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71 Singular homology

Now that we’ve defined π1(X), we turn our attention to a second way of capturing
the same idea, H1(X). We’ll then define Hn(X) for n ≥ 2. The good thing about the
Hn groups is that, unlike the πn groups, they are much easier to compute in practice.
The downside is that their definition will require quite a bit of setup, and the “algebraic”
part of “algebraic topology” will become a lot more technical.

§71.1 Simplices and boundaries

Prototypical example for this section: ∂[v0, v1, v2] = [v0, v1]− [v0, v2] + [v1, v2].

First things first:

Definition 71.1.1. The standard n-simplex, denoted ∆n, is defined as

{(x0, x1, . . . xn) | xi ≥ 0, x0 + · · ·+ xn = 1} .

Hence it’s the convex hull of some vertices [v0, . . . , vn]. Note that we keep track of the
order v0, . . . , vn of the vertices, for reasons that will soon become clear.

Given a topological space X, a singular n-simplex is a map σ : ∆n → X.

Example 71.1.2 (Singular simplices)
(a) Since ∆0 = [v0] is just a point, a singular 0-simplex X is just a point of X.

(b) Since ∆1 = [v0, v1] is an interval, a singular 1-simplex X is just a path in X.

(c) Since ∆2 = [v0, v1, v2] is an equilateral triangle, a singular 2-simplex X looks a
“disk” in X.

Here is a picture of all three in a space X:

X

σ0

v0

v1

σ1

v0

v1

v2

σ2

The arrows aren’t strictly necessary, but I’ve included them to help keep track of
the “order” of the vertices; this will be useful in just a moment.

723
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Now we’re going to do something much like when we were talking about Stokes’
theorem: we’ll put a boundary ∂ operator on the singular n-simplices. This will give us
a formal linear sums of n-simplices

∑
k akσk, which we call an n-chain.

In that case,

Definition 71.1.3. Given a singular n-simplex σ with vertices [v0, . . . , vn], note that for
every i we have an (n− 1) simplex [v0, . . . , vi−1, vi+1, . . . , vn]. The boundary operator
∂ is then defined by

∂(σ) :=
∑
i

(−1)i [v0, . . . , vi−1, vi+1, . . . , vn] .

The boundary operator then extends linearly to n-chains:

∂

(∑
k

akσk

)
:=
∑

ak∂(σk).

By convention, a 0-chain has empty boundary.

Example 71.1.4 (Boundary operator)
Consider the chains depicted in Example 71.1.2. Then

(a) ∂σ0 = 0.

(b) ∂(σ1) = [v1]− [v0]: it’s the “difference” of the 0-chain corresponding to point
v1 and the 0-chain corresponding to point v0.

(c) ∂(σ2) = [v0, v1] − [v0, v2] + [v1, v2]; i.e. one can think of it as the sum of the
three oriented arrows which make up the “sides” of σ2.

(d) Notice that if we take the boundary again, we get

∂(∂(σ2)) = ∂([v0, v1])− ∂([v0, v2]) + ∂([v1, v2])
= ([v1]− [v0])− ([v2]− [v0]) + ([v2]− [v1])
= 0.

The fact that ∂2 = 0 is of course not a coincidence.

Theorem 71.1.5 (∂2 = 0)
For any chain c, ∂(∂(c)) = 0.

Proof. Essentially identical to Problem 45B: this is just a matter of writing down a bunch
of
∑

signs. Diligent readers are welcome to try the computation.

Remark 71.1.6 — The eerie similarity between the chains used to integrate
differential forms and the chains in homology is not a coincidence. The de Rham
cohomology, discussed much later, will make the relation explicit.

§71.2 The singular homology groups
Prototypical example for this section: Probably Hn(Sm), especially the case m = n = 1.
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Let X be a topological space, and let Cn(X) be the free abelian group of n-chains of
X that we defined earlier. Our work above gives us a boundary operator ∂, so we have a
sequence of maps

. . .
∂−→ C3(X) ∂−→ C2(X) ∂−→ C1(X) ∂−→ C0(X) ∂−→ 0

(here I’m using 0 to for the trivial group, which is standard notation for abelian groups.)
We’ll call this the singular chain complex.

Now, how does this let us detect holes in the space? To see why, let’s consider an
annulus, with a 1-chain c drawn in red:

X
v0

v1

v2

Notice that
∂c = ([v1]− [v0])− ([v2]− [v0]) + ([v2]− [v1]) = 0

and so we can say this 1-chain c is a “cycle”, because it has trivial boundary. However, c
is not itself the boundary of any 2-chain, because of the hole in the center of the space —
it’s impossible to “fill in” the interior of c! So, we have detected the hole by the algebraic
fact that

c ∈ ker
(
C1(X) ∂−→ C0(X)

)
but c /∈ im

(
C2(X) ∂−→ C1(X)

)
.

Indeed, if the hole was not present then this statement would be false.

Remark 71.2.1 — Note that homotopy and homology captures slightly different
notion of “holes”. For example, let T be a torus. Then, every map S2 → T is
nulhomotopic so π2(T ) is trivial, but, as we will see in Proposition 72.3.6, H2(T ) ∼= Z.
At least in the case of n = 1, then Theorem 71.2.7 states that for any path-connected
space X and x0 ∈ X, then H1(X) is the abelianization of π1(X,x0), which is pretty
much the best result you can expect — H1(X) must be abelian, while π1(X,x0)
need not be abelian. Nevertheless, it is still possible that π1(X,x0) is nontrivial
and H1(X) is trivial — see https://math.stackexchange.com/q/1052414 for an
example.

We can capture this idea in any dimension, as follows.

Definition 71.2.2. Let

. . .
∂−→ C2(X) ∂−→ C1(X) ∂−→ C0(X) ∂−→ 0

as above. We say that c ∈ Cn(X) is:

https://math.stackexchange.com/q/1052414
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• a cycle if c ∈ ker
(
Cn(X) ∂−→ Cn−1(X)

)
, and

• a boundary if c ∈ im
(
Cn+1(X) ∂−→ Cn(X)

)
.

Denote the cycles and boundaries by Zn(X), Bn(X) ⊆ Cn(X), respectively.1

Question 71.2.3. Just to get you used to the notation: check that Bn and Zn are themselves
abelian groups, and that Bn(X) ⊆ Zn(X) ⊆ Cn(X).

The key point is that we can now define:
Definition 71.2.4. The nth homology group Hn(X) is defined as

Hn(X) := Zn(X)/Bn(X).

Example 71.2.5 (The zeroth homology group)
Let’s compute H0(X) for a topological space X. We take C0(X), which is just
formal linear sums of points of X.
First, we consider the kernel of ∂ : C0(X)→ 0, so the kernel of ∂ is the entire space
C0(X): that is, every point is a “cycle”.
Now, what is the boundary? The main idea is that [b]− [a] = 0 if and only if there’s
a 1-chain which connects a to b, i.e. there is a path from a to b. In particular,

X path connected =⇒ H0(X) ∼= Z.

More generally, we have

Proposition 71.2.6 (Homology groups split into path-connected components)
If X =

⋃
αXα is a decomposition into path-connected components, then we have

Hn(X) ∼=
⊕
α

Hn(Xα).

In particular, if X has r path-connected components, then H0(X) ∼= Z⊕r.

(If it’s surprising to see Z⊕r, remember that an abelian group is the same thing as a
Z-module, so the notation G⊕H is customary in place of G×H when G, H are abelian.)

Now let’s investigate the first homology group.

Theorem 71.2.7 (Hurewicz theorem)
Let X be path-connected. Then H1(X) is the abelianization of π1(X,x0).

We won’t prove this but you can see it roughly from the example. The group H1(X)
captures the same information as π1(X,x0): a cycle (in Z1(X)) corresponds to the same
thing as the loops we studied in π1(X,x0), and the boundaries (in B1(X), i.e. the things
we mod out by) are exactly the nulhomotopic loops in π1(X,x0). The difference is that
H1(X) allows loops to commute, whereas π1(X,x0) does not.

1We don’t use Cn(X) to denote cycles — apart from the obvious reason that the notation is already
used, the letter Z comes from the German word “Zyklus”.
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Remark 71.2.8 (Digression: category theory interpretation) — From this, you can
say that there is a Hurewicz map π1(X,x0) ϕ−→ H1(X) for each (X,x0).
But there is more than that: this map is natural, in the sense that for h : (X,x0)→
(Y, y0) map of pointed spaces, then

π1(X,x0) π1(Y, y0)

H1(X) H1(Y )

h♯

ϕ ϕ

h∗

commutes.
In category theory terms, we say that ϕ is a natural transformation from π1 to H1.
Another way to say this is: we have families of groups

{π1(X,x0) | (X,x0) pointed space}

and
{H1(X) | (X,x0) pointed space}

then the natural transformation ϕ can be seen as a family of homomorphisms

{ϕ : π1(X,x0)→ H1(X) | (X,x0) pointed space}

satisfying the naturality conditions.
Of course, the fact that π1 is a functor means {π1(X,x0) | (X,x0) pointed space}
is a lot more than a family of groups indexed by pointed spaces, as explained in
Theorem 65.6.2.

Example 71.2.9 (The first homology group of the annulus)
To give a concrete example, consider the annulus X above. We found a chain c
that wrapped once around the hole of X. The point is that in fact,

H1(X) = ⟨c⟩ ∼= Z

which is to say the chains c, 2c, . . . are all not the same in H1(X), but that any
other 1-chain is equivalent to one of these. This captures the fact that X is really
just S1.

Example 71.2.10 (An explicit boundary in S1)
In X = S1, let a be the uppermost point and b the lowermost point. Let c be the
simplex from a to b along the left half of the circle, and d the simplex from a to b
along the right half. Finally, let γ be the simplex which represents a loop γ from a
to itself, wrapping once counterclockwise around S1. We claim that in H1(S1) we
have

γ = c− d

which geometrically means that c− d represents wrapping once around the circle
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(which is of course what we expect).

v0 = a

v1 = a

v2 = b

γ

c d

Indeed this can be seen from the picture above, where we have drawn a 2-simplex
whose boundary is exactly γ − c + d. The picture is somewhat metaphorical: in
reality v0 = v1 = a, and the entire 2-simplex is embedded in S1. This is why
singular homology is so-called: the images of the simplex can sometimes look quite
“singular”.

Example 71.2.11 (The first homology group of the figure eight)
Consider X8 (see Example 65.2.9). Both homology and homotopy see the two loops
in X8, call them a and b. The difference is that in π1(X8, x0), these two loops are
not allowed to commute: we don’t have ab ̸= ba, because the group operation in π1
is “concatenate paths”. But in the homology group H1(X) the way we add a and b
is to add them formally, to get the 1-chain a+ b. So

H1(X) ∼= Z⊕2 while π1(X,x0) = ⟨a, b⟩ .

Example 71.2.12 (The homology groups of S2)
Consider S2, the two-dimensional sphere. Since it’s path connected, we have
H0(S2) = Z. We also have H1(S2) = 0, for the same reason that π1(S2) is trivial
as well. On the other hand we claim that

H2(S2) ∼= Z.

The elements of H2(S2) correspond to wrapping S2 in a tetrahedral bag (or two
bags, or three bags, etc.). Thus, the second homology group lets us detect the
spherical cavity of S2.a

aAs remarked in Remark 71.2.1, unlike π2, H2 also detects other kinds of cavities, not just
spherical.

Actually, more generally it turns out that we will have

Hn(Sm) ∼=
{
Z n = m or n = 0
0 otherwise.
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Example 71.2.13 (Contractible spaces)
Given any contractible space X, it turns out that

Hn(X) ∼=
{
Z n = 0
0 otherwise.

The reason is that, like homotopy groups, it turns out that homology groups are
homotopy invariant. (We’ll prove this next section.) So the homology groups of
contractible X are the same as those of a one-point space, which are those above.

Example 71.2.14 (Homology groups of the torus)
While we won’t be able to prove it for a while, it turns out that

Hn(S1 × S1) ∼=


Z n = 0, 2
Z⊕2 n = 1
0 otherwise.

The homology group at 1 corresponds to our knowledge that π1(S1 × S1) ∼= Z2 and
the homology group at 2 detects the “cavity” of the torus.

This is fantastic and all, but how does one go about actually computing any homology
groups? This will be a rather long story, and we’ll have to do a significant amount of
both algebra and geometry before we’re really able to compute any homology groups. In
what follows, it will often be helpful to keep track of which things are purely algebraic
(work for any chain complex), and which parts are actually stating something which is
geometrically true.

§71.3 The homology functor and chain complexes

As I mentioned before, the homology groups are homotopy invariant. This will be a
similar song and dance as the work we did to create a functor π1 : hTop∗ → Grp. Rather
than working slowly and pulling away the curtain to reveal the category theory at the
end, we’ll instead start with the category theory right from the start just to save some
time.

Definition 71.3.1. The category hTop is defined as follows:

• Objects: topological spaces.

• Morphisms: homotopy classes of morphisms X → Y .

In particular, X and Y are isomorphic in hTop if and only if they are homotopic.

You’ll notice this is the same as hTop∗, except without the basepoints.
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Theorem 71.3.2 (Homology is a functor hTop→ Grp)
For any particular n, Hn is a functor hTop→ Grp. In particular,

• Given any map f : X → Y , we get an induced map f∗ : Hn(X)→ Hn(Y ).

• For two homotopic maps f, g : X → Y , f∗ = g∗.

• Two homotopic spaces X and Y have isomorphic homology groups: if f : X →
Y is a homotopy then f∗ : Hn(X)→ Hn(Y ) is an isomorphism.

• (Insert your favorite result about functors here.)

In order to do this, we have to describe how to take a map f : X → Y and obtain a
map Hn(f) : Hn(X)→ Hn(Y ). Then we have to show that this map doesn’t depend on
the choice of homotopy. (This is the analog of the work we did with f♯ before.) It turns
out that this time around, proving this is much more tricky, and we will have to go back
to the chain complex C•(X) that we built at the beginning.

§71.3.i Algebra of chain complexes
Let’s start with the algebra. First, I’ll define the following abstraction of the complex
to any sequence of abelian groups. Actually, though, it works in any category (not just
AbGrp). The strategy is as follows: we’ll define everything that we need completely
abstractly, then show that the geometry concepts we want correspond to this setting.

Definition 71.3.3. A chain complex is a sequence of groups An and maps

. . .
∂−→ An+1

∂−→ An
∂−→ An−1

∂−→ . . .

such that the composition of any two adjacent maps is the zero morphism. We usually
denote this by A•.

The nth homology group Hn(A•) is defined as ker(An → An−1)/ im(An+1 → An).
Cycles and boundaries are defined in the same way as before.

Obviously, this is just an algebraic generalization of the structure we previously looked
at, rid of all its original geometric context.

Definition 71.3.4. A morphism of chain complexes (or chain map) f : A• → B• is
a sequence of maps fn for every n such that the diagram

. . . An+1 An An−1 . . .

. . . Bn+1 Bn Bn−1 . . .

∂A ∂A

fn+1

∂A

fn

∂A

fn−1

∂B ∂B ∂B ∂B

commutes. Under this definition, the set of chain complexes becomes a category, which
we denote Cmplx.

Note that given a morphism of chain complexes f : A• → B•, every cycle in An gets
sent to a cycle in Bn, since the square

An An−1

Bn Bn−1

∂A

fn fn−1

∂B
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commutes. Similarly, every boundary in An gets sent to a boundary in Bn. Thus,

Every map of f : A• → B• gives a map f∗ : Hn(A)→ Hn(B) for every n.

Exercise 71.3.5. Interpret Hn as a functor Cmplx → Grp.

Next, we want to define what it means for two maps f and g to be homotopic. Here’s
the answer:

Definition 71.3.6. Let f, g : A• → B•. Suppose that one can find a map Pn : An → Bn+1
for every n such that

gn − fn = ∂B ◦ Pn + Pn−1 ◦ ∂A
Then P is a chain homotopy from f to g and f and g are chain homotopic.

We can draw a picture to illustrate this (warning: the diagonal dotted arrows do NOT
commute with all the other arrows):

. . . An+1 An An−1 . . .

. . . Bn+1 Bn Bn−1 . . .

∂A ∂A

g−f

∂A

g−f
Pn

∂A

g−f
Pn−1

∂B ∂B ∂B ∂B

The definition is that in each slanted “parallelogram”, the g − f arrow is the sum of the
two compositions along the sides.

Remark 71.3.7 — This equation should look terribly unmotivated right now, aside
from the fact that we are about to show it does the right algebraic thing. Its
derivation comes from the geometric context that we have deferred until the next
section, where “homotopy” will naturally give “chain homotopy”.

Now, the point of this definition is that

Proposition 71.3.8 (Chain homotopic maps induce the same map on homology groups)
Let f, g : A• → B• be chain homotopic maps A• → B•. Then the induced maps
f∗, g∗ : Hn(A•)→ Hn(B•) coincide for each n.

Proof. It’s equivalent to show g − f gives the zero map on homology groups, In other
words, we need to check that every cycle of An becomes a boundary of Bn under g − f .

Question 71.3.9. Verify that this is true.

§71.3.ii Geometry of chain complexes
Now let’s fill in the geometric details of the picture above. First:

Lemma 71.3.10 (Map of space =⇒ map of singular chain complexes)
Each f : X → Y induces a map Cn(X)→ Cn(Y ).
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Proof. Take the composition
∆n σ−→ X

f−→ Y.

In other words, a path in X becomes a path in Y , et cetera. (It’s not hard to see that
the squares involving ∂ commute; check it if you like.)

Now, what we need is to show that if f, g : X → Y are homotopic, then they are chain
homotopic. To produce a chain homotopy, we need to take every n-simplex X to an
(n+ 1)-chain in Y , thus defining the map Pn.

Let’s think about how we might do this. Let’s take the n-simplex σ : ∆n → X and feed
it through f and g; pictured below is a 1-simplex σ (i.e. a path in X) which has been
mapped into the space Y . Homotopy means the existence of a map F : X × [0, 1]→ Y
such that F (−, 0) = f and F (−, 1) = g, parts of which I’ve illustrated below with grey
arrows in the image for Y .

Y
v0

v1

f(σ)

w0

w1

g(σ)
F

v0

v1

w0

w1

∆1 × [0, 1]

X × [0, 1]
Fσ × id

This picture suggests how we might proceed: we want to create a 2-chain on Y given
the 1-chains we’ve drawn. The homotopy F provides us with a “square” structure on Y ,
i.e. the square bounded by v0, v1, w1, w0. We split this up into two triangles; and that’s
our 2-chain.

We can make this formal by taking ∆1 × [0, 1] (which is a square) and splitting it
into two triangles. Then, if we apply σ × id, we’ll get an 2-chain in X × [0, 1], and
then finally applying F will map everything into our space Y . In our example, the final
image is the 2-chain, consisting of two triangles, which in our picture can be written as
[v0, w0, w1]− [v0, v1, w1]; the boundaries are given by the red, green, grey.

More generally, for an n-simplex ϕ = [x0, . . . , xn] we define the so-called prism operator
Pn as follows. Set vi = f(xi) and wi = g(xi) for each i. Then, we let

Pn(ϕ) :=
n∑
i=0

(−1)i(F ◦ (ϕ× id)) [v0, . . . , vi, wi, . . . , wn] .

This is just the generalization of the construction above to dimensions n > 1; we split
∆n × [0, 1] into n+ 1 simplices, map it into X by ϕ× id and then push the whole thing
into Y . The (−1)i makes sure that the “diagonal” faces all cancel off with each other.

We now claim that for every σ,

∂Y (Pn(σ)) = g(σ)− f(σ)− Pn−1(∂Xσ).

In the picture, ∂Y ◦ Pn is the boundary of the entire prism (in the figure, this becomes
the red, green, and grey lines, not including diagonal grey, which is cancelled out). The
g − f is the green minus the red, and the Pn−1 ◦ ∂X represents the grey edges of the
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prism (not including the diagonal line from v1 to w0). Indeed, one can check (just by
writing down several

∑
signs) that the above identity holds.

As a picture:
g(σ)− f(σ)︸ ︷︷ ︸ = ∂Y (Pn(σ))︸ ︷︷ ︸+Pn−1(∂X(σ))︸ ︷︷ ︸

f(σ) g(σ) = +

∂Y P0

σ

P1

∂X

So that gives the chain homotopy from f to g, completing the proof of Theorem 71.3.2.

§71.4 More examples of chain complexes
We now end this chapter by providing some more examples of chain complexes, which
we’ll use in the next chapter to finally compute topological homology groups.

Example 71.4.1 (Reduced homology groups)
Suppose X is a (nonempty) topological space. One can augment the standard
singular complex as follows: do the same thing as before, but augment the end by
adding a Z, as shown:

· · · → C1(X)→ C0(X) ε−→ Z→ 0

Here ε is defined by ε(
∑
nipi) =

∑
ni for points pi ∈ X. (Recall that a 0-chain

is just a formal sum of points!) We denote this augmented singular chain
complex by C̃•(X).
This may seem like a random thing to do, but it can be justified by taking the
definitions we started with and “generalizing backwards”. Recall that an n-simplex
is given by n+ 1 vertices: [v0, . . . , vn]. That suggests that a (−1)-simplex is given
by 0 vertices: []!
We reach the same conclusion if we apply the definition of the standard n-simplex
using n = −1. ∆−1 must be the subset of R0 consisting of all points whose
coordinates are nonnegative and sum to 1. There are no such points, so ∆−1 = {}.
Consequently, given a topological space X, a singular (−1)-simplex in X must be a
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function {} → X. There is one such function: the empty function, whose image is
the empty set.
That is, every topological space X has exactly one (−1)-simplex, which we identify
with {}. Thus, the (−1)st chain group C−1(X) is the free abelian group generated
by one element; ie, C̃−1(X) ∼= Z (where the isomorphism identifies {} with 1).
What about boundaries? To take the boundary of a simplex [v0, . . . , vn], we remove
each vertex one-by-one, and take the alternating sum. Therefore, ∂([v]) = [].
Extending it linearly to complexes yields ∂(

∑
nipi) =

∑
ni · 1 — so ε really is just

the boundary operator, generalized to the case C̃0(X) ∂−→ C̃−1(X).a

aWhat about n ≤ −2? An n-simplex comes from a list of vertices of length (n + 1), so a
(−2)-simplex would require a list of vertices length (−1) — but there aren’t any such lists. So
while there is one (−1)-simplex, there are zero (−2)-simplices (ditto for n < −2). The free
abelian group on zero elements is the trivial group, so C̃−2 ∼= 0. In particular, ∂([]) = 0.

Question 71.4.2. What’s the homology of the above chain at Z? (Hint: you need X
nonempty.)

Definition 71.4.3. The homology groups of the augmented chain complex are called
the reduced homology groups H̃n(X) of the space X.

Obviously H̃n(X) ∼= Hn(X) for n > 0. But when n = 0, the map H0(X)→ Z by ε has
kernel H̃0(X), thus H0(X) ∼= H̃0(X)⊕ Z.

This is usually just an added convenience. For example, it means that if X is contractible,
then all its reduced homology groups vanish, and thus we won’t have to keep fussing
with the special n = 0 case.

Question 71.4.4. Given the claim earlier about Hn(Sm), what should H̃n(Sm) be?

Example 71.4.5 (Relative chain groups)
Suppose X is a topological space, and A ⊆ X a subspace. We can “mod out” by A
by defining

Cn(X,A) := Cn(X)/Cn(A)

for every n. Thus chains contained entirely in A are trivial.
Then, the usual ∂ on Cn(X) generates a new chain complex

. . .
∂−→ Cn+1(X,A) ∂−→ Cn(X,A) ∂−→ Cn−1(X,A) ∂−→ . . . .

This is well-defined since ∂ takes Cn(A) into Cn−1(A).

Definition 71.4.6. The homology groups of the relative chain complex are the relative
homology groups and denoted Hn(X,A).

One naïve guess is that this might equal Hn(X)/Hn(A). This is not true and in general
doesn’t even make sense; if we take X to be R2 and A = S1 a circle inside it, we have
H1(X) = H1(R2) = 0 and H1(S1) = Z.

Another guess is that Hn(X,A) might just be H̃n(X/A). This will turn out to be true
for most reasonable spaces X and A, and we will discuss this when we reach the excision
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theorem in Chapter 73.

Example 71.4.7 (Mayer-Vietoris sequence)
Suppose a space X is covered by two open sets U and V . We can define Cn(U + V )
as follows: it consists of chains such that each simplex is either entirely contained
in U , or entirely contained in V .
Of course, ∂ then defines another chain complex

. . .
∂−→ Cn+1(U + V ) ∂−→ Cn(U + V ) ∂−→ Cn−1(U + V ) ∂−→ . . . .

So once again, we can define homology groups for this complex; we denote them by
Hn(U + V ). Miraculously, it will turn out that Hn(U + V ) ∼= Hn(X).

§71.5 A few harder problems to think about
Problem 71A. For n ≥ 1 show that the composition

Sn−1 ↪→ Dn F−→ Sn−1

cannot be the identity map on Sn−1 for any continuous F .

Problem 71B (Brouwer fixed point theorem). Use the previous problem to prove that
any continuous function f : Dn → Dn has a fixed point.
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In this chapter we introduce the key fact about chain complexes that will allow us to
compute the homology groups of any space: the so-called “long exact sequence”.

For those that haven’t read about abelian categories: a sequence of morphisms of
abelian groups

· · · → Gn+1 → Gn → Gn−1 → . . .

is exact if the image of any arrow is equal to the kernel of the next arrow. In particular,

• The map 0→ A→ B is exact if and only if A→ B is injective.

• the map A→ B → 0 is exact if and only if A→ B is surjective.

(On that note: what do you call a chain complex whose homology groups are all trivial?)
A short exact sequence is one of the form 0→ A ↪→ B ↠ C → 0.

§72.1 Short exact sequences and four examples

Prototypical example for this section: Relative sequence and Mayer-Vietoris sequence.

Let A = AbGrp. Recall that we defined a morphism of chain complexes in A already.

Definition 72.1.1. Suppose we have a map of chain complexes

0→ A•
f−→ B•

g−→ C• → 0

It is said to be short exact if each row of the diagram below is short exact.

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

∂A ∂B ∂C

⊃fn+1

∂A

gn+1

∂B ∂C

⊃ fn

∂A

gn

∂B ∂C

⊃fn−1

∂A

gn−1

∂B ∂C

This basically means C• = B•/A•, for suitable definition of / on chain
complexes.

This agrees with the definition in Section 70.3.

737
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Example 72.1.2 (Mayer-Vietoris short exact sequence and its augmentation)
Let X = U ∪ V be an open cover. For each n consider

Cn(U ∩ V ) Cn(U)⊕ Cn(V ) Cn(U + V )

c (c,−c)

(c, d) c+ d

⊃

One can easily see (by taking a suitable basis) that the kernel of the latter map is
exactly the image of the first map. This generates a short exact sequence

0→ C•(U ∩ V ) ↪→ C•(U)⊕ C•(V ) ↠ C•(U + V )→ 0.

Example 72.1.3 (Augmented Mayer-Vietoris sequence)
We can augment each of the chain complexes in the Mayer-Vietoris sequence as
well, by appending

0 C0(U ∩ V ) C0(U)⊕ C0(V ) C0(U + V ) 0

0 Z Z⊕ Z Z 0

⊃

ε ε⊕ε ε

to the bottom of the diagram. In other words we modify the above into

0→ C̃•(U ∩ V ) ↪→ C̃•(U)⊕ C̃•(V ) ↠ C̃•(U + V )→ 0

where C̃• is the chain complex defined in Definition 71.4.3.

Example 72.1.4 (Relative chain short exact sequence)
Since Cn(X,A) := Cn(X)/Cn(A), we have a short exact sequence

0→ C•(A) ↪→ C•(X) ↠ C•(X,A)→ 0

for every space X and subspace A. This can be augmented: we get

0→ C̃•(A) ↪→ C̃•(X) ↠ C•(X,A)→ 0

by adding the final row

0 C0(A) C0(X) C0(X,A) 0

0 Z Z 0 0.

⊃

ε ε

id
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§72.2 The long exact sequence of homology groups

Consider a short exact sequence 0→ A•
f−→ B•

g−→ C• → 0. Now, we know that we get
induced maps of homology groups, i.e. we have

...
...

...

Hn+1(A•) Hn+1(B•) Hn+1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

...
...

...

f∗ g∗

f∗ g∗

f∗ g∗

But the theorem is that we can string these all together, taking each Hn+1(C•) to Hn(A•).

Theorem 72.2.1 (Short exact =⇒ long exact)

Let 0→ A•
f−→ B•

g−→ C• → 0 be any short exact sequence of chain complexes we
like. Then there is an exact sequence

. . . Hn+2(C•)

Hn+1(A•) Hn+1(B•) Hn+1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

Hn−2(A•) . . .

∂

f∗

g∗

∂

f∗

g∗

∂

f∗

g∗

∂

This is called a long exact sequence of homology groups.

Proof. A very long diagram chase, valid over any abelian category. (Alternatively, it’s
actually possible to use the snake lemma twice.)

Remark 72.2.2 — The map ∂ : Hn(C•)→ Hn−1(A•) can be written explicitly as
follows. Recall that Hn is “cycles modulo boundaries”, and consider the sub-diagram
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Bn Cn

An−1 Bn−1 Cn−1

gn

∂B ∂C

⊃

fn−1 gn−1

We need to take every cycle in Cn to a cycle in An−1. (Then we need to check a
ton of “well-defined” issues, but let’s put that aside for now.)
Suppose c ∈ Cn is a cycle (so ∂C(c) = 0). By surjectivity, there is a b ∈ Bn with
gn(b) = c, which maps down to ∂B(b). Now, the image of ∂B(b) under gn−1 is zero
by commutativity of the square, and so we can pull back under fn−1 to get a unique
element of An−1 (by exactness at Bn−1).
In summary: we go “left, down, left” to go from c to a:

b c

a ∂B(b) 0

gn

∂B ∂C

fn−1 gn−1

Exercise 72.2.3. Check quickly that the recovered a is actually a cycle, meaning ∂A(a) = 0.
(You’ll need another row, and the fact that ∂2

B = 0.)

The final word is that:

Short exact sequences of chain complexes give long exact sequences of
homology groups.

In particular, let us take the four examples given earlier.

Example 72.2.4 (Mayer-Vietoris long exact sequence, provisional version)
The Mayer-Vietoris ones give, for X = U ∪ V an open cover,

· · · → Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(U + V )→ Hn−1(U ∩ V )→ . . . .

and its reduced version

· · · → H̃n(U ∩ V )→ H̃n(U)⊕ H̃n(V )→ H̃n(U + V )→ H̃n−1(U ∩ V )→ . . . .

This version is “provisional” because in the next section we will replace Hn(U + V ) and
H̃n(U + V ) with something better. As for the relative homology sequences, we have:
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Theorem 72.2.5 (Long exact sequence for relative homology)
Let X be a space, and let A ⊆ X be a subspace. There are long exact sequences

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ . . . .

and
· · · → H̃n(A)→ H̃n(X)→ Hn(X,A)→ H̃n−1(A)→ . . . .

The exactness of these sequences will give tons of information about Hn(X) if only
we knew something about what Hn(U + V ) or Hn(X,A) looked like. This is the purpose
of the next chapter.

§72.3 The Mayer-Vietoris sequence

Prototypical example for this section: The computation of Hn(Sm) by splitting Sm into
two hemispheres.

Now that we have done so much algebra, we need to invoke some geometry. There
are two major geometric results in the Napkin. One is the excision theorem, which we
discuss next chapter. The other we present here, which will let us take advantage of the
Mayer-Vietoris sequence. The proofs are somewhat involved and are thus omitted; see
[Ha02] for details.

The first theorem is that the notation Hn(U + V ) that we have kept until now is
redundant, and can be replaced with just Hn(X):

Theorem 72.3.1 (Open cover homology theorem)
Consider the inclusion ι : C•(U + V ) ↪→ C•(X). Then ι induces an isomorphism

Hn(U + V ) ∼= Hn(X).

Remark 72.3.2 — In fact, this is true for any open cover (even uncountable), not
just those with two covers U ∪ V . But we only state the special case with two open
sets, because this is what is needed for Example 72.1.2.

So, Example 72.1.2 together with the above theorem implies, after replacing all the
Hn(U + V )’s with Hn(X)’s:

Theorem 72.3.3 (Mayer-Vietoris long exact sequence)
If X = U ∪ V is an open cover, then we have long exact sequences

· · · → Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(X)→ Hn−1(U ∩ V )→ . . . .

and

· · · → H̃n(U ∩ V )→ H̃n(U)⊕ H̃n(V )→ H̃n(X)→ H̃n−1(U ∩ V )→ . . . .

At long last, we can compute the homology groups of the spheres.



742 Napkin, by Evan Chen (v1.6.20250629)

Theorem 72.3.4 (The homology groups of Sm)
For integers m and n,

H̃n(Sm) ∼=
{
Z n = m

0 otherwise.

The generator H̃n(Sn) is an n-cell which covers Sn exactly once (for example, the
generator for H̃1(S1) is a loop which wraps around S1 once).

Proof. This one’s fun, so I’ll only spoil the case m = 1, and leave the rest to you.
Decompose the circle S1 into two arcs U and V , as shown:

S1

VU

Each of U and V is contractible, so all their reduced homology groups vanish. Moreover,
U ∩ V is homotopy equivalent to two points, hence

H̃n(U ∩ V ) ∼=
{
Z n = 0
0 otherwise.

Now consider again the segment of the short exact sequence

· · · → H̃n(U)⊕ H̃n(V )︸ ︷︷ ︸
=0

→ H̃n(S1) ∂−→ H̃n−1(U ∩ V )→ H̃n−1(U)⊕ H̃n−1(V )︸ ︷︷ ︸
=0

→ . . . .

From this we derive that H̃n(S1) is Z for n = 1 and 0 elsewhere.
It remains to analyze the generators of H̃1(S1). Note that the isomorphism was given

by the connecting homomorphism ∂, which is given by a “left, down, left” procedure
(Remark 72.2.2) in the diagram

C1(U)⊕ C1(V ) C1(U + V )

C0(U ∩ V ) C0(U)⊕ C0(V )

∂⊕∂

Mark the points a and b as shown in the two disjoint paths of U ∩ V .

S1
a

b

c d

Then a − b is a cycle which represents a generator of H0(U ∩ V ). We can find the
pre-image of ∂ as follows: letting c and d be the chains joining a and b, with c contained
in U , and d contained in V , the diagram completes as
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(c, d) c− d

a− b (a− b, a− b)

In other words ∂(c− d) = a− b, so c− d is a generator for H̃1(S1).
Thus we wish to show that c − d is (in H1(S1)) equivalent to the loop γ wrapping

around S1 once, counterclockwise. This was illustrated in Example 71.2.10.

Thus, the key idea in Mayer-Vietoris is that

Mayer-Vietoris lets us compute Hn(X) by splitting X into two open sets.

Here are some more examples.

Proposition 72.3.5 (The homology groups of the figure eight)
Let X = S1 ∨ S1 be the figure eight. Then

H̃n(X) ∼=
{
Z⊕2 n = 1
0 otherwise.

The generators for H̃1(X) are the two loops of the figure eight.

Proof. Again, for simplicity we work with reduced homology groups. Let U be the “left”
half of the figure eight plus a little bit of the right, as shown below.

U
S1 ∨ S1

The set V is defined symmetrically. In this case U ∩ V is contractible, while each of U
and V is homotopic to S1.

Thus, we can read a segment of the long exact sequence as

· · · → H̃n(U ∩ V )︸ ︷︷ ︸
=0

→ H̃n(U)⊕ H̃n(V )→ H̃n(X)→ H̃n−1(U ∩ V )︸ ︷︷ ︸
=0

→ . . . .

So we get that H̃n(X) ∼= H̃n(S1) ⊕ H̃n(S1), The claim about the generators follows
from the fact that, according to the isomorphism above, the generators of H̃n(X) are
the generators of H̃n(U) and H̃n(V ), which we described geometrically in the last
theorem.

Up until now, we have been very fortunate that we have always been able to make
certain parts of the space contractible. This is not always the case, and in the next
example we will have to actually understand the maps in question to complete the
solution.
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Proposition 72.3.6 (Homology groups of the torus)
Let X = S1 × S1 be the torus. Then

H̃n(X) =


Z⊕2 n = 1
Z n = 2
0 otherwise.

Proof. To make our diagram look good on 2D paper, we’ll represent the torus as a square
with its edges identified, though three-dimensionally the picture makes sense as well.
Consider U (shaded light orange) and V (shaded green) as shown. (Note that V is
connected due to the identification of the left and right (blue) edges, even if it doesn’t
look connected in the picture).

U

V V

In the three dimensional picture, U and V are two cylinders which together give the torus.
This time, U and V are each homotopic to S1, and the intersection U ∩ V is the disjoint
union of two circles: thus H̃1(U ∩V ) ∼= Z⊕Z, and H0(U ∩V ) ∼= Z⊕2 =⇒ H̃0(U ∩V ) ∼= Z.

For n ≥ 3, we have

· · · → H̃n(U ∩ V )︸ ︷︷ ︸
=0

→ H̃n(U)⊕ H̃n(V )→ H̃n(X)→ H̃n−1(U ∩ V )︸ ︷︷ ︸
=0

→ . . . .

and so Hn(X) ∼= 0 for n ≥ 3. Also, we have H0(X) ∼= Z since X is path-connected. So it
remains to compute H2(X) and H1(X).

Let’s find H2(X) first. We first consider the segment

· · · → H̃2(U)⊕ H̃2(V )︸ ︷︷ ︸
=0

→ H̃2(X) ∂
↪−→ H̃1(U ∩ V )︸ ︷︷ ︸

∼=Z⊕Z

ϕ−→ H̃1(U)⊕ H̃1(V )︸ ︷︷ ︸
∼=Z⊕Z

→ . . .

Unfortunately, this time it’s not immediately clear what H̃2(X) because we only have
one zero at the left. In order to do this, we have to actually figure out what the maps ∂
and ϕ look like. Note that, as we’ll see, ϕ isn’t an isomorphism even though the groups
are isomorphic.

The presence of the zero term has allowed us to make the connecting map ∂ injective.
First, H̃2(X) is isomorphic to the image of ∂, which is exactly the kernel of the arrow ϕ
inserted. To figure out what kerϕ is, we have to think back to how the map C•(U ∩V )→
C•(U)⊕ C•(V ) was constructed: it was c 7→ (c,−c). So the induced maps of homology
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groups is actually what you would guess: a 1-cycle z in H̃1(U ∩ V ) gets sent (z,−z) in
H̃1(U)⊕ H̃1(V ).

In particular, consider the two generators z1 and z2 of H̃1(U ∩V ) = Z⊕Z, i.e. one cycle
in each connected component of U ∩ V . (To clarify: U ∩ V consists of two “wristbands”;
zi wraps around the ith one once.) Moreover, let αU denote a generator of H̃1(U) ∼= Z,
and αV a generator of H̃1(V ) ∼= Z.

The elements are depicted below:

z1 αU z2 αV

Note that z1, z2, αU , αV are elements of the homology group, so you can move the
paths around a bit — for instance, as elements of H̃1(U), the chain drawn as z1 and αU
represents the same element.

Then we have that

z1 7→ (αU ,−αV ) and z2 7→ (αU ,−αV ).

(The signs may differ on which direction you pick for the generators; note that Z has two
possible generators.) We can even format this as a matrix:

ϕ =
[

1 1
−1 −1

]
.

And we observe ϕ(z1 − z2) = 0, meaning this map has nontrivial kernel! That is,

kerϕ = ⟨z1 − z2⟩ ∼= Z.

Thus, H̃2(X) ∼= im ∂ ∼= kerϕ ∼= Z. We’ll also note that imϕ is the set generated by
(αU ,−αV ); (in particular imϕ ∼= Z and the quotient by imϕ is Z too).

The situation is similar with H̃1(X): this time, we have

. . .
ϕ−→ H̃1(U)⊕ H̃1(V )︸ ︷︷ ︸

∼=Z⊕Z

ψ→ H̃1(X)
∂
↠ H̃0(U ∩ V )︸ ︷︷ ︸

∼=Z

→ H̃0(U)⊕ H̃0(V )︸ ︷︷ ︸
=0

→ . . .

and so we know that the connecting map ∂ is surjective, hence im ∂ ∼= Z. Now, we also
have

ker ∂ ∼= imψ ∼=
(
H̃1(U)⊕ H̃1(V )

)
/ kerψ

∼=
(
H̃1(U)⊕ H̃1(V )

)
/ imϕ ∼= Z
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by what we knew about imϕ already. To finish off we need some algebraic tricks. The
first is Proposition 70.5.1, which gives us a short exact sequence

0→ ker ∂︸ ︷︷ ︸
∼=imψ∼=Z

↪→ H̃1(X) ↠ im ∂︸︷︷︸
∼=Z

→ 0.

You should satisfy yourself that H̃1(X) ∼= Z⊕ Z is the only possibility, but we’ll prove
this rigorously with Lemma 72.3.8.

Remark 72.3.7 — Earlier, we remarked (without proof) that π2(X) is trivial —
that is, homotopy does not found any “2-dimensional holes” in the torus. Why is it
that H2(X) ∼= Z?
You may want to manually compute the nontrivial element in H2(X) using the long
exact sequence using the following method. Look at the long exact sequence:

· · · H2(U)⊕H2(V )︸ ︷︷ ︸
=0

H2(X)︸ ︷︷ ︸
∼=Z

H1(U ∩ V )︸ ︷︷ ︸
∼=Z⊕Z

H1(U)⊕H1(V )︸ ︷︷ ︸
∼=Z⊕Z

· · ·

∂

ϕ

We wish to find some nontrivial element in H2(X) — in order to do that, we can
take an element in kerϕ ⊆ H1(U ∩ V ) and take its preimage under ∂.
For that, z1 − z2 would suffice. In order to take its preimage under ∂, we need to
recall how ∂ was constructed — it was a “left, down, left” procedure in the diagram:

C2(U)⊕ C2(V ) C2(X)

C1(U ∩ V ) C1(U)⊕ C1(V )

⊃

So, we find a (closed) element in C1(U ∩ V ) whose image under the quotient map
is z1 − z2, then move it “right, up, right” to an element in C2(X).
If you did everything correctly, the result should be the whole torus!

Which emphasizes the point:

A “hole” detected by homology need not look like the interior of Sn.

Note that the previous example is of a different attitude than the previous ones, because
we had to figure out what the maps in the long exact sequence actually were to even
compute the groups. In principle, you could also figure out all the isomorphisms in the
previous proof and explicitly compute the generators of H̃1(S1×S1), but to avoid getting
bogged down in detail I won’t do so here.

Finally, to fully justify the last step, we present:



72 The long exact sequence 747

Lemma 72.3.8 (Splitting lemma)

For a short exact sequence 0→ A
f−→ B

g−→ C → 0 of abelian groups, the following
are equivalent:

(a) There exists p : B → A such that A f−→ B
p−→ A is the identity.

(b) There exists s : C → B such that C s−→ B
g−→ C is the identity.

(c) There is an isomorphism from B to A⊕ C such that the diagram

B

0 A C 0

A⊕ C

g

∼=

⊃f

⊃

commutes. (The maps attached to A⊕ C are the obvious ones.)

In particular, (b) holds anytime C is free.

In these cases we say the short exact sequence splits. The point is that

An exact sequence which splits let us obtain B given A and C.

In particular, for C = Z or any free abelian group, condition (b) is necessarily true.
So, once we obtained the short exact sequence 0→ Z→ H̃1(X)→ Z→ 0, we were done.

Remark 72.3.9 — Unfortunately, not all exact sequences split: An example of a
short exact sequence which doesn’t split is

0→ Z/2Z ×2
↪−→ Z/4Z ↠ Z/2Z→ 0

since it is not true that Z/4Z ∼= Z/2Z⊕ Z/2Z.

Remark 72.3.10 — The splitting lemma is true in any abelian category. The
“direct sum” is the colimit of the two objects A and C.

§72.4 A few harder problems to think about

Problem 72A. Complete the proof of Theorem 72.3.4, i.e. compute Hn(Sm) for all m
and n. (Try doing m = 2 first, and you’ll see how to proceed.)

Problem 72B. Compute the reduced homology groups of Rn with p ≥ 1 points removed.

Problem 72C⋆. Let n ≥ 1 and k ≥ 0 be integers. Compute Hk(Rn,Rn \ {0}).

Problem 72D (Nine lemma). Consider a commutative diagram
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0 0 0

0 A1 B1 C1 0

0 A2 B2 C2 0

0 A3 B3 C3 0

0 0 0

and assume that all rows are exact, and two of the columns are exact. Show that the
third column is exact as well.

Problem 72E⋆ (Klein bottle). Show that the reduced homology groups of the Klein
bottle K are given by

H̃n(K) =
{
Z⊕ Z/2Z n = 1
0 otherwise.

Problem 72F⋆ (Triple long exact sequence). Let A ⊆ B ⊆ X be subspaces. Show that
there is a long exact sequence

· · · → Hn(B,A)→ Hn(X,A)→ Hn(X,B)→ Hn−1(B,A)→ . . . .



73 Excision and relative homology

We have already seen how to use the Mayer-Vietoris sequence: we started with a
sequence

· · · → Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(U + V )→ Hn−1(U ∩ V )→ . . .

and its reduced version, then appealed to the geometric fact that Hn(U + V ) ∼= Hn(X).
This allowed us to algebraically make computations on Hn(X).

In this chapter, we turn our attention to the long exact sequence associated to the
chain complex

0→ Cn(A) ↪→ Cn(X) ↠ Cn(X,A)→ 0.

The setup will look a lot like the previous two chapters, except in addition to Hn : hTop→
Grp we will have a functor Hn : hPairTop→ Grp which takes a pair (X,A) to Hn(X,A).
Then, we state (again without proof) the key geometric result, and use this to make
deductions.

§73.1 Motivation

The main motivation is that:

Relative homology is the algebraic analog of quotient space.

So, for instance, when you see a map of pairs f : (X,A)→ (Y,B), you should think of
X/A→ Y/B.

Which explains the “reasonable guess” that for spaces A ⊆ X, we have Hn(X,A) ∼=
H̃n(X/A).

By Theorem 73.4.3, the guess above is indeed true for most spaces. For example:

Question 73.1.1. Let X = [0, 1] and A = {0, 1}. Show that H1(X/A) and H1(X,A) are
isomorphic to Z. (In this example, so is π1(X/A).)

But not all. Similar to Example 64.2.6, if A is not closed, weird things can happen:

Example 73.1.2 (Hn(X,A) where A is open in X)
Let X = D2 be the closed disk.
If A is reasonably nice, for instance A = S1 the boundary of X, we have H2(X,A) ∼=
H2(X/A) ∼= Z.
However, if A = X \{0} where 0 is the center of X, then H2(X,A) is still isomorphic
to Z; however H2(X/A) ∼= 0. (The latter isomorphism is harder to see, mainly
because X/A is a weird space — it’s not Hausdorff.)

Even when A is closed in X, problems can still happen.

749
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Example 73.1.3 (The shrinking wedge of circles)
Let X be the interval [0, 1], and A ⊆ X be A = { 1

n | n ∈ Z+} ∪ {0}. In this case,
the quotient X/A would be isomorphic to the shrinking wedge of circles, as depicted
below.

X
q

X/A

Note that in X/A, any open neighborhood of the red dot A/A must contains all
but finitely many circles.
We claim that:

H1(X,A) ̸∼= H̃1(X/A).

What could go wrong? Generally speaking, when you work algebraically then
everything are finite, while in topology you have to consider things related to
infinity.
Consider the following 1-simplex in C(X/A), depicted in cyan.

q

X/A

Every element of H(X,A) has a representative in C(X) as a 1-cycles, which
comprises of finitely many 1-simplices, each 1-simplex is equivalent to a segment
[a, b] — modulo a difference of a 1-boundary. Thus, intuitively, every element of
H(X,A) can only cover “finitely many circles” (or all but finitely many).
We haven’t had enough tools to formalize all these yet. Formally speaking, the quo-
tient maps q : X → X/A and q : A→ A/A induces q∗ : H1(X,A)→ H1(X/A,A/A),
and q∗ is not injective.

Regardless, for nice spaces A ⊆ X such that Hn(X,A) ∼= H̃n(X/A), we would be able
to compute Hn(X) based on Hn(A) and H̃n(X/A) — note that A and X/A is, in some
sense, smaller and simpler than X.

§73.2 The long exact sequences
Recall Theorem 72.2.5, which says that the sequences

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ . . . .

and
· · · → H̃n(A)→ H̃n(X)→ Hn(X,A)→ H̃n−1(A)→ . . .

are long exact. By Problem 72F⋆ we even have a long exact sequence

· · · → Hn(B,A)→ Hn(X,A)→ Hn(X,B)→ Hn−1(B,A)→ . . . .

for A ⊆ B ⊆ X.

This is the analog of the fact that X/B is homeomorphic to X/A
B/A — we

“cancel the common factor in the fraction”.
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An application of the first long exact sequence above gives:

Lemma 73.2.1 (Homology relative to contractible spaces)
Let X be a topological space, and let A ⊆ X be contractible. For all n,

Hn(X,A) ∼= H̃n(X).

Proof. Since A is contractible, we have H̃n(A) = 0 for every n. For each n there’s a
segment of the long exact sequence given by

· · · → H̃n(A)︸ ︷︷ ︸
=0

→ H̃n(X)→ Hn(X,A)→ H̃n−1(A)︸ ︷︷ ︸
=0

→ . . . .

So since 0→ H̃n(X)→ Hn(X,A)→ 0 is exact, this means Hn(X,A) ∼= H̃n(X).

In particular, the theorem applies if A is a single point. The case A = ∅ is also worth
noting. We compile these results into a lemma:

Lemma 73.2.2 (Relative homology generalizes absolute homology)
Let X be any space, and ∗ ∈ X a point. Then for all n,

Hn(X, {∗}) ∼= H̃n(X) and Hn(X,∅) = Hn(X).

§73.3 The category of pairs
Since we now have an Hn(X,A) instead of just Hn(X), a natural next step is to create a
suitable category of pairs and give ourselves the same functorial setup as before.

Definition 73.3.1. Let ∅ ̸= A ⊆ X and ∅ ̸= B ⊆ Y be subspaces, and consider a map
f : X → Y . If f img(A) ⊆ B we write

f : (X,A)→ (Y,B).

We say f is a map of pairs, between the pairs (X,A) and (Y,B).

Definition 73.3.2. We say that f, g : (X,A)→ (Y,B) are pair-homotopic if they are
“homotopic through maps of pairs”.

More formally, a pair-homotopy f, g : (X,A)→ (Y,B) is a map F : [0, 1]×X → Y ,
which we’ll write as Ft(X), such that F is a homotopy of the maps f, g : X → Y and
each Ft is itself a map of pairs.

A typical f, g : (X,A) → (Y,B) that are pair-homotopic might look like this. Note
that for all t ∈ [0, 1], we must have F img

t (A) ⊆ B.

(X,A)

q

(Y,B)

f(X)

g(X)
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Thus, we naturally arrive at two categories:

• PairTop, the category of pairs of topological spaces, and

• hPairTop, the same category except with maps only equivalent up to homotopy.

Definition 73.3.3. As before, we say pairs (X,A) and (Y,B) are pair-homotopy
equivalent if they are isomorphic in hPairTop. An isomorphism of hPairTop is a pair-
homotopy equivalence.

Remark 73.3.4 — Pair-homotopy equivalence of pairs is the natural generalization
of homotopy equivalence of spaces, as defined in Definition 65.5.3. In fact, if
A = B = ∅ then we have X is homotopy equivalent to Y if and only if (X,∅) is
pair-homotopy equivalent to (Y,∅).

We can do the same song and dance as before with the prism operator to obtain:

Lemma 73.3.5 (Induced maps of relative homology)
We have a functor

Hn : hPairTop→ Grp.

That is, if f : (X,A)→ (Y,B) then we obtain an induced map

f∗ : Hn(X,A)→ Hn(Y,B).

and if two such f and g are pair-homotopic then f∗ = g∗.
Now, we want an analog of contractible spaces for our pairs: i.e. pairs of spaces (X,A)

such that Hn(X,A) = 0. The correct definition is:

Definition 73.3.6. Let A ⊆ X. We say that A is a deformation retract1 of X if
there is a map of pairs r : (X,A)→ (A,A) which is a pair-homotopy equivalence.

Example 73.3.7 (Examples of deformation retracts)
(a) If a single point p is a deformation retract of a space X, then X is contractible,

since the retraction r : X → {∗} (when viewed as a map X → X) is homotopic
to the identity map idX : X → X.

(b) The punctured disk D2 \ {0} deformation retracts onto its boundary S1.

(c) More generally, Dn \ {0} deformation retracts onto its boundary Sn−1.

(d) Similarly, Rn \ {0} deformation retracts onto a sphere Sn−1.

Of course in this situation we have that

Hn(X,A) ∼= Hn(A,A) = 0.

Exercise 73.3.8. Show that if A ⊆ V ⊆ X, and A is a deformation retract of V , then
Hn(X,A) ∼= Hn(X,V ) for all n. (Use Problem 72F⋆. Solution in next section.)

1This might be called a deformation retraction in the weak sense in other resources, such as [Ha02]
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§73.4 Excision

Now for the key geometric result, which is the analog of Theorem 72.3.1 for our relative
homology groups.

Theorem 73.4.1 (Excision)
Let Z ⊆ A ⊆ X be subspaces such that the closure of Z is contained in the interior
of A. Then the inclusion ι(X \ Z,A \ Z) ↪→ (X,A) (viewed as a map of pairs)
induces an isomorphism of relative homology groups

Hn(X \ Z,A \ Z) ∼= Hn(X,A).

This means we can excise (delete) a subset Z of A in computing the relative homology
groups Hn(X,A). This should intuitively make sense: since we are “modding out by
points in A”, the internals of the set A should not matter so much.

Example 73.4.2
Excision may seem trivial (for a “relative cycle modulo relative boundary” in
Hn(X,A), just tweak the part that lies inside A until it doesn’t touch Z), until you
realize that it isn’t always possible — you may accidentally cut a cycle apart! For
example:

X

A

Z

The main application of excision is to decide when Hn(X,A) ∼= H̃n(X/A). Answer:

Theorem 73.4.3 (Relative homology =⇒ quotient space)
Let X be a space and A be a closed subspace such that A is a deformation retract
of some open set V ⊆ X. Then the quotient map q : X → X/A induces an
isomorphism

Hn(X,A) ∼= Hn(X/A,A/A) ∼= H̃n(X/A).

The key idea of the proof is: While it is not necessarily true that H(X,A) ∼=
H(X/A,A/A) (indeed, we have seen two counterexamples earlier), if we cut out A,
then we trivially have H(X −A,A−A) ∼= H(X/A−A/A,A/A−A/A). Unfortunately,
this group is not isomorphic to H(X,A), so we fix that using the set V — that is,
H(X −A, V −A) ∼= H(X/A−A/A, V/A−A/A). The rest of the work is to use excision
theorem and deformation retract to show the left hand side is isomorphic to H(X,A),
and the right hand side is isomorphic to H(X/A).
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Proof. By hypothesis, we can consider the following maps of pairs:

r : (V,A)→ (A,A)
q : (X,A)→ (X/A,A/A)
q̂ : (X −A, V −A)→ (X/A−A/A, V/A−A/A).

Moreover, r is a pair-homotopy equivalence. Considering the long exact sequence of a
triple (which was Problem 72F⋆) we have a diagram

Hn(V,A) Hn(X,A) Hn(X,V ) Hn−1(V,A)

Hn(A,A)︸ ︷︷ ︸
=0

Hn−1(A,A)︸ ︷︷ ︸
=0

∼= r

f

∼= r

where the isomorphisms arise since r is a pair-homotopy equivalence. So f is an isomor-
phism. Similarly the map

g : Hn(X/A,A/A)→ Hn(X/A, V/A)

is an isomorphism.
Now, consider the commutative diagram

Hn(X,A) Hn(X,V ) Hn(X −A, V −A)

Hn(X/A,A/A) Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A)

f

q∗

Excise

q̂∗∼=

g
Excise

and observe that the rightmost arrow q̂∗ is an isomorphism, because outside of A the
map q̂ is the identity. We know f and g are isomorphisms, as are the two arrows marked
with “Excise” (by excision). From this we conclude that q∗ is an isomorphism. Of course
we already know that homology relative to a point is just the relative homology groups
(this is the important case of Lemma 73.2.1).

§73.5 Some applications
One nice application of excision is to compute H̃n(X ∨ Y ).

Theorem 73.5.1 (Homology of wedge sums)
Let X and Y be spaces with basepoints x0 ∈ X and y0 ∈ Y , and assuming each
point is a deformation retract of some open neighborhood. Then for every n we
have

H̃n(X ∨ Y ) = H̃n(X)⊕ H̃n(Y ).

Proof. Apply Theorem 73.4.3 with the subset {x0, y0} of X ⨿ Y ,

H̃n(X ∨ Y ) ∼= H̃n((X ⨿ Y )/{x0, y0}) ∼= Hn(X ⨿ Y, {x0, y0})
∼= Hn(X, {x0})⊕Hn(Y, {y0})
∼= H̃n(X)⊕ H̃n(Y ).
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Another application is to give a second method of computing Hn(Sm). To do this, we
will prove that

H̃n(Sm) ∼= H̃n−1(Sm−1)

for any n,m > 1. However,

• H̃0(Sn) is Z for n = 0 and 0 otherwise.

• H̃n(S0) is Z for m = 0 and 0 otherwise.

So by induction on min{m,n} we directly obtain that

H̃n(Sm) ∼=
{
Z m = n

0 otherwise

which is what we wanted.
To prove the claim, let’s consider the exact sequence formed by the pair X = D2 and

A = S1.

Example 73.5.2 (The long exact sequence for (X,A) = (D2, S1))
Consider D2 (which is contractible) with boundary S1. Clearly S1 is a deformation
retraction of D2 \ {0}, and if we fuse all points on the boundary together we get
D2/S1 ∼= S2. So we have a long exact sequence

H̃2(S1) H̃2(D2)︸ ︷︷ ︸
=0

H̃2(S2)

H̃1(S1) H̃1(D2)︸ ︷︷ ︸
=0

H̃1(S2)

H̃0(S1) H̃0(D2)︸ ︷︷ ︸
=0

H̃0(S2)︸ ︷︷ ︸
=0

From this diagram we read that

. . . , H̃3(S2) = H̃2(S1), H̃2(S2) = H̃1(S1), H̃1(S2) = H̃0(S1).

More generally, the exact sequence for the pair (X,A) = (Dm, Sm−1) shows that
H̃n(Sm) ∼= H̃n−1(Sm−1), which is the desired conclusion.

§73.6 Invariance of dimension

Here is one last example of an application of excision.

Definition 73.6.1. Let X be a space and p ∈ X a point. The kth local homology
group of p at X is defined as

Hk(X,X \ {p}).
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Note that for any open neighborhood U of p, we have by excision that

Hk(X,X \ {p}) ∼= Hk(U,U \ {p}).

Thus this local homology group only depends on the space near p.

Theorem 73.6.2 (Invariance of dimension, Brouwer 1910)
Let U ⊆ Rn and V ⊆ Rm be nonempty open sets. If U and V are homeomorphic,
then m = n.

Proof. Consider a point x ∈ U and its local homology groups. By excision,

Hk(Rn,Rn \ {x}) ∼= Hk(U,U \ {x}).

But since Rn \ {x} is homotopic to Sn−1, the long exact sequence of Theorem 72.2.5 tells
us that

Hk(Rn,Rn \ {x}) ∼=
{
Z k = n

0 otherwise.

Analogously, given y ∈ V we have

Hk(Rm,Rm \ {y}) ∼= Hk(V, V \ {y}).

If U ∼= V , we thus deduce that

Hk(Rn,Rn \ {x}) ∼= Hk(Rm,Rm \ {y})

for all k. This of course can only happen if m = n.

§73.7 A few harder problems to think about
Problem 73A. Let X = S1 × S1 and Y = S1 ∨ S1 ∨ S2. Show that

Hn(X) ∼= Hn(Y )

for every integer n.

Problem 73B (Hatcher §2.1 exercise 18). Consider Q ⊂ R. Compute H̃1(R,Q).

Problem 73C⋆. What are the local homology groups of a topological n-manifold?

Problem 73D. Let
X = {(x, y) | x ≥ 0} ⊆ R2

denote the half-plane. What are the local homology groups of points in X?

Problem 73E (Brouwer-Jordan separation theorem, generalizing Jordan curve theorem).
Let X ⊆ Rn be a subset which is homeomorphic to Sn−1. Prove that Rn \X has exactly
two path-connected components.
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We now introduce cellular homology, which essentially lets us compute the homology
groups of any CW complex we like.

§74.1 Degrees
Prototypical example for this section: z 7→ zd has degree d.

For any n > 0 and map f : Sn → Sn, consider

f∗ : Hn(Sn)︸ ︷︷ ︸
∼=Z

→ Hn(Sn)︸ ︷︷ ︸
∼=Z

which must be multiplication by some constant d. This d is called the degree of f ,
denoted deg f .

Question 74.1.1. Show that deg(f ◦ g) = deg(f) deg(g).

As we mentioned in Example 71.2.12, roughly speaking:

deg f counts how many times im f wraps around Sn.

Or, it counts how many “Sn bags” that im f consists of.

Example 74.1.2 (Degree)
(a) For n = 1, the map z 7→ zk (viewing S1 ⊆ C) has degree k.

(b) A reflection map (x0, x1, . . . , xn) 7→ (−x0, x1, . . . , xn) has degree −1; we won’t
prove this, but geometrically this should be clear.

(c) The antipodal map x 7→ −x has degree (−1)n+1 since it’s the composition of
n+ 1 reflections as above. We denote this map by −id.

Obviously, if f and g are homotopic, then deg f = deg g. In fact, a theorem of Hopf
says that this is a classifying invariant: anytime deg f = deg g, we have that f and g are
homotopic.

One nice application of this:

Theorem 74.1.3 (Hairy ball theorem)
If n > 0 is even, then Sn doesn’t have a continuous field of nonzero tangent vectors.

Proof. If the vectors are nonzero then WLOG they have norm 1; that is for every
x we have an orthogonal unit vector v(x). Then we can construct a homotopy map
F : Sn × [0, 1]→ Sn by

(x, t) 7→ (cosπt)x+ (sin πt)v(x).
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which gives a homotopy from id to −id. So deg(id) = deg(−id), which means 1 = (−1)n+1

so n must be odd.

Of course, the one can construct such a vector field whenever n is odd. For example,
when n = 1 such a vector field is drawn below.

S1

§74.2 Cellular chain complex
Before starting, we state:

Lemma 74.2.1 (CW homology groups)
Let X be a CW complex. Then

Hk(Xn, Xn−1) ∼=
{
Z⊕#n-cells of X k = n

0 otherwise.

and

Hk(Xn) ∼=
{
Hk(X) k ≤ n− 1
0 k ≥ n+ 1.

Proof. The first part is immediate by noting that (Xn, Xn−1) satisfies the hypothesis of
Theorem 73.4.3, so Hk(Xn, Xn−1) ∼= H̃k(Xn/Xn−1), and Xn/Xn−1 is a wedge sum of
several n-spheres.

For an example, for n = 2 (the “spheres” are drawn as a balloon-shaped blob here):

X/A

A/A

−→X

A

For the second part, fix k and note that, as long as n ≤ k − 1 or n ≥ k + 2,

Hk+1(Xn, Xn−1)︸ ︷︷ ︸
=0

→ Hk(Xn−1)→ Hk(Xn)→ Hk(Xn, Xn−1)︸ ︷︷ ︸
=0

.

So we have isomorphisms

Hk(Xk−1) ∼= Hk(Xk−2) ∼= . . . ∼= Hk(X0) = 0
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and
Hk(Xk+1) ∼= Hk(Xk+2) ∼= . . . ∼= Hk(X).

So, we know that the groups Hk(Xk, Xk−1) are super nice: they are free abelian with
basis given by the cells of X. So, we give them a name:

Definition 74.2.2. For a CW complex X, we define

Cellsk(X) = Hk(Xk, Xk−1)

where Cells0(X) = H0(X0,∅) = H0(X0) by convention. So Cellsk(X) is an abelian
group with basis given by the k-cells of X.

Now, using Cellsk = Hk(Xk, Xk−1) let’s use our long exact sequence and try to string
together maps between these. Consider the following diagram.

H3(X2)︸ ︷︷ ︸
=0

Cells4(X) H3(X3) H3(X4)︸ ︷︷ ︸
∼=H3(X)

H3(X4, X3)︸ ︷︷ ︸
=0

Cells3(X) H1(X0)︸ ︷︷ ︸
=0

H2(X1)︸ ︷︷ ︸
=0

H2(X2) Cells2(X) H1(X1) H1(X2)︸ ︷︷ ︸
∼=H1(X)

H1(X2, X1)︸ ︷︷ ︸
=0

H2(X3)︸ ︷︷ ︸
∼=H2(X)

Cells1(X)

H2(X3, X2)︸ ︷︷ ︸
=0

H0(∅)︸ ︷︷ ︸
=0

H0(X0) Cells0(X) . . .

H0(X1)︸ ︷︷ ︸
∼=H0(X)

H0(X1, X0)︸ ︷︷ ︸
=0

0

∂4

d4

⊃

0

∂3
d3

0

0 ⊃ ∂2

d2

⊃

0

0
∂1

d1

0 ⊃ ∂0

0

The idea is that we have taken all the exact sequences generated by adjacent skeletons,
and strung them together at the groups Hk(Xk), with half the exact sequences being
laid out vertically and the other half horizontally.
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In that case, composition generates a sequence of blue maps between the Hk(Xk, Xk−1)
as shown.

Question 74.2.3. Show that the composition of two adjacent blue arrows is zero.

So from the diagram above, we can read off a sequence of arrows

. . .
d5−→ Cells4(X) d4−→ Cells3(X) d3−→ Cells2(X) d2−→ Cells1(X) d1−→ Cells0(X) d0−→ 0.

This is a chain complex, called the cellular chain complex; as mentioned before all the
homology groups are free, but these ones are especially nice because for most reasonable
CW complexes, they are also finitely generated (unlike the massive C•(X) that we had
earlier). In other words, the Hk(Xk, Xk−1) are especially nice “concrete” free groups
that one can actually work with.

The other reason we care is that in fact:

Theorem 74.2.4 (Cellular chain complex gives Hn(X))
The kth homology group of the cellular chain complex is isomorphic to Hk(X).

Proof. Follows from the diagram; Problem 74D.

§74.3 Digression: why are the homology groups equal?

There is another intuition that explains it — roughly speaking,

Hk(Cells•(X)) = aligned cycle
aligned boundary = aligned cycle× fuzz

aligned boundary× fuzz = cycle
boundary = Hk(X).

Let me explain. Consider a CW-complex X that looks like the following, where X1 is
drawn in red. Each blue region corresponds to a 2-cell.

X

X1

Then, look at the following figure.
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C1(X
1) Z1(X

1,X0) B1(X
1,X0) Cells1(X)

ker(Cells1(X) → Cells0(X)) im(Cells2(X) → Cells1(X)) H1(Cells•(X))

It looks like a lot, so let me explain.

• The first picture depicts a typical element of C1(X1) — that is, a 1-chain that is
contained in X1, being the formal sum of two maps from ∆1 to X1, whose image
is drawn as black arrows.
Note that only the image of the maps are depicted, information such as which point
of the simplex ∆1 get mapped to which point inside X1 is not shown — although
different continuous maps give rise to different elements of C1(X1).

• The second picture depicts a typical element of Z1(X1, X0) — that is, the relative
cycles.
Although we never formally defined what is a relative cycle or the groups Z1(X1, X0),
you can guess the definition from the definition of Z1(X1) — it is the subgroup of
C1(X1, X0) = C1(X1)/C1(X0) whose boundary vanish.
The fact that the loop on the bottom is flattened is just to make it look nicer —
the whole thing is contained inside the red skeleton i.e. X1.
Of course, being an element of the quotient, only a representative element is depicted

— the “modded out” parts are the chains that are entirely contained inside X0 i.e.
some vertices.

• The third picture depicts a typical element of B1(X1, X0) i.e. the relative bound-
aries.
This belongs to im

(
C2(X1, X0) ∂−→ C1(X1, X0)

)
— in words, there is some 2-chain

whose boundary equals the depicted element.

• The fourth picture depicts a typical element of Cells1(X) — that is, “relative cycles
mod relative boundaries”.
Hopefully it is intuitively obvious how this group is isomorphic to the abelian group
generated by each 1-cell of X.
We can in fact think of each of these elements as an “aligned element” of C1(X1)
where all endpoints lie inside a vertex (that is, the boundary of that element
is inside X0), and for each 1-cell, a canonical 1-simplex is chosen to cover that
cell (note that different simplexes with the same image intuitively corresponds
to “reparametrization” to change the speed, and the difference between a simplex
and its reparametrization is in fact an element of B1(X1, X0) — try to make this
rigorous! Hint: use the prism operator.)
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• The fifth picture depicts a typical element of

ker
(
Cells1(X) ∂−→ Cells0(X)

)
which can be thought of as a “cellular cycle”, or a 1-cycle (element of Z1(X)) that
is “aligned”, as explained above.

• The sixth picture depicts a typical element of

im
(
Cells2(X) ∂−→ Cells1(X)

)
which can be thought of as a “cellular boundary”, or a 1-boundary (element of
B1(X)1) that is “aligned” in the same sense as above.

• Finally, the last picture is H1(Cells•(X)), which is

H1(Cells•(X)) =
ker

(
Cells1(X) ∂−→ Cells0(X)

)
im
(
Cells2(X) ∂−→ Cells1(X)

) .
Or, roughly speaking,

H1(Cells•(X)) = aligned cycle
aligned boundary .

That is what we mean by aligned cycle
aligned boundary = cycle

boundary . With a suitable formalization and
arbitrary selection of canonical simplices,2 we can make the argument above rigorous.

What do we mean by “fuzz”? This part is hopefully obvious, but the point is that
an aligned cycle can be “moved around” a bit (with reparametrization, or addition
of elements in B1(X1, X0)) while still keep it a cycle (that is, an element of Z1(X)).
Similarly for aligned boundaries.

So, the point is — we can “cancel” the common fuzz factor in the numerator and the
denominator, and the result will remain the same.

Refer to [Ha02] for some formal treatment on simplicial approximation.

§74.4 Application: Euler characteristic via Betti numbers
A nice application of this is to define the Euler characteristic of a finite CW complex
X. Of course we can write

χ(X) =
∑
n

(−1)n ·#(n-cells of X)

which generalizes the familiar V −E+F formula. However, this definition is unsatisfactory
because it depends on the choice of CW complex, while we actually want χ(X) to only
depend on the space X itself (and not how it was built). In light of this, we prove that:

Theorem 74.4.1 (Euler characteristic via Betti numbers)
For any finite CW complex X we have

χ(X) =
∑
n

(−1)n rankHn(X).

1This is not an element of B1(X1)! Think about why.
2Technically we need a so-called ∆-complex structure on X, but we don’t define ∆-structure in the

Napkin. See [Ha02] for details.
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Thus χ(X) does not depend on the choice of CW decomposition. The numbers

bn = rankHn(X)

are called the Betti numbers of X. In fact, we can use this to define χ(X) for any
reasonable space; we are happy because in the (frequent) case that X is a CW complex,
the definition coincides with the normal definition of the Euler characteristic.

Proof. We quote the fact that if 0 → A → B → C → D → 0 is exact then rankB +
rankD = rankA+ rankC. Then for example the row

H2(X1)︸ ︷︷ ︸
=0

H2(X2) H2(X2, X1) H1(X1) H1(X2)︸ ︷︷ ︸
∼=H1(X)

H1(X2, X1)︸ ︷︷ ︸
=0

0 ⊃ ∂2 0

from the cellular diagram gives

#(2-cells) + rankH1(X) = rankH2(X2) + rankH1(X1).

More generally,

#(k-cells) + rankHk−1(X) = rankHk(Xk) + rankHk−1(Xk−1)

which holds also for k = 0 if we drop the H−1 terms (since #0-cells = rankH0(X0) is
obvious). Multiplying this by (−1)k and summing across k ≥ 0 gives the conclusion.

Example 74.4.2 (Examples of Betti numbers)
(a) The Betti numbers of Sn are b0 = bn = 1, and zero elsewhere. The Euler

characteristic is 1 + (−1)n.

(b) The Betti numbers of a torus S1 × S1 are b0 = 1, b1 = 2, b2 = 1, and zero
elsewhere. Thus the Euler characteristic is 0.

(c) The Betti numbers of CPn are b0 = b2 = · · · = b2n = 1, and zero elsewhere.
Thus the Euler characteristic is n+ 1.

(d) The Betti numbers of the Klein bottle are b0 = 1, b1 = 1 and zero elsewhere.
Thus the Euler characteristic is 0, the same as the sphere (also since their CW
structures use the same number of cells).

One notices that in the “nice” spaces Sn, S1×S1 and CPn there is a nice symmetry
in the Betti numbers, namely bk = bn−k. This is true more generally; see Poincaré
duality and Problem 76A†.

§74.5 The cellular boundary formula
In fact, one can describe explicitly what the maps dn are. Recalling that Hk(Xk, Xk−1)
has a basis the k-cells of X, we obtain:

Theorem 74.5.1 (Cellular boundary formula for k = 1)
For k = 1,

d1 : Cells1(X)→ Cells0(X)

is just the boundary map.



764 Napkin, by Evan Chen (v1.6.20250629)

Theorem 74.5.2 (Cellular boundary for k > 1)
Let k > 1 be a positive integer. Let ek be an k-cell, and let {ek−1

β }β denote all
(k − 1)-cells of X. Then

dk : Cellsk(X)→ Cellsk−1(X)

is given on basis elements by

dk(ek) =
∑
β

dβe
k−1
β

where dβ is be the degree of the composed map

Sk−1 = ∂ek
attach−−−−→ Xk−1 ↠ Sk−1

β .

Here the first arrow is the attaching map for ek and the second arrow is the quotient
of collapsing Xk−1 \ ek−1

β to a point.

What is the degree doing here? Remember that a basis element ek ∈ Cellsk(X) is just
a k-cell, and its boundary should be just the cells that forms its boundary.

With the same visualization as above, we can do something like the following.

e1β

d2

∈ Cells2(X)

∈ Cells1(X)

e2

But it’s not that easy! Note that in a CW complex, the boundary of a k-cell can be fused
into arbitrary points in Xk−1, so an “edge” of a k-cell need not be a k − 1-cell.

To make matters worse, sometimes there may be a duplicated edge — in the Klein
bottle, each pair of two opposing edges depicted actually the same edge, possibly in
different orientations.

In such a case, we need to count the multiplicity of each edge — and this is exactly what
the degree of the map counts! We will see an explicit example of computing the homology
groups of the Klein bottle in just a moment.

This gives us an algorithm for computing homology groups of a CW complex:
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• Construct the cellular chain complex, where Cellsk(X) is Z⊕#k-cells.

• d1 : Cells1(X)→ Cells0(X) is just the boundary map (so d1(e1) is the difference of
the two endpoints).

• For any k > 1, we compute dk : Cellsk(X) → Cellsk−1(X) on basis elements as
follows. Repeat the following for each k-cell ek:

– For every k − 1 cell ek−1
β , compute the degree of the boundary of ek welded

onto the boundary of ek−1
β , say dβ.

– Then dk(ek) =
∑
β dβe

k−1
β .

• Now we have the maps of the cellular chain complex, so we can compute the
homologies directly (by taking the quotient of the kernel by the image).

We can use this for example to compute the homology groups of the torus again, as
well as the Klein bottle and other spaces.

Example 74.5.3 (Cellular homology of a torus)
Consider the torus built from e0, e1

a, e1
b and e2 as before, where e2 is attached via

the word aba−1b−1. For example, X1 is

e1a e1be0

The cellular chain complex is

0 Ze2 Ze1
a ⊕ Ze1

b Ze0 0d2 d1 d0

Now apply the cellular boundary formulas:

• Recall that d1 was the boundary formula. We have d1(e1
a) = e0 − e0 = 0 and

similarly d1(e1
b) = 0. So d1 = 0.

• For d2, consider the image of the boundary e2 on e1
a. Around X1, it wraps

once around e1
a, once around e1

b , again around e1
a (in the opposite direction),

and again around e1
b . Once we collapse the entire e1

b to a point, we see that
the degree of the map is 0. So d2(e2) has no e1

a coefficient. Similarly, it has
no e1

b coefficient, hence d2 = 0.

Thus
d1 = d2 = 0.

So at every map in the complex, the kernel of the map is the whole space while the
image is {0}. So the homology groups are Z, Z⊕2, Z.

Example 74.5.4 (Cellular homology of the Klein bottle)
Let X be a Klein bottle. Consider cells e0, e1

a, e1
b and e2 as before, but this time e2 is

attached via the word abab−1. So d1 is still zero, but this time we have d2(e2) = 2e1
a

instead (why?). So our diagram looks like
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0 Ze2 Ze1
a ⊕ Ze1

b Ze0 0

e2 2e1
a

ea1 0

eb1 0

0 d2 d1 d0

So we get that H0(X) ∼= Z, but

H1(X) ∼= Z⊕ Z/2Z

this time (it is Z⊕2 modulo a copy of 2Z). Also, ker d2 = 0, and so now H2(X) = 0.
Let us sanity check that this makes sense — that is, there is some cycle that is not
a boundary, but when doubled it become a boundary.
Actually, most cycles work.

If we double up the path, we get something like the following.

Here is the important part: since the two blue edges are identified in opposite
direction, we can pull one of the path across the edge to reverse its direction. . . but
now the region is in fact the boundary of the cyan region! So we’re done.

It remains to convince yourself that the difference of two homotopy equivalent path
is a boundary.

§74.6 A few harder problems to think about

Problem 74A†. Let n be a positive integer. Show that

Hk(CPn) ∼=
{
Z k = 0, 2, 4, . . . , 2n
0 otherwise.

Problem 74B. Show that a non-surjective map f : Sn → Sn has degree zero.
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Problem 74C (Moore spaces). Let G1, G2, . . . , GN be a sequence of finitely generated
abelian groups. Construct a space X such that

H̃n(X) ∼=
{
Gn 1 ≤ n ≤ N
0 otherwise.

Problem 74D. Prove Theorem 74.2.4, showing that the homology groups of X coincide
with the homology groups of the cellular chain complex.

Problem 74E†. Let n be a positive integer. Show that

Hk(RPn) ∼=


Z if k = 0 or k = n ≡ 1 (mod 2)
Z/2Z if k is odd and 0 < k < n

0 otherwise.





75 Singular cohomology

Here’s one way to motivate this chapter. It turns out that:

• Hn(CP2) ∼= Hn(S2 ∨ S4) for every n.

• Hn(CP3) ∼= Hn(S2 × S4) for every n.

This is unfortunate, because if possible we would like to be able to tell these spaces apart
(as they are in fact not homotopy equivalent), but the homology groups cannot tell the
difference between them.

In this chapter, we’ll define a cohomology group Hn(X) and Hn(Y ). In fact, the Hn’s
are completely determined by the Hn’s by the so-called universal coefficient theorem.
However, it turns out that one can take all the cohomology groups and put them together
to form a cohomology ring H•.1 We will then see that H•(X) ̸∼= H•(Y ) as rings.

§75.1 Cochain complexes
Definition 75.1.1. A cochain complex A• is algebraically the same as a chain complex,
except that the indices increase. So it is a sequence of abelian groups

. . .
δ−→ An−1 δ−→ An

δ−→ An+1 δ−→ . . . .

such that δ2 = 0. Notation-wise, we’re now using superscripts, and use δ rather ∂. We
define the cohomology groups by

Hn(A•) = ker
(
An

δ−→ An+1
)
/ im

(
An−1 δ−→ An

)
.

Example 75.1.2 (de Rham cohomology)
We have already met one example of a cochain complex: let M be a smooth
manifold and Ωk(M) be the additive group of k-forms on M . Then we have a
cochain complex

0 d−→ Ω0(M) d−→ Ω1(M) d−→ Ω2(M) d−→ . . . .

The resulting cohomology is called de Rham cohomology, described later.

Aside from de Rham’s cochain complex, the most common way to get a cochain
complex is to dualize a chain complex. Specifically, pick an abelian group G; note
that Hom(−, G) is a contravariant functor, and thus takes every chain complex

. . .
∂−→ An+1

∂−→ An
∂−→ An−1

∂−→ . . .

into a cochain complex: letting An = Hom(An, G) we obtain

. . .
δ−→ An−1 δ−→ An

δ−→ An+1 δ−→ . . . .
1[Ha02] has an explanation why is it that cohomology has more structures than homology — roughly

speaking, the natural maps X ×X → X must be a projection which is not very interesting, but there
is a more interesting natural map X → X ×X given by p 7→ (p, p).

769
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where δ(An
f−→ G) = An+1

∂−→ A
f−→ G.

These are the cohomology groups we study most in algebraic topology, so we give a
special notation to them.

Definition 75.1.3. Given a chain complex A• of abelian groups and another group G,
we let

Hn(A•;G)

denote the cohomology groups of the dual cochain complex A• obtained by applying
Hom(−, G). In other words, Hn(A•;G) = Hn(A•).

§75.2 Cohomology of spaces

Prototypical example for this section: C0(X;G) all functions X → G while H0(X) are
those functions X → G constant on path components.

The case of interest is our usual geometric situation, with C•(X).

Definition 75.2.1. For a space X and abelian group G, we define C•(X;G) to be the
dual to the singular chain complex C•(X), called the singular cochain complex of X;
its elements are called cochains.

Then we define the cohomology groups of the space X as

Hn(X;G) := Hn(C•(X);G) = Hn(C•(X;G)).

Remark 75.2.2 — Note that if G is also a ring (like Z or R), then Hn(X;G) is
not only an abelian group but actually a G-module.

Example 75.2.3 (C0(X;G), C1(X;G), and H0(X;G))
Let X be a topological space and consider C•(X).

• C0(X) is the free abelian group on X, and C0(X) = Hom(C0(X), G). So a
0-cochain is a function that takes every point of X to an element of G.

• C1(X) is the free abelian group on 1-simplices in X. So C1(X) needs to take
every 1-simplex to an element of G.

Let’s now try to understand δ : C0(X) → C1(X). Given a 0-cochain ϕ ∈ C0(X),
i.e. a homomorphism ϕ : C0(X)→ G, what is δϕ : C1(X)→ G? Answer:

δϕ : [v0, v1] 7→ ϕ([v0])− ϕ([v1]).

Hence, elements of ker(C0 δ−→ C1) ∼= H0(X;G) are those cochains that are constant
on path-connected components.

In particular, much like H0(X), we have

H0(X) ∼= G⊕r
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if X has r path-connected components (where r is finite2).

Abuse of Notation 75.2.4. In this chapter the only cochain complexes we will consider
are dual complexes as above. So, any time we write a cochain complex A• it is implicitly
given by applying Hom(−, G) to A•.

The higher cohomology groups Hn(X;G) (or even the cochain groups Cn(X;G) =
Hom(Cn(X), G)) are harder to describe concretely.

§75.3 Cohomology of spaces is functorial

We now check that the cohomology groups still exhibit the same nice functorial behavior.
First, let’s categorize the previous results we had:

Question 75.3.1. Define CoCmplx the category of cochain complexes.

Exercise 75.3.2. Interpret Hom(−, G) as a contravariant functor from

Hom(−, G) : Cmplxop → CoCmplx.

This means in particular that given a chain map f : A• → B•, we naturally obtain a dual
map f∨ : B• → A•.

Question 75.3.3. Interpret Hn : CoCmplx → Grp as a functor. Compose these to get a
contravariant functor Hn(−;G) : Cmplxop → Grp.

Then in exact analog to our result that Hn : hTop→ Grp we have:

Theorem 75.3.4 (Hn(−;G) : hTopop → Grp)
For every n, Hn(−;G) is a contravariant functor from hTopop to Grp.

Proof. The idea is to leverage the work we already did in constructing the prism operator
earlier. First, we construct the entire sequence of functors from Topop → Grp:

2Something funny happens if X has infinitely many path-connected components: say X =
∐

α
Xα over

an infinite indexing set. In this case we have H0(X) =
⊕

α
G while H0(X) =

∏
α
G. For homology

we get a direct sum while for cohomology we get a direct product.
These are actually different for infinite indexing sets. For general modules

⊕
α
Mα is defined to

only allow to have finitely many nonzero terms. (This was never mentioned earlier in the Napkin,
since I only ever defined M ⊕N and extended it to finite direct sums.) No such restriction holds for∏

α
Gα a product of groups. This corresponds to the fact that C0(X) is formal linear sums of 0-chains

(which, like all formal sums, are finite) from the path-connected components of G. But a cochain of
C0(X) is a function from each path-connected component of X to G, where there is no restriction.
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Topop Cmplxop CoCmplx Grp

X C•(X) C•(X;G) Hn(X;G)

Y C•(Y ) C•(Y ;G) Hn(Y ;G).

C• Hom(−;G) Hn

f f♯

f♯ f∗

Here f ♯ = (f♯)∨, and f∗ is the resulting induced map on homology groups of the cochain
complex.

So as before all we have to show is that f ≃ g, then f∗ = g∗. Recall now that there is
a prism operator such that f♯ − g♯ = P∂ + ∂P . If we apply the entire functor Hom(−;G)
we get that f ♯ − g♯ = δP∨ + P∨δ where P∨ : Cn+1(Y ;G)→ Cn(X;G). So f ♯ and g♯ are
chain homotopic thus f∗ = g∗.

§75.4 Universal coefficient theorem
We now wish to show that the cohomology groups are determined up to isomorphism by
the homology groups: given Hn(A•), we can extract Hn(A•;G). This is achieved by the
universal coefficient theorem.

Theorem 75.4.1 (Universal coefficient theorem)
Let A• be a chain complex of free abelian groups, and let G be another abelian
group. Then there is a natural short exact sequence

0→ Ext(Hn−1(A•), G)→ Hn(A•;G) h−→ Hom(Hn(A•), G)→ 0.

In addition, this exact sequence is split so in particular

Hn(C•;G) ∼= Ext(Hn−1(A•), G)⊕Hom(Hn(A•), G).

Fortunately, in our case of interest, A• is C•(X) which is by definition free.
There are two things we need to explain, what the map h is and the map Ext is.
It’s not too hard to guess how

h : Hn(A•;G)→ Hom(Hn(A•), G)

is defined. An element of Hn(A•;G) is represented by a function which sends a cycle in
An to an element of G. The content of the theorem is to show that h is surjective with
kernel Ext(Hn−1(A•), G).

What about Ext? It turns out that Ext(−, G) is the so-called Ext functor, defined
as follows. Let H be an abelian group, and consider a free resolution of H, by which
we mean an exact sequence

. . .
f2−→ F1

f1−→ F0
f0−→ H → 0

with each Fi free. Then we can apply Hom(−, G) to get a cochain complex

. . .
f∨

2←−− Hom(F1, G)
f∨

1←−− Hom(F0, G)
f∨

0←−− Hom(H,G)← 0.
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but this cochain complex need not be exact (in categorical terms, Hom(−, G) does not
preserve exactness). We define

Ext(H,G) := ker(f∨
2 )/ im(f∨

1 )

and it’s a theorem that this doesn’t depend on the choice of the free resolution. There’s
a lot of homological algebra that goes into this, which I won’t take the time to discuss;
but the upshot of the little bit that I did include is that the Ext functor is very easy to
compute in practice, since you can pick any free resolution you want and compute the
above.

Remark 75.4.2 — You have seen a “free resolution” before in a disguised form —
in Section 18.3, we proved the structure theorem of finitely-generated modules over
PID by writing any module M as R⊕d/K, with both R⊕d and K free. This gives a
free resolution

· · · → 0→ K ↪→ R⊕d ↠M → 0.

Intuitively, you can think of the Ext functor as measuring the “maps that should
be there but aren’t” — you will gradually gain some intuitions after seeing some
examples.a

aTaken from https://mathoverflow.net/a/679.

Lemma 75.4.3 (Computing the Ext functor)
For any abelian groups G, H, H ′ we have

(a) Ext(H ⊕H ′, G) = Ext(H,G)⊕ Ext(H ′, G).

(b) Ext(H,G) = 0 for H free, and

(c) Ext(Z/nZ, G) = G/nG.

Proof. For (a), note that if · · · → F1 → F0 → H → 0 and · · · → F ′
1 → F ′

0 → F ′
0 → H ′ →

0 are free resolutions, then so is F1 ⊕ F ′
1 → F0 ⊕ F ′

0 → H ⊕H ′ → 0.
For (b), note that 0→ H → H → 0 is a free resolution.
Part (c) follows by taking the free resolution

0→ Z ×n−−→ Z→ Z/nZ→ 0

and applying Hom(−, G) to it.

Question 75.4.4. Finish the proof of (c) from here.

Question 75.4.5. Some Ext practice: compute Ext(Z⊕2015, G) and Ext(Z/30Z,Z/4Z).

§75.5 Explanation for universal coefficient theorem
There is so much unexplained symbols and formulas in the previous chapter that may
make you scream:

I don’t care if CP2 and S2 ∨ S4 are distinct anymore! What are these spaces
anyway?

https://mathoverflow.net/a/679
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Nevertheless, it is not all that difficult. There are two key points to be read from the
theorem:

• Even thoughHn(A•) = 0, it is still possible forHn(A•;G) ̸= 0 if Ext(Hn−1(A•), G) ̸=
0.
In low-dimensional cases, we can actually visualize it — Section 75.7 does that for
the Klein bottle.

• Hn(A•;G) is uniquely determined by Hn(A•) and G, regardless of what A• is, as
long as each An is free.

Which means: if you wish, you can forget about the formula in the universal coefficient
theorem, and use the cellular chain complex Cells•(X) to compute cohomology by:

Hn(X;G) = ker(Hom(Cellsn(X), G)→ Hom(Cellsn+1(X), G))
im(Hom(Cellsn−1(X), G)→ Hom(Cellsn(X), G)) .

After all, the cellular chain complex and the singular chain complex are both free and
have the same homology groups, so by the universal coefficient theorem they must have
the same cohomology groups.

Nevertheless, the formula of the universal coefficient theorem is desirable because, more
often than not, the chain complex A• is more complicated than H•(A•).

Example 75.5.1
The Klein bottle’s cellular chain complex has the following form:

· · · → Z 17→(0,2)−−−−−→ Z2 (a,b) 7→0−−−−−→ Z.

The homology groups is:

H2 = 0, H1 = Z⊕ Z/2Z, H0 = Z.

It’s indeed simpler, but only marginally (there are 3 generators instead of 4, and
we don’t need to keep track of the maps) because cellular homology is already so
efficient.

Where does the formula come from, again? You can think of it like this. Because the
universal coefficient theorem tells us that H•(A•;G) only depends on H•(A•), if we’re
given H•, we just construct any chain complex of free abelian groups A• and dualize it.

Assume Hk = 0 for every terms, except Hn−1 ̸= 0. Then, tautologically, Hn ∼=
Ext(Hn−1;G) — a free resolution is a chain complex!

Exercise 75.5.2. Verify this. (Hint: Starting from the exact sequence Zn−1 → Hn−1 → 0.
Can you extend it to a free resolution of Hn−1?)

Assume Hk = 0 for every terms, except Hn ̸= 0. Then we can see Hn ∼= Hom(Hn, G).
The universal coefficient theorem simply states that the choice of free resolution doesn’t

matter, and that if the other terms can be nonzero, Hn is the direct sum of the two
groups in the two cases above.

If you want, you can even prove the fact that the choice of free resolution does not
matter yourself — it’s a bit tricky, but not all that difficult. It boils down to the



75 Singular cohomology 775

construction of maps between the chain complexes (it’s not difficult to ensure the diagram
commutes, the groups are free so we can send the basis wherever we want), and show the
two free resolutions are chain homotopic.

§75.6 Example computation of cohomology groups

Prototypical example for this section: Possibly Hn(Sm).

The universal coefficient theorem gives us a direct way to compute any cohomology
groups, provided we know the homology ones.

Example 75.6.1 (Cohomology groups of Sm)
It is straightforward to compute Hn(Sm) now: all the Ext terms vanish since
Hn(Sm) is always free, and hence we obtain that

Hn(Sm) ∼= Hom(Hn(Sm), G) ∼=
{
G n = m,n = 0
0 otherwise.

Example 75.6.2 (Cohomology groups of torus)
This example has no nonzero Ext terms either, since this time Hn(S1 × S1) is
always free. So we obtain

Hn(S1 × S1) ∼= Hom(Hn(S1 × S1), G).

Since Hn(S1 × S1) is Z, Z⊕2, Z in dimensions n = 1, 2, 1 we derive that

Hn(S1 × S1) ∼=
{
G n = 0, 2
G⊕2 n = 1.

From these examples one might notice that:

Lemma 75.6.3 (0th and 1th cohomology groups are just duals)
For n = 0 and n = 1, we have

Hn(X;G) ∼= Hom(Hn(X), G).

Proof. It’s already been shown for n = 0. For n = 1, notice that H0(X) is free, so the
Ext term vanishes.

Example 75.6.4 (Cohomology groups of Klein bottle)
This example will actually have Ext term. Recall from Example 74.5.4 that if K is
a Klein Bottle then its homology groups are Z in dimension n = 0 and Z⊕ Z/2Z
in n = 1, and 0 elsewhere.
For n = 0, we again just have H0(K;G) ∼= Hom(Z, G) ∼= G. For n = 1, the Ext
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term is Ext(H0(K), G) ∼= Ext(Z, G) = 0 so

H1(K;G) ∼= Hom(Z⊕ Z/2Z, G) ∼= G⊕Hom(Z/2Z, G).

We have that Hom(Z/2Z, G) is the subgroup of elements of order 2 in G (and
0 ∈ G).
But for n = 2, we have our first interesting Ext group: the exact sequence is

0→ Ext(Z⊕ Z/2Z, G)→ H2(X;G)→ H2(X)︸ ︷︷ ︸
=0

→ 0.

Thus, we have

H2(X;G) ∼= (Ext(Z, G)⊕ Ext(Z/2Z, G))⊕ 0 ∼= G/2G.

All the higher groups vanish. In summary:

Hn(X;G) ∼=


G n = 0
G⊕Hom(Z/2Z, G) n = 1
G/2G n = 2
0 n ≥ 3.

§75.7 Visualization of cohomology groups
We try to make sense of Cn(X;G) and Hn(X;G), for higher values of n.

As above, Cn(X;G) is the free abelian group on n-simplices on X, so an element
f ∈ Cn(X;G) is a function that takes each n-simplex to an element of G (and extends
linearly to all of Cn(X;G)).

This assignment of value need not have any nice properties — recall that a n-simplex
is simply a (continuous) map σ : ∆n → X, and different maps σ1 and σ2 are considered
different even though im σ1 = im σ2. In particular,

• If [v0, v1, v2] is a singular simplex, it need not be the case that f([v0, v1, v2]) +
f([v0, v2, v1]) = 0.

• A singular n-simplex (n ≥ 1) with image contained in a point need not be mapped
to 0 by f .

But it does not matter that elements of Cn(X) aren’t this nice! We will see below why
this is the case.

In the homology case (Definition 71.2.2), we defined:

Zn(X) := ker
(
Cn(X) ∂−→ Cn−1(X)

)
,

Bn(X) := im
(
Cn+1(X) ∂−→ Cn(X)

)
,

Hn(X) := Zn(X)/Bn(X).

Elements of Zn(X) and Bn(X) are called cycles and boundaries respectively, with the
obvious geometrical interpretation.

So,
Hn(X) = n-cycles

n-boundaries .



75 Singular cohomology 777

For the current section, we will temporarily define:

Zn(X;G) := ker
(
Cn(X;G) δ−→ Cn+1(X;G)

)
,

Bn(X;G) := im
(
Cn−1(X;G) δ−→ Cn(X;G)

)
,

Hn(X;G) := Zn(X;G)/Bn(X;G).

For this section, we will call elements of Zn(X;G) the cocycles and elements of
Bn(X;G) the coboundaries respectively. Once again,

Hn(X;G) = n-cocycles
n-coboundaries .

It’s less clear geometrically why the elements are named as above, but if we assume
the group G is a field (where the group operation is the addition operation in the field),
then3 we have:

• a n-cocycle is a map that sends every n-boundary to 0 ∈ G;

• a n-coboundary is a map that sends every n-cycle to 0 ∈ G.

The first statement is clear (definition chasing), the second statement is only generally
true in one direction (that a coboundary sends every cycle to 0; but a map that sends
every cycle to 0 need not be a coboundary — we will see this later on with the Klein
bottle example).

Let us see what a n-cocycle must look like. First,

Homotopic chains with the same boundary are mapped to the same
value by cocycles.

We defined what it means for two k-simplices to be homotopic in Section 65.4 — in
the current situation, we require in addition that the boundaries are always fixed.

For instance, the blue and the orange 1-simplices below are homotopic, but not the
red 1-simplex.

p q

Proof is not difficult — you just need to show that the difference between two homotopic
k-simplices is the boundary of something (their interior!), and write the interior as the
sum of some k + 1-simplices. (Hint: The easiest way is actually to write the interior as
the difference of two k + 1-simplices instead, and be careful of vertex ordering issues.)

Exercise 75.7.1. Finish the proof.

A typical 1-cocycle might look something like this, where each arrow is labeled with
the value assigned to that 1-simplex. Remember that a cycle must be mapped to 0.

3Refer to https://math.stackexchange.com/q/4712676.

https://math.stackexchange.com/q/4712676
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−3

1

2

2

Now, the next observation is that:

If we only consider cocycles modulo coboundaries, we basically only care
about values assigned to the cycles.

Why? Remember that a k-coboundary is the δ of some (k − 1)-cochain. So, given this
0-cochain:

1

Its δ would look something like this:

1
1

1
−1

So, roughly speaking,

By adding or subtracting a coboundary to a given cochain, we can adjust
the value assigned to most chains however we want.

I said “most chains” because, if the chains form a cycle, adding a coboundary won’t
let us change its assigned value.

Fortunately,

• Cycles that are boundaries always get assigned the value 0.

• Homotopic cycles get assigned the same value.

As a generalization, in fact, cycles that are homologous (i.e. they get mapped to
the same value under the map Zk(X) ↠ Hk(X)) are assigned the same value.

Therefore,
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Knowing the value of a cocycle on each “cycle modulo boundary” almost
determines that cocycle, modulo coboundaries.

In symbols: Hn(X;G) is “almost isomorphic” to Hom(Hn(X), G).
In other words, a cocycle modulo coboundary can be “evaluated” on a cycle modulo

boundary.
This is precisely what the universal coefficient theorem states, although it says some-

thing more: the “error term” is exactly Ext(Hn−1(X), G).
Why would the error term exist? We had an example above, computing H2(K;G) for

K the Klein bottle. Let us work through it geometrically, assume G = Z for now.
A typical 2-cochain f ∈ C2(K;Z) may look something like this. (Only value assigned

to a few 2-simplices is depicted, there are too many 2-simplices for us to draw.)

f =
1

2

A coboundary may look like this — identical to the situation above, the value assigned
to particular simplex doesn’t matter, we can “transfer” the assigned value between the
two simplices by adding a coboundary.

1
δ 1

−1

So, we may just say that the value assigned to the whole surface of the Klein bottle
is 3 — formally, let e2

K ∈ C2(K) be the sum of the two 2-simplices above, we can write
f(e2

K) = 3. However:

1

g =

1

δ 1

1

The boundary of the 2-chain corresponding to the whole surface of the Klein bottle is
2 times the blue edge, so δ of the 1-cochain whose value on the blue edge is 1 will assign
the value 2 to e2

K .
In symbols: let e1

b ∈ C1(K) be the blue edge, pick g ∈ C1(K;Z) such that g(e1
b) = 1,

then δ(g)(e2
K) = 2. Even though e2

K is not a cycle, we still need to care about its assigned
value modulo 2! Because adding or subtracting the coboundary δ(g) can only adjust its
values in increments of 2.

Therefore,

If the region ek ∈ Ck(X) has a boundary ∂ek ∈ Ck−1(X) divisible by n,
then we cares about the value assigned to ek, modulo n.
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This explains where the error term Ext(Hn−1(X), G) comes from.
We have another comparison with de Rham cohomology in Section 76.2 — in that

case, the group G is a field, R, so Ext(Hn−1(X), G) is always zero.

§75.8 Relative cohomology groups
One can also define relative cohomology groups in the obvious way: dualize the chain
complex

. . .
∂−→ C1(X,A) ∂−→ C0(X,A)→ 0

to obtain a cochain complex

. . .
δ←− C1(X,A;G) δ←− C0(X,A;G)← 0.

We can take the cohomology groups of this.

Definition 75.8.1. The groups thus obtained are the relative cohomology groups
are denoted Hn(X,A;G).

In addition, we can define reduced cohomology groups as well. One way to do it is to
take the augmented singular chain complex

. . .
∂−→ C1(X) ∂−→ C0(X) ε−→ Z→ 0

and dualize it to obtain

. . .
δ←− C1(X;G) δ←− C0(X;G) ε∨

←− Hom(Z, G)︸ ︷︷ ︸
∼=G

← 0.

Since the Z we add is also free, the universal coefficient theorem still applies. So this will
give us reduced cohomology groups.

However, since we already defined the relative cohomology groups, it is easiest to
simply define:

Definition 75.8.2. The reduced cohomology groups of a nonempty space X, denoted
H̃n(X;G), are defined to be Hn(X, {∗};G) for some point ∗ ∈ X.

§75.9 A few harder problems to think about
Problem 75A⋆ (Wedge product cohomology). For any G and n we have

H̃n(X ∨ Y ;G) ∼= H̃n(X;G)⊕ H̃n(Y ;G).

Problem 75B†. Prove that for a field F of characteristic zero and a space X with
finitely generated homology groups:

Hk(X,F ) ∼= (Hk(X))∨ .

Thus over fields cohomology is the dual of homology.

Problem 75C (Z/2Z-cohomology of RPn). Prove that

Hm(RPn,Z/2Z) ∼=


Z m = 0, or m is odd and m = n

Z/2Z 0 < m < n and m is odd
0 otherwise.
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In this final chapter on topology, I’ll state (mostly without proof) some nice properties
of cohomology groups, and in particular introduce the so-called cup product. For an
actual treatise on the cup product, see [Ha02] or [Ma13a].

As mentioned in the previous chapter, you can put all the cohomology groups H•(X)
together to form the cohomology ring, which gives more structure than the case of
homology — enough structure to allow distinguishing between CP2 and S2 ∨ S4, or
between CP3 and S2 × S4.

Even though the description above is completely non-descriptive (it doesn’t give you
insight into what the structure is about), and actually, some people would say:

It does not matter what homology measures intuitively, as it is a convenient
tool that takes something very difficult (topology) and turns it into something
simple (abelian group).

Nevertheless, it is interesting that the cup product is actually visualizable! At least when
the dimension does not exceed 3.

§76.1 Poincaré duality
First cool result: you may have noticed symmetry in the (co)homology groups of “nice”
spaces like the torus or Sn. In fact this is predicted by:

Theorem 76.1.1 (Poincaré duality)
If M is a smooth oriented compact n-manifold, then we have a natural isomorphism

Hk(M ;Z) ∼= Hn−k(M)

for every k. In particular, Hk(M) = 0 for k > n.

So for smooth oriented compact manifolds, cohomology and homology groups are not
so different.

From this follows the symmetry that we mentioned when we first defined the Betti
numbers:

Corollary 76.1.2 (Symmetry of Betti numbers)
Let M be a smooth oriented compact n-manifold, and let bk denote its Betti number.
Then

bk = bn−k.

Proof. Problem 76A†.

§76.2 de Rham cohomology
We now reveal the connection between differential forms and singular cohomology.

781
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Let M be a smooth manifold. We are interested in the homology and cohomology
groups of M . We specialize to the case G = R, the additive group of real numbers.

Question 76.2.1. Check that Ext(H,R) = 0 for any finitely generated abelian group H.

Thus, with real coefficients the universal coefficient theorem says that

Hk(M ;R) ∼= Hom(Hk(M),R) = (Hk(M))∨

where we view Hk(X) as a real vector space. So, we’d like to get a handle on either
Hk(M) or Hk(M ;R).

Consider the cochain complex

0→ Ω0(M) d−→ Ω1(M) d−→ Ω2(M) d−→ Ω3(M) d−→ . . .

and let Hk
dR(M) denote its cohomology groups. Thus the de Rham cohomology is the

closed forms modulo the exact forms.

Cochain : Cocycle : Coboundary = k-form : Closed form : Exact form.

The whole punch line is:

Theorem 76.2.2 (de Rham’s theorem)
For any smooth manifold M , we have a natural isomorphism

Hk(M ;R) ∼= Hk
dR(M).

So the theorem is that the real cohomology groups of manifolds M are actually just
given by the behavior of differential forms. Thus,

One can metaphorically think of elements of cohomology groups as
G-valued differential forms on the space.

Why does this happen? In fact, we observed already behavior of differential forms
which reflects holes in the space. For example, let M = S1 be a circle and consider the
angle form α (see Example 44.7.4). The form α is closed, but not exact, because it is
possible to run a full circle around S1. So the failure of α to be exact is signaling that
H1(S1) ∼= Z.

As another piece of intuition, note that:

• each k-differential form ω can be interpreted as a function that takes each k-smooth
submanifold S ⊆M , and returns a real number

∫
S ω.

• let us pretend that all k-simplices are smooth for now. Then we have:
– The k-cochains are the functions that sends each k-simplex to a real number.
– The k-cocycles are the k-cochains that sends the boundaries to 0.
– The k-coboundaries are the k-cochains that sends the cycles to 0.

Meanwhile:
– The differential forms are the functions that sends each k-simplex to a real

number, satisfying certain linearity and smoothness properties — for instance:
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∗ if k ≥ 1 and a k-simplex has the image contained in a point, then it must
be sent to 0;

∗ if we reparametrize a k-simplex, the assigned value must be the same;
∗ if we flip two vertices of a k-simplex, the assigned value must be negated;
∗ if a k-simplex can be formed by gluing two k-simplices along a face, then

the assigned value must be the sum of the corresponding values assigned
to the sub-k-simplices;

∗ etc.
– The closed forms are the differential forms that sends the boundaries to 0;
– The exact forms are the differential forms that send the cycles to 0.

We can’t help but noticing the parallel — the point is:

Hk(M ;R) = cocycles
coboundaries

∼=
cocycles ∩ differential forms

coboundaries ∩ differential forms = Hk
dR(M).

Roughly speaking, both the numerator and the denominator on the left are bigger,
and they cancels out. We can compare this with Section 74.3.
Or, as a figure (for space reasons, the group of differential forms is denoted D):

D cocycles

cocycles ∩D coboundaries

coboundaries ∩D

This is precisely the setup of the second isomorphism theorem,1 and you can try to
work out why the two quotients are isomorphic.

§76.3 Graded rings
Prototypical example for this section: Polynomial rings are commutative graded rings,
while

∧•(V ) is anticommutative.
In the de Rham cohomology, the differential forms can interact in another way: given

a k-form α and an ℓ-form β, we can consider a (k + ℓ)-form

α ∧ β.

So we can equip the set of forms with a “product”, satisfying β ∧ α = (−1)kℓα ∧ β. This
is a special case of a more general structure:

Definition 76.3.1. A graded pseudo-ring R is an abelian group

R =
⊕
d≥0

Rd

where R0, R1, . . . , are abelian groups, with an additional associative binary operation
× : R → R. We require that if r ∈ Rd and s ∈ Re, we have rs ∈ Rd+e. Elements of an
Rd are called homogeneous elements; if r ∈ Rd and r ̸= 0, we write |r| = d.

1See Section 3.6.
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Note that we do not assume commutativity. In fact, these “rings” may not even have
an identity 1. We use other words if there are additional properties:

Definition 76.3.2. A graded ring is a graded pseudo-ring with 1. If it is commutative
we say it is a commutative graded ring.

Definition 76.3.3. A graded (pseudo-)ring R is anticommutative if for any homoge-
neous r and s we have

rs = (−1)|r||s|sr.

Remark 76.3.4 — Why not rs = −sr? This definition is inspired by the fact that
the wedge product is anticommutative. Note that, for f1, . . . , fr, g1, . . . , gs being
0-forms, let f = df1 ∧ df2 ∧ · · · ∧ dfr be a r-form and g = dg1 ∧ dg2 ∧ · · · ∧ dgs be a
s-form, then starting from the expression

f ∧ g = (df1 ∧ df2 ∧ · · · ∧ dfr) ∧ (dg1 ∧ dg2 ∧ · · · ∧ dgs)

if you repeatedly swap two adjacent entries, it will take rs swaps total in order to
obtain the expression

g ∧ f = (dg1 ∧ dg2 ∧ · · · ∧ dgs) ∧ (df1 ∧ df2 ∧ · · · ∧ dfr).

By linearity, we can prove that in general, for any r-form f and any s-form g, we
have fg = (−1)rsgf .

To summarize:
Flavors of graded rings Need not have 1 Must have a 1

No Assumption graded pseudo-ring graded ring
Anticommutative anticommutative pseudo-ring anticommutative ring

Commutative commutative graded ring

Example 76.3.5 (Examples of graded rings)
(a) The ring R = Z[x] is a commutative graded ring, with the dth component

being the multiples of xd.

(b) The ring R = Z[x, y, z] is a commutative graded ring, with the dth com-
ponent being the abelian group of homogeneous degree d polynomials (and
0).

(c) Let V be a vector space, and consider the abelian group
•∧

(V ) =
⊕
d≥0

d∧
(V ).

For example, e1 + (e2 ∧ e3) ∈
∧•(V ), say. We endow

∧•(V ) with the product
∧, which makes it into an anticommutative ring.

(d) Consider the set of differential forms of a manifold M , say

Ω•(M) =
⊕
d≥0

Ωd(M)

endowed with the product ∧. This is an anticommutative ring.

All four examples have a multiplicative identity.
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Let’s return to the situation of Ω•(M). Consider again the de Rham cohomology
groups Hk

dR(M), whose elements are closed forms modulo exact forms. We claim that:

Lemma 76.3.6 (Wedge product respects de Rham cohomology)
The wedge product induces a map

∧ : Hk
dR(M)×Hℓ

dR(M)→ Hk+ℓ
dR (M).

Proof. First, we recall that the operator d satisfies

d(α ∧ β) = (dα) ∧ β + α ∧ (dβ).

Now suppose α and β are closed forms. Then from the above, α ∧ β is clearly closed.
Also if α is closed and β = dω is exact, then α ∧ β is exact, from the identity

d(α ∧ ω) = dα ∧ ω + α ∧ dω = α ∧ β.

Similarly if α is exact and β is closed then α ∧ β is exact. Thus it makes sense to take
the product modulo exact forms, giving the theorem above.

Therefore, we can obtain a anticommutative ring

H•
dR(M) =

⊕
k≥0

Hk
dR(M)

with ∧ as a product, and 1 ∈
∧0(R) = R as the identity.

§76.4 Cup products
Inspired by this, we want to see if we can construct a similar product on

⊕
k≥0H

k(X;R)
for any topological space X and ring R (where R is commutative with 1 as always). The
way to do this is via the cup product.

Then this gives us a way to multiply two cochains, as follows.

Definition 76.4.1. Suppose ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(X;R). Then we can define their
cup product ϕ ⌣ ψ ∈ Ck+ℓ(X;R) to be

(ϕ ⌣ ψ)([v0, . . . , vk+ℓ]) = ϕ ([v0, . . . , vk]) · ψ ([vk, . . . , vk+ℓ])

where the multiplication is in R.

Question 76.4.2. Assuming R has a 1, which 0-cochain is the identity for ⌣?

Remark 76.4.3 (Warning) — While you can interpret a n-differential form as a
n-cochain the obvious way, the cup product is not directly a generalization of the
wedge product! For example, let X = R2, and try to evaluate dx ⌣ dy on [v0, v1, v2]
and [v2, v1, v0] where v0 = (1, 0), v1 = (0, 0), v2 = (0, 1), assume all of the edges are
straight lines.
This is because we are not having the alternation operator. Refer to Section 44.5
for details. In this case, the ring G might be Z where not all nonzero elements have
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an inverse, so division would cause trouble.
Nevertheless, the differences will nicely cancel out, and we still have the correspond-
ing element in the cohomology group equal to the element interpreted by the wedge
product dx ∧ dy — this is what we mean by H•(M ;R) ∼= H•

dR(M), stated below.
Let us consider the familiar example of a torus, and the 1-cocycles “dx” and “dy”.

dx

1
2

1

0

dy

0 1

From what we know about the wedge product, we want (dx ∧ dy)(T ) = 1 for T
the whole torus (up to a ± sign). Indeed, with the definition above (work it out!
Divide T into two triangles arbitrarily) it will work.
Nevertheless, we don’t really care about the cup product itself as much as the
induced cup product on the homology ring.

First, we prove an analogous result as before:

Lemma 76.4.4 (δ with cup products)
We have δ(ϕ ⌣ ψ) = δϕ ⌣ ψ + (−1)kϕ ⌣ δψ.

Proof. Direct
∑

computations.

Thus, by the same routine we used for de Rham cohomology, we get an induced map

⌣ : Hk(X;R)×Hℓ(X;R)→ Hk+ℓ(X;R).

We then define the singular cohomology ring whose elements are finite sums in

H•(X;R) =
⊕
k≥0

Hk(X;R)

and with multiplication given by ⌣. Thus it is a graded ring (with 1R ∈ R the identity)
and is in fact anticommutative:

Proposition 76.4.5 (Cohomology is anticommutative)
H•(X;R) is an anticommutative ring, meaning ϕ ⌣ ψ = (−1)kℓψ ⌣ ϕ.

For a proof, see [Ha02, Theorem 3.11, pages 210-212]. Moreover, we have the de Rham
isomorphism
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Theorem 76.4.6 (de Rham extends to ring isomorphism)
For any smooth manifold M , the isomorphism of de Rham cohomology groups to
singular cohomology groups in facts gives an isomorphism

H•(M ;R) ∼= H•
dR(M)

of anticommutative rings.

Therefore, if “differential forms” are the way to visualize the elements of a cohomology
group, the wedge product is the correct way to visualize the cup product.

We now present (mostly without proof) the cohomology rings of some common spaces.

Example 76.4.7 (Cohomology of torus)
The cohomology ring H•(S1 × S1;Z) of the torus is generated by elements |α| =
|β| = 1 which satisfy the relations α ⌣ α = β ⌣ β = 0, and α ⌣ β = −β ⌣ α. (It
also includes an identity 1.) Thus as a Z-module it is

H•(S1 × S1;Z) ∼= Z⊕ [αZ⊕ βZ]⊕ (α ⌣ β)Z.

This gives the expected dimensions 1 + 2 + 1 = 4. It is anti-commutative.

You have already seen the elements α and β as the elements called dx and dy in the
remark above.

Example 76.4.8 (Cohomology ring of Sn)
Consider Sn for n ≥ 1. The nontrivial cohomology groups are given by H0(Sn;Z) ∼=
Hn(Sn;Z) ∼= Z. So as an abelian group

H•(Sn;Z) ∼= Z⊕ αZ

where α is the generator of Hn(Sn,Z).
Now, observe that |α ⌣ α| = 2n, but since H2n(Sn;Z) = 0 we must have α ⌣ α = 0.
So even more succinctly,

H•(Sn;Z) ∼= Z[α]/(α2).

Confusingly enough, this graded ring is both commutative and anti-commutative.
The reason is that α ⌣ α = 0 = −(α ⌣ α).

Example 76.4.9 (Cohomology ring of real and complex projective space)
It turns out that

H•(RPn;Z/2Z) ∼= Z/2Z[α]/(αn+1)
H•(CPn;Z) ∼= Z[β]/(βn+1)

where |α| = 1 is a generator of H1(RPn;Z/2Z) and |β| = 2 is a generator of
H2(CPn;Z).
Confusingly enough, both graded rings are commutative and anti-commutative. In
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the first case it is because we work in Z/2Z, for which 1 = −1, so anticommutative
is actually equivalent to commutative. In the second case, all nonzero homogeneous
elements have degree 2.

Already we have an interesting example where the cup product ⌣ is different from
the wedge product ∧ — if n ≥ 2, then the generators α and β above has α ⌣ α ̸= 0 and
β ⌣ β ̸= 0.

Let us try to see what happens here. The formula above says

H•(RP2;Z/2Z) ∼= Z/2Z[α]/(α3)

As an abelian group, there is a single nonzero element in H0(RP2;Z/2Z), H1(RP2;Z/2Z),
and H2(RP2;Z/2Z), and the remaining groups are 0.
RP2 isn’t too hard to visualize — it’s just a 2-sphere, quotient by the relation to

identify opposite vertices.
There is a 1-cycle on it that is not homologous to 0:

It’s not very easy to show, but every such 1-cycle is homologous to each other, and double
of that cycle is homologous to 0.

As such, H1(RP2;Z/2Z) ∼= Hom(H1(RP2),Z/2Z), its only nontrivial element α maps
each such 1-cycle to 1.

a b

c d

Consider α ⌣ α. Notice that α acts like both dx and dy at the same time (both the
blue edge and the red edge got assigned the value 1), so it assigns the value 1 to the
whole surface of the real projective plane! Thus it’s nontrivial.

Exercise 76.4.10. Manually compute the cup product α ⌣ α to verify that. (Divide the
surface into some triangles. [a, c, d] + [a, d, b]− [c, c, d] + [c, d, c] is a working choice. Verify
that the boundary is nonzero, but is divisible by 2.)

§76.5 Relative cohomology pseudo-rings
For A ⊆ X, one can also define a relative cup product

Hk(X,A;R)×Hℓ(X,A;R)→ Hk+ℓ(X,A;R).

After all, if either cochain vanishes on chains in A, then so does their cup product.
This lets us define relative cohomology pseudo-ring and reduced cohomology
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pseudo-ring (by A = {∗}), say

H•(X,A;R) =
⊕
k≥0

Hk(X,A;R)

H̃•(X;R) =
⊕
k≥0

H̃k(X;R).

These are both anticommutative pseudo-rings. Indeed, often we have H̃0(X;R) = 0
and thus there is no identity at all.

Once again we have functoriality:

Theorem 76.5.1 (Cohomology (pseudo-)rings are functorial)
Fix a ring R (commutative with 1). Then we have functors

H•(−;R) : hTopop → GradedRings
H•(−,−;R) : hPairTopop → GradedPseudoRings.

Unfortunately, unlike with (co)homology groups, it is a nontrivial task to determine2

the cup product for even nice spaces like CW complexes. So we will not do much in the
way of computation. However, there is a little progress we can make.

§76.6 Wedge sums

Our goal is to now compute H̃•(X ∨ Y ). To do this, we need to define the product of
two graded pseudo-rings:

Definition 76.6.1. Let R and S be two graded pseudo-rings. The product pseudo-
ring R × S is the graded pseudo-ring defined by taking the underlying abelian group
as

R⊕ S =
⊕
d≥0

(Rd ⊕ Sd).

Multiplication comes from R and S, followed by declaring r · s = 0 for r ∈ R, s ∈ S.

Note that this is just graded version of the product ring defined in Example 4.3.8.

Exercise 76.6.2. Show that if R and S are graded rings (meaning they have 1R and 1S),
then so is R× S.

Now, the theorem is that:

Theorem 76.6.3 (Cohomology pseudo-rings of wedge sums)
We have

H̃•(X ∨ Y ;R) ∼= H̃•(X;R)× H̃•(Y ;R)

as graded pseudo-rings.

2Apart from the method of passing to differential form and back, that is. You have already computed a
wedge product above.
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Knowing just that the rings are isomorphic doesn’t help much, it would be much better
if you know what the isomorphism is — so that in simple cases, you can see for yourself
the rings are isomorphic.

The isomorphism is the most trivial one: Given f ∈ C•(X ∨ Y ;R) that assigns to
each chain c inside X ∨ Y a value f(c) ∈ R, we can interpret it as an element of C•(X),
because each chain inside X is trivially a chain inside X ∨ Y that can be fed into f —
formally, the embedding X ↪→ X ∨ Y induces C•(X) ↪→ C•(X ∨ Y ). The map induces a
H̃•(X ∨ Y ;R)→ H̃•(X;R)× H̃•(Y ;R), and it respects the ring multiplication i.e. the
cup product.

Example 76.6.4
Let X and Y be depicted as in the following figure.

= ∨

Let f ∈ H̃1(X;Z) assigns f(X) = 2 to the whole square, and g ∈ H̃1(Y ;Z) assigns
g(Y ) = 3 to the whole circle. Then, of course the element corresponds to (f, g)
inside H̃1(X ∨Y ) would assigns 2 + 3 = 5 to the cocycle corresponding to the whole
space X ∨ Y .

This allows us to resolve the first question posed at the beginning. Let X = CP2 and
Y = S2 ∨ S4. We have that

H•(CP2;Z) ∼= Z[α]/(α3).

Hence this is a graded ring generated by there elements:

• 1, in dimension 0.

• α, in dimension 2.

• α2, in dimension 4.

Next, consider the reduced cohomology pseudo-ring

H̃•(S2 ∨ S4;Z) ∼= H̃•(S2;Z)⊕ H̃•(S4;Z).

Thus the absolute cohomology ring H•(S2 ∨ S4;Z) is a graded ring also generated by
three elements.

• 1, in dimension 0 (once we add back in the 0th dimension).

• a2, in dimension 2 (from H•(S2;Z)).

• a4, in dimension 4 (from H•(S4;Z)).

Each graded component is isomorphic, like we expected. However, in the former, the
product of two degree 2 generators is

α · α = α2.

In the latter, the product of two degree 2 generators is

a2 · a2 = a2
2 = 0



76 Application of cohomology 791

since a2 ⌣ a2 = 0 ∈ H•(S2;Z).
Thus S2 ∨ S4 and CP2 are not homotopy equivalent.
Intuitively, what the proof above says is:

The nontrivial 4-cocycle a4 ∈ H4(S2 ∨ S4;Z) has nothing to do with the
2-cocycle a2, while the 4-cocycle α2 ∈ H4(CP2) is the cup product α ⌣ α
of the 2-cocycle α with itself.

The exercise below would be much easier to visualize, apart from the fact that RP2 is
nonorientable — in fact, we have already seen above why α ⌣ α ̸= 0 for the nonzero
element α ∈ H1(RP2).

Exercise 76.6.5. Similarly, show that S1 ∨ S2 and RP2 are not homotopy equivalent by
showing H̃•(S1 ∨ S2;Z/2Z) ̸∼= H̃•(RP2;Z/2Z), even though each graded component is
isomorphic.

§76.7 Cross product

In this section, we will define the cross product.

§76.7.i Motivation

Roughly speaking, the motivation is the following:

If X has a m-dimensional hole and Y has a n-dimensional hole, then
X × Y has a (m+ n)-dimensional hole.

Which is true in most common cases under suitable interpretation of “holes” (either
with homology, or with cohomology).

We will formalize and prove the statement above.

§76.7.ii Cross product on singular homology

First, we define the cross product, that takes a m-simplex f : ∆m → X and a n-simplex
g : ∆n → Y , and returns a (m+ n)-chain f × g ∈ Cm+n(X × Y ).3 This is really the most
natural way you might define it: intuitively, the product of a m-dimensional cube in X
and a n-dimensional cube in Y is a (m+ n)-dimensional cube in X × Y .

3As far as I know, this is just because the symbol × is a cross, and it has nothing to do with the cross
product of vectors in R3.
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X

Y

U

V U × V

X × Y

In the case of a simplex, we need to subdivide ∆m ×∆n into finitely many copies of
∆m+n.

If n = 1, we have already seen a subdivision when we worked with the prism operator.
For the general case, refer to [Ha02, page 277] — the number blows up quickly, for
example, you need

(30
15
)

= 155117520 simplices to cover ∆15 ×∆15!
Formally, we can define the cross product of chains: that is, a function

Cm(X)× Cn(Y ) ×−→ Cm×n(X × Y ).

We can prove that this induces a map on homology groups:

Hm(X)×Hn(Y ) ×−→ Hm×n(X × Y ).

Exercise 76.7.1. Let X = Y = S1, so that X × Y is a torus. Let α be a generator of
H1(X), and β be a generator of H1(Y ). Show that α× β is the generator of H2(X × Y ).

Actually, we have the following:

Theorem 76.7.2
If X and Y are CW complexes and R is a PID, then the cross product of two
nonzero elements in Hm(X) and Hn(Y ) is nonzero.

Thus formalize our intuition earlier — at least, if we use homology as a measure of
“holes”.

§76.7.iii Cross product is not a Z-module homomorphism

For this section, if a and b are elements of the Z-module Cm(X) and Cn(Y ) respectively,
we write ×(a, b) to mean a × b ∈ Cm+n(X × Y ), and (a, b) to be the element that
corresponds in the product Cm(X)× Cn(Y ).

There is a little technical detail that we need to sort out — above, we writes

× : Cm(X)× Cn(Y )→ Cm+n(X × Y ).

But written this way, × is not a Z-module homomorphism!
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Example 76.7.3
Let a and b be any nonzero elements in Cm(X) and Cn(Y ) respectively.
Then,

×(a, b) = a× b
2 · (a, b) = (2a, 2b)

×(2 · (a, b)) = 4(a× b).

If we want to talk about isomorphism, or do anything with the Z-module structure of
Cm+n(X × Y ) or Hm+n(X × Y ), we’d better having a Z-module homomorphism.

This is easy enough to fix: × is bilinear, so it’s natural to consider the tensor product:

× : Cm(X)⊗Z Cn(Y )→ Cm+n(X × Y ).

With this notation, ×(a⊗b) = a×b. (As a side effect, we can also write ×(a⊗b+c⊗d) =
a× b+ c× d now.)

And so, let us restate Theorem 76.7.2:

Theorem 76.7.4
If X and Y are CW complexes, then

× : Hm(X)⊗Z Hn(Y )→ Hm+n(X × Y )

is an injective Z-module homomorphism.

§76.7.iv Cross product on cellular homology

The definition with singular homology is quite clumsy — because we use simplices as the
building blocks for the chains, the product of two simplices in X and Y becomes a huge
collection of simplices in X × Y .

We will now redefine the cross product using cellular homology — it can be safely
skipped, since both definitions of the cross product gives identical result on the homology
groups.

If X and Y are CW complexes, we can do better. We see that X × Y has a natural
CW complex structure: for each cell em of X and cell en of Y , their product makes for a
cell em+n of X × Y .

Example 76.7.5
If X and Y are both line segments built from two 0-cells and one 1-cell, then their
product X × Y has a natural CW complex structure containing:

• 4 0-cells,

• 4 1-cells,

• 1 2-cell.

Recall the cellular groups Cells•(X) from Chapter 74, each basis element corresponds
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to a cell in X. Then, we can define the cross product on the basis elements:

× : Cellsm(X)⊗Z Cellsn(Y )→ Cellsm+n(X × Y ).

To be painfully explicit: let em ∈ Cellsm(X), en ∈ Cellsm(Y ), then the cross product is
defined by em × en = em × en ∈ Cellsm+n(X × Y ) — even the notation used is trivial.

Of course, this induces a map on the homology groups:

× : Hm(X)⊗Z Hn(Y )→ Hm+n(X × Y ).

This map is the same as the map we defined earlier.

§76.7.v Cross product on cellular cohomology

We do the same thing as above, but this time with cohomology — remember that
homology and cohomology are slightly different measures of “holes”, for K the Klein
bottle then H2(X) = 0 but H2(X;Z) ̸= 0.

Given two cellular cochains f ∈ Hom(Cellsm(X);R) and g ∈ Hom(Cellsn(Y );R), we
want to obtain a cochain f × g ∈ Hom(Cellsm+n(X × Y );R).

Of course, it is defined in the most natural way possible: for a cell em of X and a cell
en of Y , we have (f × g)(em × en) = f(em) · g(en).

Sounds good? Not yet — since not all (m+n)-cells em+n of X×Y is formed as a product
of a m-cell in X and a n-cell in Y . For those, we simply declare that (f × g)(em+n) = 0.

As usual, this map induces a R-module homomorphism on the cohomology groups:

× : Hm(X;R)⊗R Hn(Y ;R)→ Hm+n(X × Y ;R).

§76.7.vi Motivation: cross product of differential forms

The definition of the cross product of two cellular cochains above are clean, but may
appear to be dry and unmotivated.

Turns out you can do the same thing on differential form. What’s more, it gives a
clean way of defining the wedge product α ∧ β! Let’s see it in action.

Instead of the definition, here are a few examples. Motivated readers may try to define
the concept formally.

Example 76.7.6 (Examples of cross product of differential form)
Here are a few examples.

• If X and Y are the x-axis and the y-axis of the plane respectively, the cross
product dx× 2dy is equal to 2(dx ∧ dy).
Certainly this is natural — as dx assigns the value 1 to the vector e1, and
2dy assigns the value 2 to the vector e2, we get that dx× 2dy should assigns
the value 1 · 2 = 2 to the unit square spanned by e1 and e2 — that is, e1 ∧ e2.

• Let X be the xy-plane, and let Y be the z-axis. Consider the cross product
dx× dz. What 2-form should the result be?
Certainly, we should have (dx× dz)(e1 ∧ e3) = 1 and (dx× dz)(e2 ∧ e3) = 0.
But this isn’t enough to uniquely determines dx× dz.
And so, we declares: (dx×dz)(e1∧e2) = 0. With this, we get dx×dz = dx∧dz.
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More generally, we can define the cross product by picking a basis for X and Y , and
define the value of α× β on the basis elements.

As promised — you can define the wedge product using the cross product. There’s
only one thing you can do:

Definition 76.7.7 (Definition of wedge product using the cross product). For X a
R-vector space, let α ∈ (

∧m(X))∨ and β ∈ (
∧n(X))∨, then α∧ β ∈ (

∧m+n(X) is defined
by

α ∧ β = ∆∗(α× β)

where ∆: X → X ×X, ∆(x) = (x, x) is the diagonal map. Recall that ∆∗ denotes the
pullback operation.

In simpler terms: to evaluate α ∧ β on a (m+ n)-wedge in X, push it to X ×X using
the diagonal map, and give it to α× β.

§76.7.vii Piecing the cohomology groups together

Recall that we have above the R-module homomorphism

× : Hm(X;R)⊗R Hn(Y ;R)→ Hm+n(X × Y ;R).

We know that it is in fact possible to piece all the H•(X;R) together to form an
anticommutative graded ring, the cohomology ring. So we wish to extend the map to a
R-algebra homomorphism

× : H•(X;R)⊗R H•(Y ;R)→ H•(X × Y ;R).

We haven’t defined what the tensor product of two graded rings is yet — we will formally
do that in the next section, but intuitively, it consists of all the Hm(X;R)⊗R Hn(Y ;R)
pieced together.

§76.8 Künneth formula
We now wish to tell apart the spaces S2 × S4 and CP3. In order to do this, we will need
a formula for Hn(X × Y ;R) in terms of Hn(X;R) and Hn(Y ;R). These formulas are
called Künneth formulas. In this section we will only use a very special case, which
involves the tensor product of two graded rings.

Definition 76.8.1. Let A and B be two graded rings which are also R-modules (where
R is a commutative ring with 1). We define the tensor product A⊗R B as follows. As
an abelian group, it is

A⊗R B =
⊕
d≥0

(
d⊕

k=0
Ak ⊗R Bd−k

)
.

The multiplication is given on basis elements by

(a1 ⊗ b1) (a2 ⊗ b2) = (a1a2)⊗ (b1b2).

Of course the multiplicative identity is 1A ⊗ 1B.

Now let X and Y be topological spaces, and take the product: we have a diagram
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X × Y

X Y

πX πY

where πX and πY are projections. As Hk(−;R) is functorial, this gives induced maps

π∗
X : Hk(X × Y ;R)→ Hk(X;R)
π∗
Y : Hk(X × Y ;R)→ Hk(Y ;R)

for every k.
By using this, we can define a so-called cross product.

Definition 76.8.2. Let R be a ring, and X and Y spaces. Let πX and πY be the
projections of X × Y onto X and Y . Then the cross product is the map

H•(X;R)⊗R H•(Y ;R) ×−→ H•(X × Y ;R)

acting on cocycles as follows: ϕ× ψ = π∗
X(ϕ) ⌣ π∗

Y (ψ).

This is just the most natural way to take a k-cocycle on X and an ℓ-cocycle on Y , and
create a (k + ℓ)-cocycle on the product space X × Y .

Remark 76.8.3 — Of course, this definition coincides with the definition above
using cellular cohomology, but the proof is omitted.

Theorem 76.8.4 (Künneth formula)
Let X and Y be CW complexes such that Hk(Y ;R) is a finitely generated free R-
module for every k. Then the cross product is an isomorphism of anticommutative
rings

H•(X;R)⊗R H•(Y ;R)→ H•(X × Y ;R).

That is:

There is a one-to-one correspondence between pair of holes in X and Y
and holes of X × Y . Furthermore, the correspondence respects the cup
product.

Where “holes” is to be understood as “generators of cohomology groups” in this case.
In any case, this finally lets us resolve the question set out at the beginning. We saw that

Hn(CP3) ∼= Hn(S2×S4) for every n, and thus it follows that Hn(CP3;Z) ∼= Hn(S2×S4;Z)
too.

But now let us look at the cohomology rings. First, we have

H•(CP3;Z) ∼= Z[α]/(α4) ∼= Z⊕ αZ⊕ α2Z⊕ α3Z

where |α| = 2; hence this is a graded ring generated by

• 1, in degree 0.

• α, in degree 2.
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• α2, in degree 4.

• α3, in degree 6.

Now let’s analyze

H•(S2 × S4;Z) ∼= Z[β]/(β2)⊗ Z[γ]/(γ2).

It is thus generated thus by the following elements:

• 1⊗ 1, in degree 0.

• β ⊗ 1, in degree 2.

• 1⊗ γ, in degree 4.

• β ⊗ γ, in degree 6.

Again in each dimension we have the same abelian group. But notice that if we square
β ⊗ 1 we get

(β ⊗ 1)(β ⊗ 1) = β2 ⊗ 1 = 0.

Yet the degree 2 generator of H•(CP3;Z) does not have this property. Hence these two
graded rings are not isomorphic.

The nontrivial 4-cocycle 1 ⊗ γ of S2 × S4 is orthogonal to the 2-cocycle
β ⊗ 1, while the 4-cocycle α2 of CP3 is the cup product α ⌣ α of the
2-cocycle α with itself.

So it follows that CP3 and S2 × S4 are not homotopy equivalent.

Exercise 76.8.5. Do the same procedure with H•(RP3;Z/2Z) and H•(S1 × S2;Z/2Z).
(Visualize S1 × S2 as a thickened sphere with the outer and inner face fused together, and
RP 3 as a closed 3-ball with opposing points on the boundary surface fused together. Try to
stretch your mind and guess what the homology and cohomology groups are before formally
compute it.)

§76.9 A few harder problems to think about
Problem 76A† (Symmetry of Betti numbers by Poincaré duality). Let M be a smooth
oriented compact n-manifold, and let bk denote its Betti number. Prove that bk = bn−k.

Problem 76B. Show that RPn is not orientable for even n.

Problem 76C. Show that RP3 is not homotopy equivalent to RP2 ∨ S3.

Problem 76D. Show that Sm ∨ Sn is not a deformation retract of Sm × Sn for any
m,n ≥ 1.
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