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67 Objects and morphisms
I can’t possibly hope to do category theory any justice in these few chapters; thus I’ll

just give a very high-level overview of how many of the concepts we’ve encountered so far
can be re-cast into categorical terms. So I’ll say what a category is, give some examples,
then talk about a few things that categories can do. For my examples, I’ll be drawing
from all the previous chapters; feel free to skip over the examples corresponding to things
you haven’t seen.

If you’re interested in category theory (like I was!), perhaps in what surprising results
are true for general categories, I strongly recommend [Le14].

§67.1 Motivation: isomorphisms
From earlier chapters let’s recall the definition of an isomorphism of two objects:

• Two groups G and H are isomorphic if there was a bijective homomorphism:
equivalently, we wanted homomorphisms ϕ : G → H and ψ : H → G which were
mutual inverses, meaning ϕ ◦ ψ = idH and ψ ◦ ϕ = idG.

• Two metric (or topological) spaces X and Y are isomorphic if there is a continuous
bijection f : X → Y such that f−1 is also continuous.

• Two vector spaces V and W are isomorphic if there is a bijection T : V →W which
is a linear map. Again, this can be re-cast as saying that T and T−1 are linear
maps.

• Two rings R and S are isomorphic if there is a bijective ring homomorphism ϕ;
again, we can re-cast this as two mutually inverse ring homomorphisms.

In each case we have some collections of objects and some maps, and the isomorphisms
can be viewed as just maps. Let’s use this to motivate the definition of a general category.

§67.2 Categories, and examples thereof
Prototypical example for this section: Grp is possibly the most natural example.

Definition 67.2.1. A category A consists of:

• A class of objects, denoted obj(A).

• For any two objects A1, A2 ∈ obj(A), a class of arrows (also called morphisms
or maps) between them. We’ll denote the set of these arrows by HomA(A1, A2).

• For any A1, A2, A3 ∈ obj(A), if f : A1 → A2 is an arrow and g : A2 → A3 is an
arrow, we can compose these arrows to get an arrow g ◦ f : A1 → A3.
We can represent this in a commutative diagram

A1 A2

A3

f

h
g
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where h = g ◦ f . The composition operation ◦ is part of the data of A; it must be
associative. In the diagram above we say that h factors through A2.

• Finally, every object A ∈ obj(A) has a special identity arrow idA; you can guess
what it does.1

Abuse of Notation 67.2.2. From now on, by A ∈ A we’ll mean A ∈ obj(A).

Abuse of Notation 67.2.3. You can think of “class” as just “set”. The reason we can’t
use the word “set” is because of some paradoxical issues with collections which are too
large; Cantor’s Paradox says there is no set of all sets. So referring to these by “class” is
a way of sidestepping these issues.

Now and forever I’ll be sloppy and assume all my categories are locally small, meaning
that HomA(A1, A2) is a set for any A1, A2 ∈ A. So elements of A may not form a set,
but the set of morphisms between two given objects will always assumed to be a set.

Let’s formalize the motivation we began with.

Example 67.2.4 (Basic examples of categories)
(a) There is a category of groups Grp. The data is

• The objects of Grp are the groups.
• The arrows of Grp are the homomorphisms between these groups.
• The composition ◦ in Grp is function composition.

(b) In the same way we can conceive a category CRing of (commutative) rings.

(c) Similarly, there is a category Top of topological spaces, whose arrows are the
continuous maps.

(d) There is a category Top∗ of topological spaces with a distinguished basepoint;
that is, a pair (X,x0) where x0 ∈ X. Arrows are continuous maps f : X → Y
with f(x0) = y0.

(e) Similarly, there is a category Vectk of vector spaces (possibly infinite-dimensional)
over a field k, whose arrows are the linear maps. There is even a category FDVectk
of finite-dimensional vector spaces.

(f) We have a category Set of sets, where the arrows are any maps.

And of course, we can now define what an isomorphism is!

Definition 67.2.5. An arrow A1
f−→ A2 is an isomorphism if there exists A2

g−→ A1
such that f ◦ g = idA2 and g ◦ f = idA1 . In that case we say A1 and A2 are isomorphic,
hence A1 ∼= A2.

Remark 67.2.6 — Note that in Set, X ∼= Y ⇐⇒ |X| = |Y |.

1To be painfully explicit: if f : A′ → A is an arrow then idA ◦ f = f ; similarly, if g : A → A′ is an arrow
then g ◦ idA = g.
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Question 67.2.7. Check that every object in a category is isomorphic to itself. (This is
offensively easy.)

More importantly, this definition should strike you as a little impressive. We’re able to
define whether two groups (rings, spaces, etc.) are isomorphic solely by the functions
between the objects. Indeed, one of the key themes in category theory (and even algebra)
is that

One can learn about objects by the functions between them. Category
theory takes this to the extreme by only looking at arrows, and ignoring
what the objects themselves are.

But there are some trickier interesting examples of categories.

Example 67.2.8 (Posets are categories)
Let P be a partially ordered set. We can construct a category P for it as follows:

• The objects of P are going to be the elements of P.

• The arrows of P are defined as follows:
– For every object p ∈ P , we add an identity arrow idp, and
– For any pair of distinct objects p ≤ q, we add a single arrow p→ q.

There are no other arrows.

• There’s only one way to do the composition. What is it?

For example, for the poset P on four objects {a, b, c, d} with a ≤ b and a ≤ c ≤ d, we get:

d

c

a

b

a ≤ b a ≤ c

a ≤ d

c ≤ d

ida

idb idc

idd

This illustrates the point that

The arrows of a category can be totally different from functions.

In fact, in a way that can be made precise, the term “concrete category” refers to one
where the arrows really are “structure-preserving maps between sets”, like Grp, Top, or
CRing.
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Question 67.2.9. Check that no two distinct objects of a poset are isomorphic.

Here’s a second quite important example of a non-concrete category.

Example 67.2.10 (Important: groups are one-Object categories)
A group G can be interpreted as a category G with one object ∗, all of whose arrows
are isomorphisms.

∗

1 = ida

g2

g3

g4

As [Le14] says:

The first time you meet the idea that a group is a kind of category, it’s
tempting to dismiss it as a coincidence or a trick. It’s not: there’s real
content. To see this, suppose your education had been shuffled and you
took a course on category theory before ever learning what a group was.
Someone comes to you and says:
“There are these structures called ‘groups’, and the idea is this: a group
is what you get when you collect together all the symmetries of a given
thing.”
“What do you mean by a ‘symmetry’?” you ask.
“Well, a symmetry of an object X is a way of transforming X or mapping
X into itself, in an invertible way.”
“Oh,” you reply, “that’s a special case of an idea I’ve met before. A
category is the structure formed by lots of objects and mappings be-
tween them – not necessarily invertible. A group’s just the very special
case where you’ve only got one object, and all the maps happen to be
invertible.”

Exercise 67.2.11. Verify the above! That is, show that the data of a one-object category
with all isomorphisms is the same as the data of a group.

Finally, here are some examples of categories you can make from other categories.

Example 67.2.12 (Deriving categories)
(a) Given a category A, we can construct the opposite category Aop, which is

the same as A but with all arrows reversed.

(b) Given categories A and B, we can construct the product category A× B as
follows: the objects are pairs (A,B) for A ∈ A and B ∈ B, and the arrows from
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(A1, B1) to (A2, B2) are pairs(
A1

f−→ A2, B1
g−→ B2

)
.

What do you think the composition and identities are?

§67.3 Special objects in categories
Prototypical example for this section: Set has initial object ∅ and final object {∗}. An
element of S corresponds to a map {∗} → S.

Certain objects in categories have special properties. Here are a couple exam-
ples.

Example 67.3.1 (Initial object)
An initial object of A is an object Ainit ∈ A such that for any A ∈ A (possibly
A = Ainit), there is exactly one arrow from Ainit to A. For example,

(a) The initial object of Set is the empty set ∅.

(b) The initial object of Grp is the trivial group {1}.

(c) The initial object of CRing is the ring Z (recall that ring homomorphisms R→ S
map 1R to 1S).

(d) The initial object of Top is the empty space.

(e) The initial object of a partially ordered set is its smallest element, if one exists.

We will usually refer to “the” initial object of a category, since:

Exercise 67.3.2 (Important!). Show that any two initial objects A1, A2 of A are uniquely
isomorphic meaning there is a unique isomorphism between them.

Remark 67.3.3 — In mathematics, we usually neither know nor care if two objects
are actually equal or whether they are isomorphic. For example, there are many
competing ways to define R, but we still just refer to it as “the” real numbers.

Thus when we define categorical notions, we would like to check they are unique
up to isomorphism. This is really clean in the language of categories, and definitions
often cause objects to be unique up to isomorphism for elegant reasons like the
above.

One can take the “dual” notion, a terminal object.

Example 67.3.4 (Terminal object)
A terminal object of A is an object Afinal ∈ A such that for any A ∈ A (possibly
A = Afinal), there is exactly one arrow from A to Afinal. For example,

(a) The terminal object of Set is the singleton set {∗}. (There are many singleton
sets, of course, but as sets they are all isomorphic!)
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(b) The terminal object of Grp is the trivial group {1}.

(c) The terminal object of CRing is the zero ring 0. (Recall that ring homomorphisms
R→ S must map 1R to 1S).

(d) The terminal object of Top is the single-point space.

(e) The terminal object of a partially ordered set is its maximal element, if one
exists.

Again, terminal objects are unique up to isomorphism. The reader is invited to repeat
the proof from the preceding exercise here. However, we can illustrate more strongly the
notion of duality to give a short proof.

Question 67.3.5. Verify that terminal objects of A are equivalent to initial objects of Aop.
Thus terminal objects of A are unique up to isomorphism.

In general, one can consider in this way the dual of any categorical notion: properties
of A can all be translated to dual properties of Aop (often by adding the prefix “co” in
front).

One last neat construction: suppose we’re working in a concrete category, meaning
(loosely) that the objects are “sets with additional structure”. Now suppose you’re sick
of maps and just want to think about elements of these sets. Well, I won’t let you do
that since you’re reading a category theory chapter, but I will offer you some advice:

• In Set, arrows from {∗} to S correspond to elements of S.

• In Top, arrows from {∗} to X correspond to points of X.

• In Grp, arrows from Z to G correspond to elements of G.

• In CRing, arrows from Z[x] to R correspond to elements of R.

and so on. So in most concrete categories, you can think of elements as functions from
special sets to the set in question. In each of these cases we call the object in question a
free object.

§67.4 Binary products
Prototypical example for this section: X×Y in most concrete categories is the set-theoretic
product.

The “universal property” is a way of describing objects in terms of maps in such a way
that it defines the object up to unique isomorphism (much the same as the initial and
terminal objects).

To show how this works in general, let me give a concrete example. Suppose I’m in a
category – let’s say Set for now. I have two sets X and Y , and I want to construct the
Cartesian product X × Y as we know it. The philosophy of category theory dictates that
I should talk about maps only, and avoid referring to anything about the sets themselves.
How might I do this?

Well, let’s think about maps into X × Y . The key observation is that

A function A
f−→ X × Y amounts to a pair of functions (A g−→ X,A

h−→ Y ).
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Put another way, there is a natural projection map X × Y → X and X × Y → Y :

X

X × Y

Y

πX

πY

(We have to do this in terms of projection maps rather than elements, because category
theory forces us to talk about arrows.) Now how do I add A to this diagram? The point
is that there is a bijection between functions A f−→ X × Y and pairs (g, h) of functions.
Thus for every pair A g−→ X and A

h−→ Y there is a unique function A
f−→ X × Y .

But X × Y is special in that it is “universal”: for any other set A, if you give me
functions A→ X and A→ Y , I can use it build a unique function A→ X × Y . Picture:

X

A X × Y

Y

g

h

∃!f

πX

πY

We can do this in any general category, defining a so-called product.

Definition 67.4.1. Let X and Y be objects in any category A. The product consists of
an object X × Y and arrows πX , πY to X and Y (thought of as projection). We require
that for any object A and arrows A g−→ X, A h−→ Y , there is a unique function A f−→ X×Y
such that the above diagram commutes.

Abuse of Notation 67.4.2. Strictly speaking, the product should consist of both the
object X×Y and the projection maps πX and πY . However, if πX and πY are understood,
then we often use X × Y to refer to the object, and refer to it also as the product.

Products do not always exist; for example, take a category with just two objects and
no non-identity morphisms. Nonetheless:

Proposition 67.4.3 (Uniqueness of products)
When they exist, products are unique up to isomorphism: given two products P1
and P2 of X and Y there is an isomorphism between the two objects.

Proof. This is very similar to the proof that initial objects are unique up to unique
isomorphism. Consider two such objects P1 and P2, and the associated projection maps.
So, we have a diagram
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X

P1 P2 P1

Y

π1
Y

π1
X

f g

π2
X

π2
Y

π1
X

π1
Y

There are unique morphisms f and g between P1 and P2 that make the entire diagram
commute, according to the universal property.

On the other hand, look at g ◦ f and focus on just the outer square. Observe that g ◦ f
is a map which makes the outer square commute, so by the universal property of P1 it is
the only one. But idP1 works as well. Thus idP1 = g ◦ f . Similarly, f ◦ g = idP2 so f and
g are isomorphisms.

Abuse of Notation 67.4.4. Actually, this is not really the morally correct theorem;
since we’ve only showed the objects P1 and P2 are isomorphic and have not made any
assertion about the projection maps. But I haven’t (and won’t) define isomorphism of
the entire product, and so in what follows if I say “P1 and P2 are isomorphic” I really
just mean the objects are isomorphic.

Exercise 67.4.5. In fact, show the products are unique up to unique isomorphism: the
f and g above are the only isomorphisms between the objects P1 and P2 respecting the
projections.

The nice fact about this “universal property” mindset is that we don’t have to give
explicit constructions; assuming existence, the “universal property” allows us to bypass all
this work by saying “the object with these properties is unique up to unique isomorphism”,
thus we don’t need to understand the internal workings of the object to use its properties.

Of course, that’s not to say we can’t give concrete examples.

Example 67.4.6 (Examples of products)
(a) In Set, the product of two sets X and Y is their Cartesian product X × Y .

(b) In Grp, the product of G, H is the group product G×H.

(c) In Vectk, the product of V and W is V ⊕W .

(d) In CRing, the product of R and S is appropriately the ring product R× S.

(e) Let P be a poset interpreted as a category. Then the product of two objects x
and y is the greatest lower bound; for example,

• If the poset is (R,≤) then it’s min{x, y}.
• If the poset is the subsets of a finite set by inclusion, then it’s x ∩ y.
• If the poset is the positive integers ordered by division, then it’s gcd(x, y).

Of course, we can define products of more than just one object. Consider a set of
objects (Xi)i∈I in a category A. We define a cone on the Xi to be an object A with some
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“projection” maps to each Xi. Then the product is a cone P which is “universal” in the
same sense as before: given any other cone A there is a unique map A→ P making the
diagram commute. In short, a product is a “universal cone”.

The picture of this is

A

P

X1 X2 X3 X4

∃!f

See also Problem 67C.
One can also do the dual construction to get a coproduct: given X and Y , it’s the

object X + Y together with maps X ιX−→ X + Y and Y
ιY−→ X + Y (that’s Greek iota,

think inclusion) such that for any object A and maps X g−→ A, Y h−→ A there is a unique
f for which

X

X + Y A

Y

ιX

g

∃!f

ιY

h

commutes. We’ll leave some of the concrete examples as an exercise this time, for
example:

Exercise 67.4.7. Describe the coproduct in Set.

Predictable terminology: a coproduct is a universal cocone.
Spoiler alert later on: this construction can be generalized vastly to so-called “limits”,

and we’ll do so later on.

§67.5 Monic and epic maps
The notion of “injective” doesn’t make sense in an arbitrary category since arrows need
not be functions. The correct categorical notion is:

Definition 67.5.1. A mapX f−→ Y is monic (or a monomorphism) if for any commutative
diagram

A X Y
g

h

f

we must have g = h. In other words, f ◦ g = f ◦ h =⇒ g = h.

Question 67.5.2. Verify that in a concrete category, injective =⇒ monic.
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Question 67.5.3. Show that the composition of two monic maps is monic.

In most but not all situations, the converse is also true.

Exercise 67.5.4. Show that in Set, Grp, CRing, monic implies injective. (Take A = {∗},
A = Z, A = Z[x].)

More generally, as we said before there are many categories with a “free” object that you
can use to think of as elements. An element of a set is a function 1→ S, and element
of a ring is a function Z[x] → R, et cetera. In all these categories, the definition of
monic literally reads “f is injective on HomA(A,X)”. So in these categories, “monic”
and “injective” coincide.

That said, here is the standard counterexample. An additive abelian group G = (G,+)
is called divisible if for every x ∈ G and integer n > 0 there exists y ∈ G with ny = x.
Let DivAbGrp be the category of such groups.

Exercise 67.5.5. Show that the projection Q→ Q/Z is monic but not injective.

Of course, we can also take the dual notion.

Definition 67.5.6. A map X f−→ Y is epic (or an epimorphism) if for any commutative
diagram

X Y A
f g

h

we must have g = h. In other words, g ◦ f = h ◦ f =⇒ g = h.

This is kind of like surjectivity, although it’s a little farther than last time. Note that
in concrete categories, surjective =⇒ epic.

Exercise 67.5.7. Show that in Set, Grp, Ab, Vectk, Top, the notions of epic and surjective
coincide. (For Set, take A = {0, 1}.)

However, there are more cases where it fails. Most notably:

Example 67.5.8 (Epic but not surjective)
(a) In CRing, for instance, the inclusion Z ↪→ Q is epic (and not surjective). Indeed,

if two homomorphisms Q→ A agree on every integer then they agree everywhere
(why?),

(b) In the category of Hausdorff topological spaces (every two points have disjoint
open neighborhoods), in fact epic ⇐⇒ dense image (like Q ↪→ R).

Thus failures arise when a function f : X → Y can be determined by just some of
the points of X.

§67.6 A few harder problems to think about
Problem 67A. In the category Vectk of k-vector spaces (for a field k), what are the
initial and terminal objects?
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Problem 67B†. What is the coproduct X +Y in the categories Set, Vectk, and a poset?

Problem 67C. In any category A where all products exist, show that

(X × Y )× Z ∼= X × (Y × Z)

where X, Y , Z are arbitrary objects. (Here both sides refer to the objects, as in Abuse
of Notation 67.4.2.)

Problem 67D. Consider a category A with a zero object, meaning an object which
is both initial and terminal. Given objects X and Y in A, prove that the projection
X × Y → X is epic.





68 Functors and natural transformations

Functors are maps between categories; natural transformations are maps between
functors.

§68.1 Many examples of functors

Prototypical example for this section: Forgetful functors; fundamental groups; •∨.

Here’s the point of a functor:

Pretty much any time you make an object out of another object, you get
a functor.

Before I give you a formal definition, let me list (informally) some examples. (You’ll
notice some of them have opposite categories Aop appearing in places. Don’t worry about
those for now; you’ll see why in a moment.)

• Given a group G (or vector space, field, . . . ), we can take its underlying set S; this
is a functor from Grp→ Set.

• Given a set S we can consider a vector space with basis S; this is a functor from
Set→ Vect.

• Given a vector space V we can consider its dual space V ∨. This is a functor
Vectop

k → Vectk.

• Tensor products give a functor from Vectk × Vectk → Vectk.

• Given a set S, we can build its power set, giving a functor Set→ Set.

• In algebraic topology, we take a topological space X and build several groups
H1(X), π1(X), etc. associated to it. All these group constructions are functors
Top→ Grp.

• Sets of homomorphisms: let A be a category.

– Given two vector spaces V1 and V2 over k, we construct the abelian group of
linear maps V1 → V2. This is a functor from Vectop

k × Vectk → AbGrp.

– More generally for any category A we can take pairs (A1, A2) of objects and
obtain a set HomA(A1, A2). This turns out to be a functor Aop ×A → Set.

– The above operation has two “slots”. If we “pre-fill” the first slots, then we
get a functor A → Set. That is, by fixing A ∈ A, we obtain a functor (called
HA) from A → Set by sending A′ ∈ A to HomA(A,A′). This is called the
covariant Yoneda functor (explained later).

– As we saw above, for every A ∈ A we obtain a functor HA : A → Set. It turns
out we can construct a category [A, Set] whose elements are functors A → Set;
in that case, we now have a functor Aop → [A,Set].

691
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That having said, here are some non-functors. Just so that when you see a theorem
that says “F is a functor” (in other words, “F is functorial”), you should read it as “F
has a deep hidden symmetry behind it! This is very nice!” instead of “this theorem is
trivial”.

What is that deep symmetry? Keep reading.

• Given a group G, we can build its automorphism group Aut(G). But this is not a
functor in any natural way.

• Given a group G, we can build its center Z(G), which is the set of elements in G
that commutes with everything in G. Again, this is not a functor in any natural
way.1

• The operation of taking the dual space above is a contravariant functor Vectop
k →

Vectk, but it isn’t a covariant functor Vectk → Vectk. (Don’t worry what a
contravariant functor is for now.)

§68.2 Covariant functors
Prototypical example for this section: Forgetful/free functors, . . .

Category theorists are always asking “what are the maps?”, and so we can now think
about maps between categories.

Definition 68.2.1. Let A and B be categories. Of course, a functor F takes every
object of A to an object of B. In addition, though, it must take every arrow A1

f−→ A2 to
an arrow F (A1) F (f)−−−→ F (A2). You can picture this as follows.

A1 B1 = F (A1)

A ∋ ∈ B

A2 B2 = F (A2)

f F (f)F

(I’ll try to use dotted arrows for functors, which cross different categories, for emphasis.)
It needs to satisfy the “naturality” requirements:

• Identity arrows get sent to identity arrows: for each identity arrow idA, we have
F (idA) = idF (A).

• The functor respects composition: if A1
f−→ A2

g−→ A3 are arrows in A, then
F (g ◦ f) = F (g) ◦ F (f).

So the idea is:

Whenever we naturally make an object A ∈ A into an object of B ∈ B,
there should usually be a natural way to transform a map A1 → A2 into a
map B1 → B2.

Let’s see some examples of this.
1It is easy to find a counterexample based on properties of functor — in particular, identity maps get

sent to identity maps. See https://math.stackexchange.com/q/158438 for a proof.

https://math.stackexchange.com/q/158438
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Example 68.2.2 (Free and forgetful functors)
Note that these are both informal terms, and don’t have a rigid definition.

(a) We talked about a forgetful functor earlier, which takes the underlying set of
a category like Vectk. Let’s call it U : Vectk → Set.
Now, given a map T : V1 → V2 in Vectk, there is an obvious U(T ) : U(V1)→ U(V2)
which is just the set-theoretic map corresponding to T .
Similarly there are forgetful functors from Grp, CRing, etc., to Set. There is even
a forgetful functor CRing→ Grp: send a ring R to the abelian group (R,+). The
common theme is that we are “forgetting” structure from the original category.

(b) We also talked about a free functor in the example. A free functor F : Set→
Vectk can be taken by considering F (S) to be the vector space with basis S.
Now, given a map f : S → T , what is the obvious map F (S)→ F (T )? Simple:
take each basis element s ∈ S to the basis element f(s) ∈ T .
Similarly, we can define F : Set→ Grp by taking the free group generated by a
set S.

Remark 68.2.3 — There is also a notion of “injective” and “surjective” for functors
(on arrows) as follows. A functor F : A → B is faithful (resp. full) if for any A1, A2,
F : HomA(A1, A2)→ HomB(FA1, FA2) is injective (resp. surjective).a

We can use this to give an exact definition of concrete category: it’s a category
with a faithful (forgetful) functor U : A → Set.

aAgain, experts might object that HomA(A1, A2) or HomB(FA1, FA2) may be proper classes
instead of sets, but I am assuming everything is locally small.

Example 68.2.4 (Functors from G)
Let G be a group and G = {∗} be the associated one-object category.

(a) Consider a functor F : G → Set, and let S = F (∗). Then the data of F
corresponds to putting a group action of G on S.

(b) Consider a functor F : G → FDVectk, and let V = F (∗) have dimension n. Then
the data of F corresponds to embedding G as a subgroup of the n× n matrices
(i.e. the linear maps V → V ). This is one way groups historically arose; the
theory of viewing groups as matrices forms the field of representation theory.

(c) Let H be a group and construct H the same way. Then functors G → H
correspond to homomorphisms G→ H.

Exercise 68.2.5. Check the above group-based functors work as advertised.

Here’s a more involved example. If you find it confusing, skip it and come back after
reading about its contravariant version.
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Example 68.2.6 (Covariant Yoneda functor)
Fix an A ∈ A. For a category A, define the covariant Yoneda functor HA : A →
Set by defining

HA(A1) := HomA(A,A1) ∈ Set.

Hence each A1 is sent to the arrows from A to A1; so HA describes how A sees
the world.

Now we want to specify how HA behaves on arrows. For each arrow A1
f−→ A2, we

need to specify Set-map HomA(A,A1)→ Hom(A,A2); in other words, we need to
send an arrow A

p−→ A1 to an arrow A→ A2. There’s only one reasonable way to do
this: take the composition

A
p−→ A1

f−→ A2.

In other words, HA(f) is p 7→ f ◦ p. In still other words, HA(f) = f ◦ −; the − is a
slot for the input to go into.

As another example:

Question 68.2.7. If P and Q are posets interpreted as categories, what does a functor
from P to Q represent?

Now, let me explain why we might care. Consider the following “obvious” fact: if G
and H are isomorphic groups, then they have the same size. We can formalize it by
saying: if G ∼= H in Grp and U : Grp→ Set is the forgetful functor (mapping each group
to its underlying set), then U(G) ∼= U(H). The beauty of category theory shows itself:
this in fact works for any functors and categories, and the proof is done solely through
arrows:

Theorem 68.2.8 (Functors preserve isomorphism)
If A1 ∼= A2 are isomorphic objects in A and F : A → B is a functor then F (A1) ∼=
F (A2).

Proof. Try it yourself! The picture is:

A1 B1 = F (A1)

A ∋ ∈ B

A2 B2 = F (A2)

f F (f)
F

g F (g)

You’ll need to use both key properties of functors: they preserve composition and the
identity map.

This will give us a great intuition in the future, because

(i) Almost every operation we do in our lifetime will be a functor, and

(ii) We now know that functors take isomorphic objects to isomorphic objects.
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Thus, we now automatically know that basically any “reasonable” operation we do will
preserve isomorphism (where “reasonable” means that it’s a functor). This is super
convenient in algebraic topology, for example; see Theorem 65.6.2, where we get for free
that homotopic spaces have isomorphic fundamental groups.

Remark 68.2.9 — This lets us construct a category Cat whose objects are categories
and arrows are functors.

§68.3 Covariant functors as indexed family of objects

Instead of viewing functor as a function, sometimes it is more convenient to view a
functor as an object (or a family of objects).

For sets A and B, sometimes the notation AB is used to denote the set Hom(B,A)
being the set of all functions from B to A. This notation is natural because, for finite
sets A and B, then |Hom(B,A)| = |A||B|.

That said, the product set A×A is sometimes also denoted A2. Is there a relation?
Certainly! We define the set 2 = {0, 1} (or any set of two elements). Then we have
|2| = 2. It is not difficult to see there is a correspondence between A2 and Hom(2, A).

Now, let A be a category. Define the category A×A = A2 the obvious way:

• The objects of A2 are pairs of objects (A1, A2) with A1, A2 ∈ A,

• The morphisms are pairs of morphisms. . .

Exercise 68.3.1. For X,Y ∈ Top, we can define the product space X × Y ∈ Top. This
gives a functor Top2 → Top. Verify this. (From a pair of maps (f, g) : (X1, Y1)→ (X2, Y2)
in Top2, how do we get a map X1 × Y1 → X2 × Y2? Check this map is continuous i.e. it is
indeed a morphism in Top.)

Similar to above, each object in A2 should correspond to some sort of function f : 2→ A.
But a function’s codomain must be an object. . . A is a category, so f should be a functor!

So we can make a category 2, and we have F : 2→ A. There is only one reasonable
way to define 2 that do what we want:2

• The objects are {0, 1};

• There is no morphism, except id0 and id1.

More generally,

A functor F : A → B can be viewed as an indexed collection of objects
{BA ∈ B}A∈A.

This can be most easily seen for a presheaf: “a contravariant functor OpenSets(X)op →
Rings” means “a family of rings indexed by open sets of X, satisfying certain niceness
conditions”.

In fact, just as A2 is a category, the functors 2→ A also forms a category. We will see
this in Section 68.7.

2This is different from the category 2 that we will define later for natural transformation! Be careful.
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§68.4 Contravariant functors
Prototypical example for this section: Dual spaces, contravariant Yoneda functor, etc.

Now I have to explain what the opposite categories were doing earlier. In all the
previous examples, we took an arrow A1 → A2, and it became an arrow F (A1)→ F (A2).
Sometimes, however, the arrow in fact goes the other way: we get an arrow F (A2)→
F (A1) instead. In other words, instead of just getting a functor A → B we ended up
with a functor Aop → B.

These functors have a name:

Definition 68.4.1. A contravariant functor from A to B is a functor F : Aop → B.
(Note that we do not write “contravariant functor F : A → B”, since that would be
confusing; the function notation will always use the correct domain and codomain.)

Pictorially:

A1 B1 = F (A1)

A ∋ ∈ B

A2 B2 = F (A2)

f F F (f)

For emphasis, a usual functor is often called a covariant functor. (The word “functor”
with no adjective always refers to covariant.)

Let’s see why this might happen.

Example 68.4.2 (V 7→ V ∨ is contravariant)
Consider the functor Vectk → Vectk by V 7→ V ∨.

If we were trying to specify a covariant functor, we would need, for every linear
map T : V1 → V2, a linear map T∨ : V ∨

1 → V ∨
2 . But recall that V ∨

1 = Hom(V1, k)
and V ∨

2 = Hom(V2, k): there’s no easy way to get an obvious map from left to right.
However, there is an obvious map from right to left: given ξ2 : V2 → k, we can

easily give a map from V1 → k: just compose with T ! In other words, there is a very
natural map V ∨

2 → V ∨
1 according to the composition

V1 V2 kT ξ2

In summary, a map T : V1 → V2 induces naturally a map T∨ : V ∨
2 → V ∨

1 in the
opposite direction. So the contravariant functor looks like:

V1 V ∨
1

V2 V ∨
2

T
•∨

T∨

We can generalize the example above in any category by replacing the field k with any
chosen object A ∈ A.
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Example 68.4.3 (Contravariant Yoneda functor)
The contravariant Yoneda functor on A, denoted HA : Aop → Set, is used to
describe how objects of A see A. For each X ∈ A it puts

HA(X) := HomA(X,A) ∈ Set.

For X f−→ Y in A, the map HA(f) sends each arrow Y
p−→ A ∈ HomA(Y,A) to

X
f−→ Y

p−→ A ∈ HomA(X,A)

as we did above. Thus HA(f) is an arrow from HomA(Y,A)→ HomA(X,A). (Note
the flipping!)

Exercise 68.4.4. Check now the claim that Aop ×A → Set by (A1, A2) 7→ Hom(A1, A2) is
in fact a functor.

§68.5 Equivalence of categories
fully faithful
and essen-
tially surjec-
tive §68.6 (Optional) Natural transformations

We made categories to keep track of objects and maps, then went a little crazy and asked
“what are the maps between categories?” to get functors. Now we’ll ask “what are the
maps between functors?” to get natural transformations.

It might sound terrifying that we’re drawing arrows between functors, but this is
actually an old idea. Recall that given two paths α, β : [0, 1] → X, we built a path-
homotopy by “continuously deforming” the path α to β; this could be viewed as a function
[0, 1]× [0, 1]→ X. The definition of a natural transformation is similar: we want to pull
F to G along a series of arrows in the target space B.

Definition 68.6.1. Let F,G : A → B be two functors. A natural transformation α
from F to G, denoted

A
F

''

G

77�� α B

consists of, for each A ∈ A an arrow αA ∈ HomB(F (A), G(A)), which is called the
component of α at A. Pictorially, it looks like this:

F (A) ∈ B

A ∋ A

G(A) ∈ B

αA

F

G

These αA are subject to the “naturality” requirement that for any A1
f−→ A2, the diagram
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F (A1) F (A2)

G(A1) G(A2)

F (f)

αA1 αA2

G(f)

commutes.

The arrow αA represents the path that F (A) takes to get to G(A) (just as in a path-
homotopy from α to β each point α(t) gets deformed to the point β(t) continuously). A
picture might help: consider

A1

A2

A3

f g

A

F (A1)

F (A2)

F (A3)

F (f) F (g)

G(A1)

G(A2)

G(A3)

G(f) G(g)

αA1

αA2

αA3

F

G

α

B

Here A is the small category with three elements and two non-identity arrows f , g (I’ve
omitted the identity arrows for simplicity). The images of A under F and G are the blue
and green “subcategories” of B. Note that B could potentially have many more objects
and arrows in it (grey). The natural transformation α (red) selects an arrow of B from
each F (A) to the corresponding G(A), dragging the entire image of F to the image of
G. Finally, we require that any diagram formed by the blue, red, and green arrows is
commutative (naturality), so the natural transformation is really “natural”.

There is a second equivalent definition that looks much more like the homotopy.

Definition 68.6.2. Let 2 denote the category generated by a poset with two elements
0 ≤ 1, that is,

10 0 ≤ 1

id0 id1

Then a natural transformation A
F

''

G

77�� α B is just a functor α : A× 2→ B satisfying

α(A, 0) = F (A), α(f, 0) = F (f) and α(A, 1) = G(A), α(f, 1) = G(f).

More succinctly, α(−, 0) = F , α(−, 1) = G.

The proof that these are equivalent is left as a practice problem.
Naturally, two natural transformations α : F → G and β : G→ H can get composed.
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F (A)

A ∋ A G(A)

H(A)

αA
F

G

H
βA

Now suppose α is a natural transformation such that αA is an isomorphism for each A.
In this way, we can construct an inverse arrow βA to it.

F (A) ∈ B

A ∋ A

G(A) ∈ B

αA

F

G

βA

In this case, we say α is a natural isomorphism. We can then say that F (A) ∼= G(A)
naturally in A. (And β is an isomorphism too!) This means that the functors F and G
are “really the same”: not only are they isomorphic on the level of objects, but these
isomorphisms are “natural”. As a result of this, we also write F ∼= G to mean that the
functors are naturally isomorphic.

This is what it really means when we say that “there is a natural / canonical isomor-
phism”. For example, I claimed earlier (in Problem 15A⋆) that there was a canonical
isomorphism (V ∨)∨ ∼= V , and mumbled something about “not having to pick a basis”
and “God-given”. Category theory, amazingly, lets us formalize this: it just says that
(V ∨)∨ ∼= id(V ) naturally in V ∈ FDVectk. Really, we have a natural transformation

FDVectk
id

,,

(•∨)∨
22�� ε FDVectk .

where the component εV is given by v 7→ evv (as discussed earlier, the fact that it is an
isomorphism follows from the fact that V and (V ∨)∨ have equal dimensions and εV is
injective).

Another example can be found in Remark 71.2.8.

§68.7 (Optional) The Yoneda lemma
Now that I have natural transformations, I can define:

Definition 68.7.1. The functor category of two categories A and B, denoted [A,B],
is defined as follows:

• The objects of [A,B] are (covariant) functors F : A → B, and

• The morphisms are natural transformations α : F → G.

Question 68.7.2. When are two objects in the functor category isomorphic?

With this, I can make good on the last example I mentioned at the beginning:
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Exercise 68.7.3. Construct the following functors:

• A → [Aop,Set] by A 7→ HA, which we call H•.

• Aop → [A,Set] by A 7→ HA, which we call H•.

Notice that we have opposite categories either way; even if you like HA because it is
covariant, the map H• is contravariant. So for what follows, we’ll prefer to use H•.

The main observation now is that given a category A, H• provides some special functors
Aop → Set which are already “built” in to the category A. In light of this, we define:

Definition 68.7.4. A presheaf X is just a contravariant functor Aop → Set. It is called
representable if X ∼= HA for some A.

In other words, when we think about representable, the question we’re asking is:

What kind of presheaves are already “built in” to the category A?

One way to get at this question is: given a presheaf X and a particular HA, we can look
at the set of natural transformations α : X =⇒ HA, and see if we can learn anything
about it. In fact, this set can be written explicitly:

Theorem 68.7.5 (Yoneda lemma)
Let A be a category, pick A ∈ A, and let HA be the contravariant Yoneda functor.
Let X : Aop → Set be a contravariant functor. Then the mapNatural transformations Aop

HA
))

X

55�� α Set

→ X(A)

defined by α 7→ αA(idA) ∈ X(A) is an isomorphism of Set (i.e. a bijection). Moreover,
if we view both sides of the equality as functors

Aop × [Aop,Set]→ Set

then this isomorphism is natural.

This might be startling at first sight. Here’s an unsatisfying explanation why this
might not be too crazy: in category theory, a rule of thumb is that “two objects of
the same type that are built naturally are probably the same”. You can see this theme
when we defined functors and natural transformations, and even just compositions. Now
to look at the set of natural transformations, we took a pair of elements A ∈ A and
X ∈ [Aop, Set] and constructed a set of natural transformations. Is there another way we
can get a set from these two pieces of information? Yes: just look at X(A). The Yoneda
lemma is telling us that our heuristic still holds true here.

Some consequences of the Yoneda lemma are recorded in [Le14]. Since this chapter is
already a bit too long, I’ll just write down the statements, and refer you to [Le14] for the
proofs.

1. As we mentioned before, H• provides a functor

A → [Aop,Set].
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It turns out this functor is in fact fully faithful; it quite literally embeds the category
A into the functor category on the right (much like Cayley’s theorem embeds every
group into a permutation group).

2. If X,Y ∈ A then

HX
∼= HY ⇐⇒ X ∼= Y ⇐⇒ HX ∼= HY .

To see why this is expected, consider A = Grp for concreteness. Suppose A, X, Y
are groups such that HX(A) ∼= HY (A) for all A. For example,

• If A = Z, then |X| = |Y |.
• If A = Z/2Z, then X and Y have the same number of elements of order 2.
• . . .

Each A gives us some information on how X and Y are similar, but the whole
natural isomorphism is strong enough to imply X ∼= Y .

3. Consider the covariant forgetful functor U : Grp→ Set.3 It can be represented by
HZ, in the sense that

HomGrp(Z, G) ∼= U(G) by ϕ 7→ ϕ(1).

That is, elements of G are in bijection with maps Z→ G, determined by the image
of +1 (or −1 if you prefer). So a representation of U was determined by looking at
Z and picking +1 ∈ U(Z).
The generalization of this is a follows: let A be a category and X : A → Set a
covariant functor. Then a representation HA ∼= X consists of an object A ∈ A
and an element u ∈ X(A) satisfying a certain condition. You can read this off the
condition4 if you know what the inverse map is in Theorem 68.7.5. In the above
situation, X = U , A = Z and u = ±1.

§68.8 A few harder problems to think about
Problem 68A. Show that the two definitions of natural transformation (one in terms
of A× 2→ B and one in terms of arrows F (A) αA−−→ G(A)) are equivalent.

Problem 68B. Let A be the category of finite sets whose arrows are bijections between
sets. For A ∈ A, let F (A) be the set of permutations of A and let G(A) be the set of
orderings on A.5

(a) Extend F and G to functors A → Set.

(b) Show that F (A) ∼= G(A) for every A, but this isomorphism is not natural.

Problem 68C (Proving the Yoneda lemma). In the context of Theorem 68.7.5:

(a) Prove that the map described is in fact a bijection. (To do this, you will probably
have to explicitly write down the inverse map.)

(b) Prove that the bijection is indeed natural. (This is long-winded, but not difficult;
from start to finish, there is only one thing you can possibly do.)

3Actually, you need to apply a dual version. Theorem 68.7.5 uses contravariant functor.
4Just for completeness, the condition is: For all A′ ∈ A and x ∈ X(A′), there’s a unique f : A → A′

with (Xf)(u) = x.
5A permutation is a bijection A → A, and an ordering is a bijection {1, . . . , n} → A, where n is the size

of A.





69 Limits in categories (TO DO)

We saw near the start of our category theory chapter the nice construction of products
by drawing a bunch of arrows. It turns out that this concept can be generalized immensely,
and I want to give a you taste of that here.

To run this chapter, we follow the approach of [Le14].write intro-
duction

§69.1 Equalizers
Prototypical example for this section: The equalizer of f, g : X → Y is the set of points
with f(x) = g(x).

Given two sets X and Y , and maps X f,g−−→ Y , we define their equalizer to be

{x ∈ X | f(x) = g(x)} .

We would like a categorical way of defining this, too.
Consider two objects X and Y with two maps f and g between them. Stealing a page

from [Le14], we call this a fork:

X Y
f

g

A cone over this fork is an object A and arrows over X and Y which make the diagram
commute, like so.

A

X Y

q
f◦q=g◦q

f

g

Effectively, the arrow over Y is just forcing f ◦ q = g ◦ q. In any case, the equalizer of f
and g is a “universal cone” over this fork: it is an object E and a map E e−→ X such that
for each A

q−→ X the diagram

A

E

X Y

∃!h
q

e

f

g

commutes for a unique A h−→ E. In other words, any map A
q−→ X as above must factor

uniquely through E. Again, the dotted arrows can be omitted, and as before equalizers
may not exist. But when they do exist:

703
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Exercise 69.1.1. If E e−→ X and E′ e′

−→ X are equalizers, show that E ∼= E′.

Example 69.1.2 (Examples of equalizers)
(a) In Set, given X f,g−−→ Y the equalizer E can be realized as E = {x | f(x) = g(x)},

with the inclusion e : E ↪→ X as the morphism. As usual, by abuse we’ll often
just refer to E as the equalizer.

(b) Ditto in Top, Grp. One has to check that the appropriate structures are preserved
(e.g. one should check that {ϕ(g) = ψ(g) | g ∈ G} is a group).

(c) In particular, given a homomorphism ϕ : G→ H, the inclusion kerϕ ↪→ G is an
equalizer for the fork G→ H by ϕ and the trivial homomorphism.

According to (c) equalizers let us get at the concept of a kernel if there is a distinguished
“trivial map”, like the trivial homomorphism in Grp. We’ll flesh this idea out in the
chapter on abelian categories.

§69.2 Pullback squares (TO DO)
write me

Great example: differentiable functions on (−3, 1) and (−1, 3)

Example 69.2.1

§69.3 Limits
We’ve defined cones over discrete sets of Xi and over forks. It turns out you can also
define a cone over any general diagram of objects and arrows; we specify a projection
from A to each object and require that the projections from A commute with the arrows
in the diagram. (For example, a cone over a fork is a diagram with two edges and two
arrows.) If you then demand the cone be universal, you have the extremely general
definition of a limit. As always, these are unique up to unique isomorphism. We can
also define the dual notion of a colimit in the same way.

§69.4 A few harder problems to think about
Problem 69A⋆ (Equalizers are monic). Show that the equalizer of any fork is monic.

pushout square gives tenor product
p-adic
relative Chinese remainder theorem!!



70 Abelian categories
In this chapter I’ll translate some more familiar concepts into categorical language;

this will require some additional assumptions about our category, culminating in the
definition of a so-called “abelian category”. Once that’s done, I’ll be able to tell you what
this “diagram chasing” thing is all about.

Throughout this chapter, “↪→” will be used for monic maps and “↠” for epic maps.

§70.1 Zero objects, kernels, cokernels, and images
Prototypical example for this section: In Grp, the trivial group and homomorphism are
the zero objects and morphisms. If G, H are abelian then the cokernel of ϕ : G→ H is
H/ imϕ.

A zero object of a category is an object 0 which is both initial and terminal; of course,
it’s unique up to unique isomorphism. For example, in Grp the zero object is the trivial
group, in Vectk it’s the zero-dimensional vector space consisting of one point, and so
on.

Question 70.1.1. Show that Set and Top don’t have zero objects.

For the rest of this chapter, all categories will have zero objects.
In a category A with zero objects, any two objects A and B thus have a distinguished

morphism
A→ 0→ B

which is called the zero morphism and also denoted 0. For example, in Grp this is the
trivial homomorphism.

We can now define:

Definition 70.1.2. Consider a map A
f−→ B. The kernel is defined as the equalizer of

this map and the map A
0−→ B. Thus, it’s a map ker f : Ker f ↪→ A such that

Ker f

A B

0⊃ker f

f

commutes, and moreover any other map with the same property factors uniquely through
KerA (so it is universal with this property). By Problem 69A⋆, ker f is a monic morphism,
which justifies the use of “↪→”.

Notice that we’re using ker f to represent the map and Ker f to represent the object
Similarly, we define the cokernel, the dual notion:

Definition 70.1.3. Consider a map A f−→ B. The cokernel of f is a map coker f : B ↠
Coker f such that

A B

Coker f

f

0 coker f

705
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commutes, and moreover any other map with the same property factors uniquely through
Coker f (so it is universal with this property). Thus it is the “coequalizer” of this map
and the map A 0−→ B. By the dual of Problem 69A⋆, coker f is an epic morphism, which
justifies the use of “↠”.

Think of the cokernel of a map A f−→ B as “B modulo the image of f”.

Example 70.1.4 (Cokernels)
Consider the map Z/6Z→ D12 =

〈
r, s | r6 = s2 = 1, rs = sr−1〉. Then the cokernel

of this map in Grp is D12/ ⟨r⟩ ∼= Z/2Z.

This doesn’t always work out quite the way we want since in general the image of a
homomorphism need not be normal in the codomain. Nonetheless, we can use this to
define:

Definition 70.1.5. The image of A f−→ B is the kernel of coker f . We denote Im f =
Ker(coker f). This gives a unique map im f : A→ Im f .

When it exists, this coincides with our concrete notion of “image”. Picture:

A B

Im f Coker f
∃!

f

0 coker f⊃

0

Note that by universality of Im f , we find that there is a unique map im f : A → Im f
that makes the entire diagram commute.

§70.2 Additive and abelian categories
Prototypical example for this section: Ab, Vectk, or more generally ModR.

We can now define the notion of an additive and abelian category, which are the types
of categories where this notion is most useful.

Definition 70.2.1. An additive category A is one such that:

• A has a zero object, and any two objects have a product.

• More importantly: every HomA(A,B) forms an abelian group (written additively)
such that composition distributes over addition:

(g + h) ◦ f = g ◦ f + h ◦ f and f ◦ (g + h) = f ◦ g + f ◦ h.

The zero map serves as the identity element for each group.

In short:

In an additive category, you can add two morphisms.

Which is the only definition that makes sense anyway, we cannot talk about elements.

Definition 70.2.2. An abelian category A is one with the additional properties that
for any morphism A

f−→ B,
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• The kernel and cokernel exist, and

• The morphism factors through the image so that im(f) is epic.

So, this yields a diagram

Ker(f) Im(f) Coker(f)

A B

⊃

ker(f)

⊃

im(f)

f

coker(f)

Example 70.2.3 (Examples of abelian categories)
(a) Vectk, Ab are abelian categories, where f + g takes its usual meaning.

(b) Generalizing this, the category ModR of R-modules is abelian.

(c) Grp is not even additive, because there is no way to assign a commutative
addition to pairs of morphisms.

From now on, you can basically forget about additive category, we will be working in
abelian category.

In general, once you assume a category is abelian, all the properties you would want of
these kernels, cokernels, . . . that you would guess hold true. For example,

Proposition 70.2.4 (Monic ⇐⇒ trivial kernel)

A map A
f−→ B is monic if and only if its kernel is 0→ A. Dually, A f−→ B is epic if

and only if its cokernel is B → 0.

Proof. The easy direction is:

Exercise 70.2.5. Show that if A f−→ B is monic, then 0→ A is a kernel. (This holds even
in non-abelian categories.)

Of course, since kernels are unique up to isomorphism, monic =⇒ 0 kernel. On the
other hand, assume that 0→ A is a kernel of A f−→ B. For this we can exploit the group
structure of the underlying homomorphisms now. Assume the diagram

Z A B
g

h

f

commutes. Then (g − h) ◦ f = g ◦ f − h ◦ f = 0, and we’ve arrived at a commutative
diagram.

Z

A B

g−h 0

f

But since 0→ A is a kernel it follows that g−h factors through 0, so g−h = 0 =⇒ g = h,
which is to say that f is monic.



708 Napkin, by Evan Chen (v1.6.20241027)

Proposition 70.2.6 (Isomorphism ⇐⇒ monic and epic)
In an abelian category, a map is an isomorphism if and only if it is monic and epic.

Proof. Omitted. (The Mitchell embedding theorem presented later implies this anyways
for most situations we care about, by looking at a small sub-category.)

§70.3 Exact sequences
Prototypical example for this section: 0→ G→ G×H → H → 0 is exact.

Exact sequences will seem exceedingly unmotivated until you learn about homology
groups, which is one of the most natural places that exact sequences appear. In light of
this, it might be worth trying to read the chapter on homology groups simultaneously
with this one.

First, let me state the definition for groups, to motivate the general categorical definition.
A sequence of groups

G0
f1−→ G1

f2−→ G2
f3−→ . . .

fn−→ Gn

is exact at Gk if the image of fk is the kernel of fk+1. We say the entire sequence is exact
if it’s exact at k = 1, . . . , n− 1.

Example 70.3.1 (Exact sequences)
(a) The sequence

0→ Z/3Z ×5
↪→ Z/15Z ↠ Z/5Z→ 0

is exact. Actually, 0 → G ↪→ G × H ↠ H → 0 is exact in general. (Here 0
denotes the trivial group.)

(b) For groups, the map 0→ A→ B is exact if and only if A→ B is injective.

(c) For groups, the map A→ B → 0 is exact if and only if A→ B is surjective.

If you look at the prototypical example, actually, a short exact sequence (an exact
sequence of the form 0→ A→ B → C → 0) is the most natural things ever:

It’s basically just an equation C = B/A.

Whenever you see “there is a short exact sequence 0 → A → B → C → 0”, you can
mentally translate it to “C ∼= B/A”; but there’s a slight difference: A group has more
structures than a number, so the sequence also contains the information of the maps —
the map that identifies A with a subgroup of B, and the map that identifies C with the
quotient group B/A.

Example 70.3.2 (More exact sequences)
(a) The sequence

0→ Z ×3−−→ Z→ Z/3Z→ 0

is short exact.



70 Abelian categories 709

(b) So is
0→ Z ×5−−→ Z→ Z/5Z→ 0.

As you can see, the written equation “C ∼= B/A” is not completely accurate, the
map A→ B also matters in determining what C is. This also explains the common
notation: the image of the map Z ×3−−→ Z is usually written 3Z, thus Z/3Z = Z

3Z .

Now, we want to mimic this definition in a general abelian category A. So, let’s write
down a criterion for when A f−→ B

g−→ C is exact. First, we had better have that g ◦ f = 0,
which encodes the fact that im(f) ⊆ ker(g). Adding in all the relevant objects, we get
the commutative diagram below.

A C

B

Im f Ker g

f

0

im f

g

⊃ι

∃!

0

⊃

Here the map A↠ Im f is epic since we are assuming A is an abelian category. So, we
have that

0 = (g ◦ ι) ◦ im f = g ◦ (ι ◦ im f) = g ◦ f = 0
but since im f is epic, this means that g ◦ ι = 0. So there is a unique map Im f → Ker g,
and we require that this diagram commutes. In short,

Definition 70.3.3. Let A be an abelian category. The sequence

· · · → An−1
fn−→ An

fn+1−−−→ An+1 → . . .

is exact at An if fn◦fn+1 = 0 and the canonical map Im fn → Ker fn+1 is an isomorphism.
The entire sequence is exact if it is exact at each Ai. (For finite sequences we don’t
impose condition on the very first and very last object.)

Exercise 70.3.4. Show that, as before, 0→ A→ B is exact ⇐⇒ A→ B is monic.

§70.4 The Freyd-Mitchell embedding theorem
We now introduce the Freyd-Mitchell embedding theorem, which essentially says that
any abelian category can be realized as a concrete one.

Definition 70.4.1. A category is small if obj(A) is a set (as opposed to a class), i.e.
there is a “set of all objects in A”. For example, Set is not small because there is no set
of all sets.

Theorem 70.4.2 (Freyd-Mitchell embedding theorem)
Let A be a small abelian category. Then there exists a ring R (with 1 but possibly
non-commutative) and a full, faithful, exact functor onto the category of left R-
modules.

Here a functor is exact if it preserves exact sequences. This theorem is good because it
means
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You can basically forget about all the weird definitions that work in any
abelian category.

Any time you’re faced with a statement about an abelian category, it suffices to just prove
it for a “concrete” category where injective/surjective/kernel/image/exact/etc. agree
with your previous notions. A proof by this means is sometimes called diagram chasing.

Remark 70.4.3 — The “small” condition is a technical obstruction that requires
the objects A to actually form a set. I’ll ignore this distinction, because one can
almost always work around it by doing enough set-theoretic technicalities.

For example, let’s prove:

Lemma 70.4.4 (Short five lemma)
In an abelian category, consider the commutative diagram

0 A B C 0

0 A′ B′ C ′ 0

⊃p

α∼=

q

β γ∼=

⊃

p′ q′

and assume the top and bottom rows are exact. If α and γ are isomorphisms, then
so is β.

Proof. We prove that β is epic (with a similar proof to get monic). By the embedding
theorem we can treat the category as R-modules over some R. This lets us do a so-
called “diagram chase” where we move elements around the picture, using the concrete
interpretation of our category as R-modules.

Let b′ be an element of B′. Then q′(b′) ∈ C ′, and since γ is surjective, we have a c
such that γ(c) = b′, and finally a b ∈ B such that q(b) = c. Picture:

b ∈ B c ∈ C

b′ ∈ B′ c′ ∈ C ′

q

β γ∼=
q′

Now, it is not necessarily the case that β(b) = b′. However, since the diagram commutes
we at least have that

q′(b′) = q′(β(b))

so b′ − β(b) ∈ Ker q′ = Im p′, and there is an a′ ∈ A′ such that p′(a′) = b′ − β(b); use α
now to lift it to a ∈ A. Picture:

a ∈ A b ∈ B

a′ ∈ A′ b′ − β(b) ∈ B′ 0 ∈ C

Then, we have

β(b+ q(a)) = βb+ βpa = βb+ p′αa = βb+ (b′ − βb) = b′

so b′ ∈ Im β which completes the proof that β′ is surjective.
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§70.5 Breaking long exact sequences
Prototypical example for this section: First isomorphism theorem.

In fact, it turns out that any exact sequence breaks into short exact sequences. This
relies on:

Proposition 70.5.1 (“First isomorphism theorem” in abelian categories)

Let A f−→ B be an arrow of an abelian category. Then there is an exact sequence

0→ Ker f ker f−−−→ A
im f−−→ Im f → 0.

Example 70.5.2
Let’s analyze this theorem in our two examples of abelian categories:

(a) In the category of abelian groups, this is basically the first isomorphism theorem.

(b) In the category Vectk, this amounts to the rank-nullity theorem, Theorem 9.7.7.

Thus, any exact sequence can be broken into short exact sequences, as

0 0 0 0

Cn Cn+2

. . . An−1 An An+1 . . .

Cn−1 Cn+1

0 0 0 0

fn−1

fn

fn+1

where Ck = im fk−1 = ker fk for every k.

§70.6 A few harder problems to think about
Problem 70A (Four lemma). In an abelian category, consider the commutative diagram

A B C D

A′ B′ C ′ D′

p

α

q

⊃β

r

γ ⊃

δ

p′ q′ r′

where the first and second rows are exact. Prove that if α is epic, and β and δ are monic,
then γ is monic.

Problem 70B (Five lemma). In an abelian category, consider the commutative diagram

A B C D E

A′ B′ C ′ D′ E′

p

α

q

β ∼=

r

γ

s

δ ∼= ⊃ε

p′ q′ r′ s′
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where the two rows are exact, β and δ are isomorphisms, α is epic, and ε is monic. Prove
that γ is an isomorphism.

Problem 70C⋆ (Snake lemma). In an abelian category, consider the diagram

A B C 0

0 A′ B′ C ′

f

a

g

b c

⊃

f ′ g′

where the first and second rows are exact sequences. Prove that there is an exact sequence

Ker a→ Ker b→ Ker c→ Coker a→ Coker b→ Coker c.

Problem 70D (An additive category that is not abelian). Consider a category, where:

• the objects are pairs of abelian groups (B,A) where A is a subgroup of B.

• the morphisms (B,A)→ (B′, A′) are maps f : B → B′ where f img(A) ⊆ A′.

(You can think of this similar to the PairTop category, seen in Chapter 73. We use abelian
groups here to make the category additive.)

This category can be equivalently viewed as the category of short exact sequences
0→ A→ B → B/A→ 0 of abelian groups.

Show that the arrow (X, 0) → (X,X) is monic and epic, but not an isomorphism.
Conclude that the category is not abelian.
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