morphism f : X → Y of varieties
is given by

x = (x1, . . . , xm) f7−→ (P1(x), . . . , Pn(x))

where P1, . . . , Pn are polynomials.

Proof. It’s not too hard to see that all such functions work, so let’s go the other way. Let
f : X → Y be a morphism.

First, remark that fpre(Y ) = X. Now consider the regular function π1 ∈ OY (Y ), given
by the projection (y1, . . . , yn) 7→ y1. Thus we need f ◦ π1 to be regular on X.

But for affine varieties OX(X) is just the coordinate ring C[X] and so we know there
is a polynomial P1 such that f ◦ π1 = P1. Similarly for the other coordinates.

§81.2.ii Projective classification
Unfortunately, the situation is a little weirder in the projective setting. If X ⊆ CPm and
Y ⊆ CPn are projective varieties, then every function

x = (x0 : x1 : · · · : xm) 7→ (P0(x) : P1(x) : · · · : Pn(x))

is a valid morphism, provided the Pi are homogeneous of the same degree and don’t all
vanish simultaneously. However if we try to repeat the proof for affine varieties we run
into an issue: there is no π1 morphism. (Would we send (1 : 1) = (2 : 2) to 1 or 2?)

And unfortunately, there is no way to repair this. Counterexample:

Example 81.2.3 (Projective map which is not globally polynomial)
Let V = Vpr(xy − z2) ⊆ CP2. Then the map

V → CP1 by (x : y : z) 7→
{

(x : z) x ̸= 0
(z : y) y ̸= 0
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turns out to be a morphism of projective varieties. This is well defined just because
(x : z) = (z : y) if x, y ̸= 0; this should feel reminiscent of the definition of regular
function.

The good news is that “local” issues are the only limiting factor.

Theorem 81.2.4 (Regular maps of projective varieties are locally polynomials)
Let X ⊆ CPm and Y ⊆ CPn be projective varieties and let f : X → Y be a morphism.
Then at every point p ∈ X there exists an open neighborhood Up ∋ p and polynomials
P0, P1, . . . , Pn (which depend on U) so that

f(x) = (P0(x) : P1(x) : · · · : Pn(x)) ∀x = (x0 : · · · : xn) ∈ Up.

Of course the polynomials Pi must be homogeneous of the same degree and cannot
vanish simultaneously on any point of Up.

Example 81.2.5 (Example of an isomorphism)
In fact, the map V = Vpr(xy − z2) → CP1 is an isomorphism. The inverse map
CP1 → V is given by

(s : t) 7→ (s2 : t2 : st).

Thus actually V ∼= CP1.

§81.3 Some more applications and examples
Prototypical example for this section: A1 ↪→ CP1 is a good one.

The previous section complete settles affine varieties to affine varieties, and projective
varieties to projective varieties. However, the definition we gave at the start of the chapter
works for any baby ringed spaces, and therefore there is still a lot of room to explore.

For example, we can have affine spaces talk to projective ones. Why not? The
power of our pullback-based definition is that you enable any baby ringed spaces to
communicate, even if they live in different places.

Example 81.3.1 (Embedding A1 ↪→ CP1)
Consider a morphism

f : A1 ↪→ CP1 by t 7→ (t : 1).

This is also a morphism of varieties. (Can you see what the pullbacks look like?)
This reflects the fact that CP1 is “A1 plus a point at infinity”.

Here is another way you can generate more baby ringed spaces. Given any projective
variety, you can take an open subset of it, and that will itself be a baby ringed space.
We give this a name:

Definition 81.3.2. A quasi-projective variety is an open set X of a projective variety
V . It is a baby ringed space (X,OX) too, because for any open set U ⊆ X we simply
define OX(U) = OV (U).
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We chose to take open subsets of projective varieties because this will subsume the
affine ones, for example:

Example 81.3.3 (The parabola is quasi-projective)
Consider the parabola V = V(y − x2) ⊂ A2. We take the projective variety W =
Vpr(zy−x2) and look at the standard affine chart D(z). Then there is an isomorphism

V → D(z) ⊆W
(x, y) 7→ (x : y : 1)

(x/z, y/z)←[ (x : y : z).

Consequently, V is (isomorphic to) an open subset of W , thus we regard it as
quasi-projective.

parabola

Missing
figure

In general this proof can be readily adapted:

Proposition 81.3.4 (Affine ⊆ quasi-projective)
Every affine variety is isomorphic to a quasi-projective one (i.e. every affine variety
is an open subset of a projective variety).

So quasi-projective varieties generalize both types of varieties we have seen.

§81.4 The hyperbola effect
Prototypical example for this section: A1 \ {0} is even affine

So here is a natural question: are there quasi-projective varieties which are neither
affine nor projective? The answer is yes, but for the sake of narrative I’m going to play
dumb and find a non-example, with the actual example being given in the problems.

Our first guess might be to take the simplest projective variety, say CP1, and delete a
point (to get an open set). This is quasi-projective, but it’s isomorphic to A1. So instead
we start with the simplest affine variety, say A1, and try to delete a point.

Surprisingly, this doesn’t work.

Example 81.4.1 (Crucial example: punctured line is isomorphic to hyperbola)
Let X = A1 \ {0} be an quasi-projective variety. We claim that in fact we have an
isomorphism

X ∼= V = V(xy − 1) ⊆ A2



834 Napkin, by Evan Chen (v1.6.20241027)

which shows that X is still isomorphic to an affine variety. The maps are

X ↔ V

t 7→ (t, 1/t)
x←[ (x, y).

Intuitively, the “hyperbola y = 1/x” in A2 can be projected onto the x-axis. Here is the
relevant picture.

y

x

V(xy − 1)

X

Actually, deleting any number of points from A1 fails. If we delete {1, 2, 3}, the
resulting open set is isomorphic as a baby ringed space to V(y(x− 1)(x− 2)(x− 3)− 1),
which colloquially might be called y = 1

(x−1)(x−2)(x−3) .
The truth is more general.

Distinguished open sets of affine varieties are affine.

Here is the exact isomorphism.

Theorem 81.4.2 (Distinguished open subsets of affines are affine)
Consider X = D(f) ⊆ V = V(f1, . . . , fm) ⊆ An, where V is an affine variety, and
the distinguished open set X is thought of as a quasi-projective variety. Define

W = V(f1, . . . , fm, y · f − 1) ⊆ An+1

where y is the (n+ 1)st coordinate of An+1.
Then X ∼= W .

For lack of a better name, I will dub this the hyperbola effect, and it will play a
significant role later on.

Therefore, if we wish to find an example of a quasi-projective variety which is not affine,
one good place to look would be an open set of an affine space which is not distinguished
open. If you are ambitious now, you can try to prove the punctured plane (that is, A2

minus the origin) works. We will see that example once again later in the next chapter,
so you will have a second chance to do so.



81 Morphisms of varieties 835

§81.5 A few harder problems to think about
Problem 81A. Consider the map

A1 → V(y2 − x3) ⊆ A2 by t 7→ (t2, t3).

Show that it is a morphism of varieties, but it is not an isomorphism.

Problem 81B†. Show that every projective variety has an open neighborhood which is
isomorphic to an affine variety. In this way, “projective varieties are locally affine”.

Problem 81C. Let V be a affine variety and let W be a irreducible projective variety.
Prove that V ∼= W if and only if V and W are a single point.

Problem 81D (Punctured plane is not affine). Let X = A2 \ {(0, 0)} be an open set of
A2. Let V be any affine variety and let f : X → V be a morphism. Show that f is not
an isomorphism.
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