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64 Some topological constructions

In this short chapter we briefly describe some common spaces and constructions in
topology that we haven’t yet discussed.

§64.1 Spheres
Recall that

Sn =
{

(x0, . . . , xn) | x2
0 + · · ·+ x2

n = 1
}
⊂ Rn+1

is the surface of an n-sphere while

Dn+1 =
{

(x0, . . . , xn) | x2
0 + · · ·+ x2

n ≤ 1
}
⊂ Rn+1

is the corresponding closed ball (So for example, D2 is a disk in a plane while S1 is the
unit circle.)

Exercise 64.1.1. Show that the open ball Dn \ Sn−1 is homeomorphic to Rn.

In particular, S0 consists of two points, while D1 can be thought of as the interval
[−1, 1].

S0D1

D2

S1

§64.2 Quotient topology
Prototypical example for this section: Dn/Sn−1 = Sn, or the torus.

Given a space X, we can identify some of the points together by any equivalence
relation ∼; for an x ∈ X we denote its equivalence class by [x]. Geometrically, this is the
space achieved by welding together points equivalent under ∼.

Formally,

Definition 64.2.1. Let X be a topological space, and ∼ an equivalence relation on the
points of X. Then X/∼ is the space whose

• Points are equivalence classes of X, and

• U ⊆ X/∼ is open if and only if {x ∈ X such that [x] ∈ U} is open in X.

As far as I can tell, this definition is mostly useless for intuition, so here are some
examples.

651
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Example 64.2.2 (Interval modulo endpoints)
Suppose we take D1 = [−1, 1] and quotient by the equivalence relation which
identifies the endpoints −1 and 1. (Formally, x ∼ y ⇐⇒ (x = y) or {x, y} =
{−1, 1}.) In that case, we simply recover S1:

−11 D1

S1 ≈ D1/∼
−1 ∼ 1

Observe that a small open neighborhood around −1 ∼ 1 in the quotient space
corresponds to two half-intervals at −1 and 1 in the original space D1. This should
convince you the definition we gave is the right one.

Example 64.2.3 (More quotient spaces)
Convince yourself that:

• Generalizing the previous example, Dn modulo its boundary Sn−1 is Sn.

• Given a square ABCD, suppose we identify segments AB and DC together.
Then we get a cylinder. (Think elementary school, when you would tape up
pieces of paper together to get cylinders.)

• In the previous example, if we also identify BC and DA together, then we
get a torus. (Imagine taking our cylinder and putting the two circles at the
end together.)

• Let X = R, and let x ∼ y if y − x ∈ Z. Then X/∼ is S1 as well.

One special case that we did above:

Definition 64.2.4. Let A ⊆ X. Consider the equivalence relation which identifies all
the points of A with each other while leaving all remaining points inequivalent. (In other
words, x ∼ y if x = y or x, y ∈ A.) Then the resulting quotient space is denoted X/A.

So in this notation,
Dn/Sn−1 = Sn.

Abuse of Notation 64.2.5. Note that I’m deliberately being sloppy, and saying
“Dn/Sn−1 = Sn” or “Dn/Sn−1 is Sn”, when I really ought to say “Dn/Sn−1 is homeo-
morphic to Sn”. This is a general theme in mathematics: objects which are homoeomor-
phic/isomorphic/etc. are generally not carefully distinguished from each other.

Example 64.2.6 (Weirder quotient spaces)
If the subset A is not closed in X, X/A would be quite weird.
For instance, let X = R and A = (0, 1). Then the space X/A consists of the points
(−∞, 0]∪ {A/A} ∪ [1,∞). Here, the points 0 and A/A are different; yet every open
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set that contains 0, also contains A/A.
We say this space X/A is not Hausdorff.

§64.3 Product topology

Prototypical example for this section: R× R is R2, S1 × S1 is the torus.

Definition 64.3.1. Given topological spaces X and Y , the product topology on X×Y
is the space whose

• Points are pairs (x, y) with x ∈ X, y ∈ Y , and

• Topology is given as follows: the basis of the topology for X × Y is U × V , for
U ⊆ X open and V ⊆ Y open.

Remark 64.3.2 — It is not hard to show that, in fact, one need only consider basis
elements for U and V . That is to say,

{U × V | U, V basis elements for X,Y }

is also a basis for X × Y .
We really do need to fiddle with the basis: in R× R, an open unit disk better be
open, despite not being of the form U × V .

This does exactly what you think it would.

Example 64.3.3 (The unit square)
Let X = [0, 1] and consider X ×X. We of course expect this to be the unit square.
Pictured below is an open set of X ×X in the basis.

U × V

U

V

Exercise 64.3.4. Convince yourself this basis gives the same topology as the product
metric on X ×X. So this is the “right” definition.
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Example 64.3.5 (More product spaces)
(a) R× R is the Euclidean plane.

(b) S1 × [0, 1] is a cylinder.

(c) S1 × S1 is a torus! (Why?)

§64.4 Disjoint union and wedge sum
Prototypical example for this section: S1 ∨ S1 is the figure eight.

The disjoint union of two spaces is geometrically exactly what it sounds like: you just
imagine the two spaces side by side. For completeness, here is the formal definition.

Definition 64.4.1. Let X and Y be two topological spaces. The disjoint union,
denoted X ⨿ Y , is defined by

• The points are the disjoint union X ⨿ Y , and

• A subset U ⊆ X ⨿ Y is open if and only if U ∩X and U ∩ Y are open.

Exercise 64.4.2. Show that the disjoint union of two nonempty spaces is disconnected.

More interesting is the wedge sum, where two topological spaces X and Y are fused
together only at a single base point.

Definition 64.4.3. Let X and Y be topological spaces, and x0 ∈ X and y0 ∈ Y be
points. We define the equivalence relation ∼ by declaring x0 ∼ y0 only. Then the wedge
sum of two spaces is defined as

X ∨ Y = (X ⨿ Y )/∼.

Example 64.4.4 (S1 ∨ S1 is a figure eight)
Let X = S1 and Y = S1, and let x0 ∈ X and y0 ∈ Y be any points. Then X ∨ Y is
a “figure eight”: it is two circles fused together at one point.

Abuse of Notation 64.4.5. We often don’t mention x0 and y0 when they are understood
(or irrelevant). For example, from now on we will just write S1 ∨ S1 for a figure eight.

Remark 64.4.6 — Annoyingly, in LATEX \wedge gives ∧ instead of ∨ (which is
\vee). So this really should be called the “vee product”, but too late.

§64.5 CW complexes
Using this construction, we can start building some spaces. One common way to do so is
using a so-called CW complex. Intuitively, a CW complex is built as follows:
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• Start with a set of points X0.

• Define X1 by taking some line segments (copies of D1) and fusing the endpoints
(copies of S0) onto X0.

• Define X2 by taking copies of D2 (a disk) and welding its boundary (a copy of S1)
onto X1.

• Repeat inductively up until a finite stage n; we say X is n-dimensional.

The resulting space X is the CW-complex. The set Xk is called the k-skeleton of X.
Each Dk is called a k-cell; it is customary to denote it by ekα where α is some index. We
say that X is finite if only finitely many cells were used.

Abuse of Notation 64.5.1. Technically, most sources (like [Ha02]) allow one to construct
infinite-dimensional CW complexes. We will not encounter any such spaces in the Napkin.

Example 64.5.2 (D2 with 2 + 2 + 1 and 1 + 1 + 1 cells)
(a) First, we start with X0 having two points e0

a and e0
b . Then, we join them with

two 1-cells D1 (green), call them e1
c and e1

d. The endpoints of each 1-cell (the
copy of S0) get identified with distinct points of X0; hence X1 ∼= S1. Finally,
we take a single 2-cell e2 (yellow) and weld it in, with its boundary fitting into
the copy of S1 that we just drew. This gives the figure on the left.

(b) In fact, one can do this using just 1 + 1 + 1 = 3 cells. Start with X0 having a
single point e0. Then, use a single 1-cell e1, fusing its two endpoints into the
single point of X0. Then, one can fit in a copy of S1 as before, giving D2 as on
the right.

e0a

e0b

e1ce1d e2

e0

e1

e2

Example 64.5.3 (Sn as a CW complex)
(a) One can obtain Sn (for n ≥ 1) with just two cells. Namely, take a single point

e0 for X0, and to obtain Sn take Dn and weld its entire boundary into e0.
We already saw this example in the beginning with n = 2, when we saw that
the sphere S2 was the result when we fuse the boundary of a disk D2 together.

(b) Alternatively, one can do a “hemisphere” construction, by constructing Sn

inductively using two cells in each dimension. So S0 consists of two points,
then S1 is obtained by joining these two points by two segments (1-cells), and
S2 is obtained by gluing two hemispheres (each a 2-cell) with S1 as its equator.
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Definition 64.5.4. Formally, for each k-cell ekα we want to add to Xk, we take its
boundary Sk−1

α and weld it onto Xk−1 via an attaching map Sk−1
α → Xk−1. Then

Xk =
(
Xk−1 ⨿

(∐
α

ekα

))
/∼

where ∼ identifies each boundary point of ekα with its image in Xk−1.

§64.6 The torus, Klein bottle, RPn, CPn

We now present four of the most important examples of CW complexes.

§64.6.i The torus

The torus can be formed by taking a square and identifying the opposite edges in the
same direction: if you walk off the right edge, you re-appear at the corresponding point
in on the left edge. (Think Asteroids from Atari!)

Thus the torus is (R/Z)2 ∼= S1 × S1.
Note that all four corners get identified together to a single point. One can realize the

torus in 3-space by treating the square as a sheet of paper, taping together the left and
right (red) edges to form a cylinder, then bending the cylinder and fusing the top and
bottom (blue) edges to form the torus.

Image from [To]

The torus can be realized as a CW complex with

• A 0-skeleton consisting of a single point,
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• A 1-skeleton consisting of two 1-cells e1
a, e1

b , and

e1a e1be0

• A 2-skeleton with a single 2-cell e2, whose circumference is divided into four parts,
and welded onto the 1-skeleton “via aba−1b−1”. This means: wrap a quarter of the
circumference around e1

a, then another quarter around e1
b , then the third quarter

around e1
a but in the opposite direction, and the fourth quarter around e1

b again in
the opposite direction as before.

e2

We say that aba−1b−1 is the attaching word; this shorthand will be convenient later on.

§64.6.ii The Klein bottle

The Klein bottle is defined similarly to the torus, except one pair of edges is identified
in the opposite manner, as shown.

Unlike the torus one cannot realize this in 3-space without self-intersecting. One can
tape together the red edges as before to get a cylinder, but to then fuse the resulting
blue circles in opposite directions is not possible in 3D. Nevertheless, we often draw a
picture in 3-dimensional space in which we tacitly allow the cylinder to intersect itself.
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Image from [In; Fr]

Like the torus, the Klein bottle is realized as a CW complex with

• One 0-cell,

• Two 1-cells e1
a and e1

b , and

• A single 2-cell attached this time via the word abab−1.

§64.6.iii Real projective space

Let’s start with n = 2. The space RP2 is obtained if we reverse both directions of the
square from before, as shown.

However, once we do this the fact that the original polygon is a square is kind of
irrelevant; we can combine a red and blue edge to get the single purple edge. Equivalently,
one can think of this as a circle with half its circumference identified with the other half:
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RP2 RP2

The resulting space should be familiar to those of you who do projective (Euclidean)
geometry. Indeed, there are several possible geometric interpretations:

• One can think of RP2 as the set of lines through the origin in R3, with each line
being a point in RP2.

Of course, we can identify each line with a point on the unit sphere S2, except
for the property that two antipodal points actually correspond to the same line,
so that RP2 can be almost thought of as “half a sphere”. Flattening it gives the
picture above.

• Imagine R2, except augmented with “points at infinity”. This means that we add
some points “infinitely far away”, one for each possible direction of a line. Thus in
RP2, any two lines indeed intersect (at a Euclidean point if they are not parallel,
and at a point at infinity if they do).

This gives an interpretation of RP2, where the boundary represents the line at
infinity through all of the points at infinity. Here we have used the fact that R2

and interior of D2 are homeomorphic.

Exercise 64.6.1. Observe that these formulations are equivalent by considering the plane
z = 1 in R3, and intersecting each line in the first formulation with this plane.

We can also express RP2 using coordinates: it is the set of triples (x : y : z) of real
numbers not all zero up to scaling, meaning that

(x : y : z) = (λx : λy : λz)

for any λ ̸= 0. Using the “lines through the origin in R3” interpretation makes it clear
why this coordinate system gives the right space. The points at infinity are those with
z = 0, and any point with z ̸= 0 gives a Cartesian point since

(x : y : z) =
(
x

z
: y
z

: 1
)

hence we can think of it as the Cartesian point (xz ,
y
z ).

In this way we can actually define real-projective n-space, RPn for any n, as either

(i) The set of lines through the origin in Rn+1,

(ii) Using n+ 1 coordinates as above, or

(iii) As Rn augmented with points at infinity, which themselves form a copy of RPn−1.

As a possibly helpful example, we give all three pictures of RP1.
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Example 64.6.2 (Real projective 1-Space)
RP1 can be thought of as S1 modulo the relation the antipodal points are identified.
Projecting onto a tangent line, we see that we get a copy of R plus a single point
at infinity, corresponding to the parallel line (drawn in cyan below).

S1

~0

0 10.36 R

Thus, the points of RP1 have two forms:

• (x : 1), which we think of as x ∈ R (in dark red above), and

• (1 : 0), which we think of as 1/0 =∞, corresponding to the cyan line above.

So, we can literally write
RP1 = R ∪ {∞}.

Note that RP1 is also the boundary of RP2. In fact, note also that topologically we
have

RP1 ∼= S1

since it is the “real line with endpoints fused together”.
∞

0

Since RPn is just “Rn (or Dn) with RPn−1 as its boundary”, we can construct RPn as a
CW complex inductively. Note that RPn thus consists of one cell in each dimension.

Example 64.6.3 (RPn as a cell complex)
(a) RP0 is a single point.

(b) RP1 ∼= S1 is a circle, which as a CW complex is a 0-cell plus a 1-cell.

(c) RP2 can be formed by taking a 2-cell and wrapping its perimeter twice around
a copy of RP1.

§64.6.iv Complex projective space

The complex projective space CPn is defined like RPn with coordinates, i.e.

(z0 : z1 : · · · : zn)
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under scaling; this time zi are complex. As before, CPn can be thought of as Cn
augmented with some points at infinity (corresponding to CPn−1).

Example 64.6.4 (Complex projective space)
(a) CP0 is a single point.

(b) CP1 is C plus a single point at infinity (“complex infinity” if you will). That
means as before we can think of CP1 as

CP1 = C ∪ {∞}.

So, imagine taking the complex plane and then adding a single point to
encompass the entire boundary. The result is just sphere S2.

Here is a picture of CP1 with its coordinate system, the Riemann sphere.

Remark 64.6.5 (For Euclidean geometers) — You may recognize that while RP2 is
the setting for projective geometry, inversion about a circle is done in CP1 instead.
When one does an inversion sending generalized circles to generalized circles, there
is only one point at infinity: this is why we work in CPn.

Like RPn, CPn is a CW complex, built inductively by taking Cn and welding its
boundary onto CPn−1 The difference is that as topological spaces,

Cn ∼= R2n ∼= D2n.

Thus, we attach the cells D0, D2, D4 and so on inductively to construct CPn. Thus we
see that

CPn consists of one cell in each even dimension.



662 Napkin, by Evan Chen (v1.6.20250629)

§64.7 A few harder problems to think about
Problem 64A. Show that a space X is Hausdorff if and only if the diagonal {(x, x) |
x ∈ X} is closed in the product space X ×X.

Problem 64B. Realize the following spaces as CW complexes:

(a) Möbius strip.

(b) R.

(c) Rn.

Problem 64C†. Show that a finite CW complex is compact.



65 Fundamental groups

Topologists can’t tell the difference between a coffee cup and a doughnut. So how do
you tell anything apart?

This is a very hard question to answer, but one way we can try to answer it is to find
some invariants of the space. To draw on the group analogy, two groups are clearly not
isomorphic if, say, they have different orders, or if one is simple and the other isn’t, etc.
We’d like to find some similar properties for topological spaces so that we can actually
tell them apart.

Two such invariants for a space X are

• Defining homology groups H1(X), H2(X), . . .

• Defining homotopy groups π1(X), π2(X), . . .

Homology groups are hard to define, but in general easier to compute. Homotopy groups
are easier to define but harder to compute.

This chapter is about the fundamental group π1.

§65.1 Fusing paths together

Recall that a path in a space X is a function [0, 1]→ X. Suppose we have paths γ1 and
γ2 such that γ1(1) = γ2(0). We’d like to fuse1 them together to get a path γ1 ∗ γ2. Easy,
right?

X

γ1(0)

γ1(1) = γ2(0)

γ2(1)

γ1

γ2

We unfortunately do have to hack the definition a tiny bit. In an ideal world, we’d
have a path γ1 : [0, 1]→ X and γ2 : [1, 2]→ X and we could just merge them together to
get γ1 ∗ γ2 : [0, 2]→ X. But the “2” is wrong here. The solution is that we allocate [0, 1

2 ]
for the first path and [1

2 , 1] for the second path; we run “twice as fast”.

1Almost everyone else in the world uses “gluing” to describe this and other types of constructs. But I
was traumatized by Elmer’s glue when I was in high school because I hated the stupid “make a poster”
projects and hated having to use glue on them. So I refuse to talk about “gluing” paths together,
referring instead to “fusing” them together, which sounds cooler anyways.

663
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Definition 65.1.1. Given two paths γ1, γ2 : [0, 1] → X such that γ1(1) = γ2(0), we
define a path γ1 ∗ γ2 : [0, 1]→ X by

(γ1 ∗ γ2)(t) =
{
γ1(2t) 0 ≤ t ≤ 1

2
γ2(2t− 1) 1

2 ≤ t ≤ 1.

This hack unfortunately reveals a second shortcoming: this “product” is not associative.
If we take (γ1 ∗ γ2) ∗ γ3 for some suitable paths, then [0, 1

4 ], [1
4 ,

1
2 ] and [1

2 , 1] are the times
allocated for γ1, γ2, γ3.

Question 65.1.2. What are the times allocated for γ1 ∗ (γ2 ∗ γ3)?

But I hope you’ll agree that even though this operation isn’t associative, the reason it
fails to be associative is kind of stupid. It’s just a matter of how fast we run in certain
parts.

0 11
4

1
2

0 1
3
4

1
2

γ1 γ2 γ3

γ1 γ2 γ3

γ1 ∗ (γ2 ∗ γ3)

(γ1 ∗ γ2) ∗ γ3

So as long as we’re fusing paths together, we probably don’t want to think of [0, 1] itself
too seriously. And so we only consider everything up to (path) homotopy equivalence.
(Recall that two paths α and β are homotopic if there’s a path homotopy F : [0, 1]2 → X
between them, which is a continuous deformation from α to β.) It is definitely true that

(γ1 ∗ γ2) ∗ γ3 ≃ γ1 ∗ (γ2 ∗ γ3) .

It is also true that if α1 ≃ α2 and β1 ≃ β2 then α1 ∗ β1 ≃ α2 ∗ β2.
Naturally, homotopy is an equivalence relation, so paths γ lives in some “homotopy

type”, the equivalence classes under ≃. We’ll denote this [γ]. Then it makes sense to talk
about [α] ∗ [β]. Thus, we can think of ∗ as an operation on homotopy classes.

§65.2 Fundamental groups
Prototypical example for this section: π1(R2) is trivial and π1(S1) ∼= Z.
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At this point I’m a little annoyed at keeping track of endpoints, so now I’m going to
specialize to a certain type of path.

Definition 65.2.1. A loop is a path with γ(0) = γ(1).

X

x0

γ

Hence if we restrict our attention to paths starting at a single point x0, then we can
stop caring about endpoints and start-points, since everything starts and stops at x0.
We even have a very canonical loop: the “do-nothing” loop2 given by standing at x0 the
whole time.

Definition 65.2.2. Denote the trivial “do-nothing loop” by 1. A loop γ is nulhomotopic
if it is homotopic to 1; i.e. γ ≃ 1.

For homotopy of loops, you might visualize “reeling in” the loop, contracting it to a
single point.

Example 65.2.3 (Loops in S2 are nulhomotopic)
As the following picture should convince you, every loop in the simply connected
space S2 is nulhomotopic.

(Starting with the purple loop, we contract to the red-brown point.)

Hence to show that spaces are simply connected it suffices to understand the loops of
that space. We are now ready to provide:

2Fatty.
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Definition 65.2.4. The fundamental group of X with basepoint x0, denoted π1(X,x0),
is the set of homotopy classes

{[γ] | γ a loop at x0}

equipped with ∗ as a group operation.

It might come as a surprise that this has a group structure. For example, what is the
inverse? Let’s define it now.

Definition 65.2.5. Given a path α : [0, 1]→ X we can define a path α

α(t) = α(1− t).

In effect, this “runs α backwards”. Note that α starts at the endpoint of α and ends at
the starting point of α.

Exercise 65.2.6. Show that for any path α, α ∗ α is homotopic to the “do-nothing” loop
at α(0). (Draw a picture.)

Let’s check it.

Proof that this is a group structure. Clearly ∗ takes two loops at x0 and spits out a loop
at x0. We also already took the time to show that ∗ is associative. So we only have to
check that (i) there’s an identity, and (ii) there’s an inverse.

• We claim that the identity is the “do-nothing” loop 1 we described above. The
reader can check that for any γ,

γ ≃ γ ∗ 1 ≃ 1 ∗ γ.

• For a loop γ, recall again we define its “backwards” loop γ by

γ(t) = γ(1− t).

Then we have γ ∗ γ = γ ∗ γ = 1.

Hence π1(X,x0) is actually a group.

Before going any further I had better give some examples.

Example 65.2.7 (Examples of fundamental groups)
Note that proving the following results is not at all trivial. For now, just try to see
intuitively why the claimed answer “should” be correct.

(a) The fundamental group of C is the trivial group: in the plane, every loop is
nulhomotopic. (Proof: imagine it’s a piece of rope and reel it in.)

(b) On the other hand, the fundamental group of C \ {0} (meteor example from
earlier) with any base point is actually Z! We won’t be able to prove this for a
while, but essentially a loop is determined by the number of times that it winds
around the origin – these are so-called winding numbers. Think about it!

(c) Similarly, we will soon show that the fundamental group of S1 (the boundary
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of the unit circle) is Z.

Officially, I also have to tell you what the base point is, but by symmetry in these
examples, it doesn’t matter.

Here is the picture for C \ {0}, with the hole exaggerated as the meteor from Section 7.7.

C \ {0}

x0

Question 65.2.8. Convince yourself that the fundamental group of S1 is Z, and understand
why we call these “winding numbers”. (This will be the most important example of a
fundamental group in later chapters, so it’s crucial you figure it out now.)

Example 65.2.9 (The figure eight)
Consider a figure eight S1 ∨ S1, and let x0 be the center. Then

π1(S1 ∨ S1, x0) ∼= ⟨a, b⟩

is the free group generated on two letters. The idea is that one loop of the eight is
a, and the other loop is b, so we expect π1 to be generated by this loop a and b
(and its inverses a and b). These loops don’t talk to each other.

a b

Recall that in graph theory, we usually assume our graphs are connected, since otherwise
we can just consider every connected component separately. Likewise, we generally want
to restrict our attention to path-connected spaces, since if a space isn’t path-connected
then it can be broken into a bunch of “path-connected components”. (Can you guess
how to define this?) Indeed, you could imagine a space X that consists of the objects on
my desk (but not the desk itself): π1 of my phone has nothing to do with π1 of my mug.
They are just totally disconnected, both figuratively and literally.

But on the other hand we claim that in a path-connected space, the groups are very
related!
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Theorem 65.2.10 (Fundamental groups don’t depend on basepoint)
Let X be a path-connected space. Then for any x1 ∈ X and x2 ∈ X, we have

π1(X,x1) ∼= π1(X,x2).

Before you read the proof, see if you can guess the isomorphism based just on the
picture below.

X

x1 x2
α/α

Proof. Let α be any path from x1 to x2 (possible by path-connectedness), and let α be
its reverse. Then we can construct a map

π1(X,x1)→ π1(X,x2) by [γ] 7→ [α ∗ γ ∗ α].

In other words, given a loop γ at x1, we can start at x2, follow α to x1, run γ, then run
along α home to x2. Hence this is a map which builds a loop of π1(X,x2) from every
loop at π1(X,x1). It is a homomorphism of the groups just because

(α ∗ γ1 ∗ α) ∗ (α ∗ γ2 ∗ α) = α ∗ γ1 ∗ γ2 ∗ α

as α ∗ α is nulhomotopic.
Similarly, there is a homomorphism

π1(X,x2)→ π1(X,x1) by [γ] 7→ [α ∗ γ ∗ α].

As these maps are mutual inverses, it follows they must be isomorphisms. End of
story.

This is a bigger reason why we usually only care about path-connected spaces.

Abuse of Notation 65.2.11. For a path-connected space X we will often abbreviate
π1(X,x0) to just π1(X), since it doesn’t matter which x0 ∈ X we pick.

Finally, recall that we originally defined “simply connected” as saying that any two
paths with matching endpoints were homotopic. It’s possible to weaken this condition
and then rephrase it using fundamental groups.

Exercise 65.2.12. Let X be a path-connected space. Prove that X is simply connected
if and only if π1(X) is the trivial group. (One direction is easy; the other is a little trickier.)

This is the “usual” definition of simply connected.
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§65.3 Fundamental groups are invariant under homeomorphism

One quick shorthand I will introduce to clean up the discussion:

Definition 65.3.1. By f : (X,x0)→ (Y, y0), we will mean that f : X → Y is a continuous
function of spaces which also sends the point x0 to y0.

Let X and Y be topological spaces and f : (X,x0)→ (Y, y0). We now want to relate
the fundamental groups of X and Y .

Recall that a loop γ in (X,x0) is a map γ : [0, 1]→ X with γ(0) = γ(1) = x0. Then if
we consider the composition

[0, 1] γ−→ (X,x0) f−→ (Y, y0)

then we get straight-away a loop in Y at y0! Let’s call this loop f♯γ.

Lemma 65.3.2 (f♯ is homotopy invariant)
If γ1 ≃ γ2 are path-homotopic, then in fact

f♯γ1 ≃ f♯γ2.

Proof. Just take the homotopy h taking γ1 to γ2 and consider f ◦ h.

It’s worth noting at this point that if X and Y are homeomorphic, then their funda-
mental groups are all isomorphic. Indeed, let f : X → Y and g : Y → X be mutually
inverse continuous maps. Then one can check that f♯ : π1(X,x0) → π1(Y, y0) and
g♯ : π1(Y, y0) → π1(X,x0) are inverse maps between the groups (assuming f(x0) = y0
and g(y0) = x0).

§65.4 Higher homotopy groups

Why the notation π1 for the fundamental group? And what are π2, . . . ? The answer lies
in the following rephrasing:

Question 65.4.1. Convince yourself that a loop is the same thing as a continuous function
S1 → X.

It turns out we can define homotopy for things other than paths. Two functions
f, g : Y → X are homotopic if there exists a continuous function Y × [0, 1]→ X which
continuously deforms f to g. So everything we did above was just the special case Y = S1.

For general n, the group πn(X) is defined as the homotopy classes of the maps
Sn → X. The group operation is a little harder to specify. You have to show that Sn
is homeomorphic to [0, 1]n with some endpoints fused together; for example S1 is [0, 1]
with 0 fused to 1. Once you have these cubes, you can merge them together on a face.
(Again, I’m being terribly imprecise, deliberately.)

For n ̸= 1, πn behaves somewhat differently than π1. (You might not be surprised, as
Sn is simply connected for all n ≥ 2 but not when n = 1.) In particular, it turns out
that πn(X) is an abelian group for all n ≥ 2.

Let’s see some examples.
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Example 65.4.2 (πn(Sn) ∼= Z)
As we saw, π1(S1) ∼= Z; given the base circle S1, we can wrap a second circle around
it as many times as we want. In general, it’s true that πn(Sn) ∼= Z.

Example 65.4.3 (πn(Sm) ∼= {1} when n < m)
We saw that π1(S2) ∼= {1}, because a circle in S2 can just be reeled in to a point.
It turns out that similarly, any smaller n-dimensional sphere can be reeled in on
the surface of a bigger m-dimensional sphere. So in general, πn(Sm) is trivial for
n < m.

However, beyond these observations, the groups behave quite weirdly. Here is a table of
πn(Sm) for 1 ≤ m ≤ 8 and 2 ≤ n ≤ 10, so you can see what I’m talking about. (Taken
from Wikipedia.)

πn(Sm) 2 3 4 5 6 7 8 9 10
m = 1 {1} {1} {1} {1} {1} {1} {1} {1} {1}

2 Z Z Z/2Z Z/2Z Z/12Z Z/2Z Z/2Z Z/3Z Z/15Z
3 Z Z/2Z Z/2Z Z/12Z Z/2Z Z/2Z Z/3Z Z/15Z
4 Z Z/2Z Z/2Z Z × Z/12Z (Z/2Z)2 Z/2Z × Z/2Z Z/24Z × Z/3Z
5 Z Z/2Z Z/2Z Z/24Z Z/2Z Z/2Z
6 Z Z/2Z Z/2Z Z/24Z {1}
7 Z Z/2Z Z/2Z Z/24Z
8 Z Z/2Z Z/2Z

Actually, it turns out that if you can compute πn(Sm) for every m and n, then you
can essentially compute any homotopy classes. Thus, computing πn(Sm) is sort of a lost
cause in general, and the mixture of chaos and pattern in the above table is a testament
to this.

§65.5 Homotopy equivalent spaces
Prototypical example for this section: A disk is homotopy equivalent to a point, an annulus
is homotopy equivalent to S1.

Up to now I’ve abused notation and referred to “path homotopy” as just “homotopy”
for two paths. I will unfortunately continue to do so (and so any time I say two paths
are homotopic, you should assume I mean “path-homotopic”). But let me tell you what
the general definition of homotopy is first.

Definition 65.5.1. Let f, g : X → Y be continuous functions. A homotopy is a
continuous function F : X × [0, 1]→ Y , which we’ll write Fs(x) for s ∈ [0, 1], x ∈ X, such
that

F0(x) = f(x) and F1(x) = g(x) for all x ∈ X.
If such a function exists, then f and g are homotopic.

Intuitively this is once again “deforming f to g”. You might notice this is almost
exactly the same definition as path-homotopy, except that f and g are any functions
instead of paths, and hence there’s no restriction on keeping some “endpoints” fixed
through the deformation.

This homotopy can be quite dramatic:
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Example 65.5.2
The zero function z 7→ 0 and the identity function z 7→ z are homotopic as functions
C→ C. The necessary deformation is

[0, 1]× C→ C by (s, z) 7→ sz.

I bring this up because I want to define:

Definition 65.5.3. Let X and Y be spaces. They are homotopy equivalent if there
exist continuous functions f : X → Y and g : Y → X such that

(i) f ◦ g : Y → Y is homotopic to the identity map on Y , and

(ii) g ◦ f : X → X is homotopic to the identity map on X.

If a topological space is homotopy equivalent to a point, then it is said to be contractible.

Question 65.5.4. Why are two homeomorphic spaces also homotopy equivalent?

Intuitively, you can think of this as a more generous form of stretching and bending
than homeomorphism: we are allowed to compress huge spaces into single points.

Example 65.5.5 (C is contractible)
Consider the topological spaces C and the space consisting of the single point {0}.
We claim these spaces are homotopy equivalent (can you guess what f and g are?)
Indeed, the two things to check are

(i) C → {0} ↪→ C by z 7→ 0 7→ 0 is homotopy equivalent to the identity on C,
which we just saw, and

(ii) {0} ↪→ C→ {0} by 0 7→ 0 7→ 0, which is the identity on {0}.

Here by ↪→ I just mean→ in the special case that the function is just an “inclusion”.

Remark 65.5.6 — C cannot be homeomorphic to a point because there is no
bijection of sets between them.

Example 65.5.7 (C \ {0} is homotopy equivalent to S1)
Consider the topological spaces C \ {0}, the punctured plane, and the circle S1

viewed as a subset of C. We claim these spaces are actually homotopy equivalent!
The necessary functions are the inclusion

S1 ↪→ C \ {0}

and the function
C \ {0} → S1 by z 7→ z

|z|
.

You can check that these satisfy the required condition.
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Remark 65.5.8 — On the other hand, C \ {0} cannot be homeomorphic to S1.
One can make S1 disconnected by deleting two points; the same is not true for
C \ {0}.

Example 65.5.9 (Disk = Point, Annulus = Circle)
By the same token, a disk is homotopic to a point; an annulus is homotopic to a
circle. (This might be a little easier to visualize, since it’s finite.)

I bring these up because it turns out that

Algebraic topology can’t distinguish between homotopy equivalent spaces.

More precisely,

Theorem 65.5.10 (Homotopy equivalent spaces have isomorphic fundamental groups)
Let X and Y be path-connected, homotopy-equivalent spaces. Then πn(X) ∼= πn(Y )
for every positive integer n.

Proof. Let γ : [0, 1]n → X be a Sn. Let f : X → Y and g : Y → X be maps witnessing
that X and Y are homotopy equivalent (meaning f ◦ g and g ◦ f are each homotopic to
the identity). Then the composition

[0, 1]n γ−→ X
f−→ Y

is a Sn in Y and hence f induces a natural homomorphism πn(X)→ πn(Y ). Similarly g
induces a natural homomorphism πn(Y )→ πn(X). The conditions on f and g now say
exactly that these two homomorphisms are inverse to each other, meaning the maps are
isomorphisms.

In particular,

Question 65.5.11. What are the fundamental groups of contractible spaces?

That means, for example, that algebraic topology can’t tell the following homotopic
subspaces of R2 apart.

♀ ♂
§65.6 The pointed homotopy category

This section is meant to be read by those who know some basic category theory. Those of
you that don’t should come back after reading Chapters 67 and 68. Those of you that do
will enjoy how succinctly we can summarize the content of this chapter using categorical
notions.

Definition 65.6.1. The pointed homotopy category hTop∗ is defined as follows.
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• Objects: pointed spaces; that is, a pair (X,x0) of spaces X with a distinguished
basepoint x0, and

• Morphisms: homotopy classes of continuous functions (X,x0)→ (Y, y0).

In particular, two path-connected spaces are isomorphic in this category exactly when
they are homotopy equivalent. Then we can summarize many of the preceding results as
follows:

Theorem 65.6.2 (Functorial interpretation of fundamental groups)
There is a functor

π1 : hTop∗ → Grp

sending

(X,x0) π1(X,x0)

(Y, y0) π1(Y, y0)

f f♯

The fact that π1 is a functor instead of merely assigns some group π1(X,x0) to each
pointed topological space (X,x0) automatically implies several nice things, like:

• The functor bundles the information of f♯, including the fact that it respects
composition. In the categorical language, f♯ is π1(f).

• Homotopic spaces have isomorphic fundamental groups (since the spaces are iso-
morphic in hTop, and functors preserve isomorphism by Theorem 68.2.8). In fact,
you’ll notice that the proofs of Theorem 68.2.8 and Theorem 65.5.10 are secretly
identical to each other.

• If maps f, g : (X,x0) → (Y, y0) are homotopic, then f♯ = g♯. This is basically
Lemma 65.3.2.

Remark 65.6.3 — In fact, π1(X,x0) is the set of arrows (S1, 1)→ (X,x0) in hTop∗,
so this is actually a covariant Yoneda functor (Example 68.2.6), except with target
Grp instead of Set.

§65.7 A few harder problems to think about
Problem 65A (Harmonic fan). Exhibit a subspace X of the metric space R2 which is
path-connected but for which a point p can be found such that any r-neighborhood of p
with r < 1 is not path-connected.

Problem 65B† (Special case of Seifert-van Kampen). Let X be a topological space.
Suppose U and V are connected open subsets of X, with X = U ∪ V , so that U ∩ V is
nonempty and path-connected.

Prove that if π1(U) = π1(V ) = {1} then π1(X) = {1}.

Remark 65.7.1 — The Seifert–van Kampen theorem generalizes this for π1(U)
and π1(V ) any groups; it gives a formula for calculating π1(X) in terms of π1(U),
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π1(V ), π1(U ∩ V ). The proof is much the same.
Unfortunately, this does not give us a way to calculate π1(S1), because it is not
possible to write S1 = U ∪ V for U ∩ V connected.

Problem 65C (RMM 2013). Let n ≥ 2 be a positive integer. A stone is placed at
each vertex of a regular 2n-gon. A move consists of selecting an edge of the 2n-gon and
swapping the two stones at the endpoints of the edge. Prove that if a sequence of moves
swaps every pair of stones exactly once, then there is some edge never used in any move.

(This last problem doesn’t technically have anything to do with the chapter, but the
“gut feeling” which motivates the solution is very similar.)



66 Covering projections

A few chapters ago we talked about what a fundamental group was, but we didn’t
actually show how to compute any of them except for the most trivial case of a simply
connected space. In this chapter we’ll introduce the notion of a covering projection, which
will let us see how some of these groups can be found.

§66.1 Even coverings and covering projections
Prototypical example for this section: R covers S1.

What we want now is a notion where a big space E, a “covering space”, can be
projected down onto a base space B in a nice way. Here is the notion of “nice”:

Definition 66.1.1. Let p : E → B be a continuous function. Let U be an open set of
B. We call U evenly covered (by p) if ppre(U) is a disjoint union of open sets of E
(possibly infinite) such that p restricted to any of these sets is a homeomorphism.

Picture:

Image from [Wo]

All we’re saying is that U is evenly covered if its pre-image is a bunch of copies of it.
(Actually, a little more: each of the pancakes is homeomorphic to U , but we also require
that p is the homeomorphism.)

Definition 66.1.2. A covering projection p : E → B is a surjective continuous map
such that every base point b ∈ B has an open neighborhood U ∋ b which is evenly covered
by p.

Exercise 66.1.3 (On requiring surjectivity of p). Let p : E → B be satisfying this definition,
except that p need not be surjective. Show that the image of p is a disjoint union of connected
components of B. Thus if B is connected and E is nonempty, then p : E → B is already
surjective. For this reason, some authors omit the surjectivity hypothesis as usually B is
path-connected.

Here is the most stupid example of a covering projection.

Example 66.1.4 (Tautological covering projection)
Let’s take n disconnected copies of any space B: formally, E = B × {1, . . . , n}

675
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with the discrete topology on {1, . . . , n}. Then there exists a tautological covering
projection E → B by (x,m) 7→ x; we just project all n copies.
This is a covering projection because every open set in B is evenly covered.

This is not really that interesting because B × [n] is not path-connected.
A much more interesting example is that of R and S1.

Example 66.1.5 (Covering projection of S1)
Take p : R → S1 by θ 7→ e2πiθ. This is essentially wrapping the real line into a
single helix and projecting it down.

p

S1

We claim this is a covering projection. Indeed, consider the point 1 ∈ S1 (where we
view S1 as the unit circle in the complex plane). We can draw a small open neighborhood
of it whose pre-image is a bunch of copies in R.

−2 −1 0 1 2

R

p

S1

1

Note that not all open neighborhoods work this time: notably, U = S1 does not work
because the pre-image would be the entire R which is not homeomorphic with S1.
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Example 66.1.6 (Covering of S1 by itself)
The map S1 → S1 by z 7→ z3 is also a covering projection. Can you see why?

Example 66.1.7 (Covering projections of C \ {0})
For those comfortable with complex arithmetic,

(a) The exponential map exp: C→ C \ {0} is a covering projection.

(b) For each n, the nth power map −n : C \ {0} → C \ {0} is a covering projection.

§66.2 Lifting theorem
Prototypical example for this section: R covers S1.

Now here’s the key idea: we are going to try to interpret loops in B as paths in R. This
is often much simpler. For example, we had no idea how to compute the fundamental
group of S1, but the fundamental group of R is just the trivial group. So if we can
interpret loops in S1 as paths in R, that might (and indeed it does!) make computing
π1(S1) tractable.

Definition 66.2.1. Let γ : [0, 1]→ B be a path and p : E → B a covering projection. A
lifting of γ is a path γ̃ : [0, 1]→ E such that p ◦ γ̃ = γ.

Picture:
E

[0, 1] B

p

γ

γ̃

Example 66.2.2 (Typical example of lifting)
Take p : R → S1 ⊆ C by θ 7→ e2πiθ (so S1 is considered again as the unit circle).
Consider the path γ in S1 which starts at 1 ∈ C and wraps around S1 once,
counterclockwise, ending at 1 again. In symbols, γ : [0, 1]→ S1 by t 7→ e2πit.
Then one lifting γ̃ is the path which walks from 0 to 1. In fact, for any integer n,
walking from n to n+ 1 works.

−1 0 1 2

R
γ̃

p

S1

1γ
p(0) = 1

p(1) = 1
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Similarly, the counterclockwise path from 1 ∈ S1 to −1 ∈ S1 has a lifting: for some
integer n, the path from n to n+ 1

2 .

The above is the primary example of a lifting. It seems like we have the following
structure: given a path γ in B starting at b0, we start at any point in the fiber ppre(b0).
(In our prototypical example, B = S1, b0 = 1 ∈ C and that’s why we start at any integer
n.) After that we just trace along the path in B, and we get a corresponding path in E.

Question 66.2.3. Take a path γ in S1 with γ(0) = 1 ∈ C. Convince yourself that once we
select an integer n ∈ R, then there is exactly one lifting starting at n.

It turns out this is true more generally.

Theorem 66.2.4 (Lifting paths)
Suppose γ : [0, 1] → B is a path with γ(0) = b0, and p : (E, e0) → (B, b0) is a
covering projection. Then there exists a unique lifting γ̃ : [0, 1] → E such that
γ̃(0) = e0.

Proof. For every point b ∈ B, consider an evenly covered open neighborhood Ub in B.
Then the family of open sets

{γpre(Ub) | b ∈ B}

is an open cover of [0, 1]. As [0, 1] is compact we can take a finite subcover. Thus we can
chop [0, 1] into finitely many interior-disjoint closed intervals [0, 1] = I1 ⊔ I2 ⊔ · · · ⊔ IN in
that order, such that for every Ik, γimg(Ik) is contained in some Ub.

We’ll construct γ̃ interval by interval now, starting at I1. Initially, place a robot at
e0 ∈ E and a mouse at b0 ∈ B. For each interval Ik, the mouse moves around according
to however γ behaves on Ik. But the whole time it’s in some evenly covered Uk; the fact
that p is a covering projection tells us that there are several copies of Uk living in E.
Exactly one of them, say Vk, contains our robot. So the robot just mimics the mouse
until it gets to the end of Ik. Then the mouse is in some new evenly covered Uk+1, and
we can repeat.

The theorem can be generalized to a diagram

(E, e0)

(Y, y0) (B, b0)

p
f̃

f

where Y is some general path-connected space, as follows.
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Theorem 66.2.5 (General lifting criterion)
Let f : (Y, y0) → (B, b0) be continuous and consider a covering projection
p : (E, e0) → (B, b0). (As usual, Y , B, E are path-connected.) Then a lifting
f̃ with f̃(y0) = e0 exists if and only if

f img
♯ (π1(Y, y0)) ⊆ pimg

♯ (π1(E, e0)),

i.e. the image of π1(Y, y0) under f is contained in the image of π1(E, e0) under p
(both viewed as subgroups of π1(B, b0)). If this lifting exists, it is unique.

As p♯ is injective, we actually have pimg
♯ (π1(E, e0)) ∼= π1(E, e0). But in this case we

are interested in the actual elements, not just the isomorphism classes of the groups.

Question 66.2.6. What happens if we put Y = [0, 1]?

Remark 66.2.7 (Lifting homotopies) — Here’s another cool special case: Recall
that a homotopy can be encoded as a continuous function [0, 1]× [0, 1]→ X. But
[0, 1]× [0, 1] is also simply connected. Hence given a homotopy γ1 ≃ γ2 in the base
space B, we can lift it to get a homotopy γ̃1 ≃ γ̃2 in E.

Another nice application of this result is Chapter 33.

§66.3 Lifting correspondence

Prototypical example for this section: (R, 0) covers (S1, 1).

Let’s return to the task of computing fundamental groups. Consider a covering
projection p : (E, e0)→ (B, b0).

A loop γ in B can be lifted uniquely to γ̃ in E which starts at e0 and ends at some
point e in the fiber ppre(b0). You can easily check that this e ∈ E does not change if we
pick a different path γ′ homotopic to γ.

Question 66.3.1. Look at the picture in Example 66.2.2.
Put one finger at 1 ∈ S1, and one finger on 0 ∈ R. Trace a loop homotopic to γ in S1

(meaning, you can go backwards and forwards but you must end with exactly one full
counterclockwise rotation) and follow along with the other finger in R.
Convince yourself that you have to end at the point 1 ∈ R.

Thus every homotopy class of a loop at b0 (i.e. an element of π1(B, b0)) can be associated
with some e in the fiber of b0. The below proposition summarizes this and more.
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Proposition 66.3.2
Let p : (E, e0)→ (B, b0) be a covering projection. Then we have a function of sets

Φ: π1(B, b0)→ ppre(b0)

by [γ] 7→ γ̃(1), where γ̃ is the unique lifting starting at e0. Furthermore,

• If E is path-connected, then Φ is surjective.

• If E is simply connected, then Φ is injective.

Question 66.3.3. Prove that E path-connected implies Φ is surjective. (This is really
offensively easy.)

Proof. To prove the proposition, we’ve done everything except show that E simply
connected implies Φ injective. To do this suppose that γ1 and γ2 are loops such that
Φ([γ1]) = Φ([γ2]).

Applying lifting, we get paths γ̃1 and γ̃2 both starting at some point e0 ∈ E and ending
at some point e1 ∈ E. Since E is simply connected that means they are homotopic, and
we can write a homotopy F : [0, 1]× [0, 1]→ E which unites them. But then consider the
composition of maps

[0, 1]× [0, 1] F−→ E
p−→ B.

You can check p ◦ F is a homotopy from γ1 to γ2. Hence [γ1] = [γ2], done.

This motivates:

Definition 66.3.4. A universal cover of a space B is a covering projection p : E → B
where E is simply connected (and in particular path-connected).

Abuse of Notation 66.3.5. When p is understood, we sometimes just say E is the
universal cover of B.

Example 66.3.6 (Fundamental group of S1)
Let’s return to our standard p : R → S1. Since R is simply connected, this is a
universal cover of S1. And indeed, the fiber of any point in S1 is a copy of the
integers: naturally in bijection with loops in S1.
You can show (and it’s intuitively obvious) that the bijection

Φ: π1(S1)↔ Z

is in fact a group homomorphism if we equip Z with its additive group structure Z.
Since it’s a bijection, this leads us to conclude π1(S1) ∼= Z.

§66.4 Regular coverings
Prototypical example for this section: R→ S1 comes from n · x = n+ x

Here’s another way to generate some coverings. Let X be a topological space and G a
group acting on its points. Thus for every g, we get a map X → X by

x 7→ g · x.
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We require that this map is continuous1 for every g ∈ G, and that the stabilizer of each
point in X is trivial. Then we can consider a quotient space X/G defined by fusing any
points in the same orbit of this action. Thus the points of X/G are identified with the
orbits of the action. Then we get a natural “projection”

X → X/G

by simply sending every point to the orbit it lives in.

Definition 66.4.1. Such a projection is called regular. (Terrible, I know.)

Example 66.4.2 (R→ S1 is regular)
Let G = Z, X = R and define the group action of G on X by

n · x = n+ x

You can then think of X/G as “real numbers modulo 1”, with [0, 1) a complete set
of representatives and 0 ∼ 1.

0 1
1
3

2
3

R/G

0 = 1

1
3

2
3

S1

So we can identify X/G with S1 and the associated regular projection is just our
usual exp: θ 7→ e2iπθ.

Example 66.4.3 (The torus)
Let G = Z×Z and X = R2, and define the group action of G on X by (m,n)·(x, y) =
(m+ x, n+ y). As [0, 1)2 is a complete set of representatives, you can think of it as
a unit square with the edges identified. We obtain the torus S1×S1 and a covering
projection R2 → S1 × S1.

Example 66.4.4 (RP2)
Let G = Z/2Z =

〈
T | T 2 = 1

〉
and let X = S2 be the surface of the sphere, viewed

as a subset of R3. We’ll let G act on X by sending T · x⃗ = −x⃗; hence the orbits are
pairs of opposite points (e.g. North and South pole).
Let’s draw a picture of a space. All the orbits have size two: every point below
the equator gets fused with a point above the equator. As for the points on the
equator, we can take half of them; the other half gets fused with the corresponding
antipodes.
Now if we flatten everything, you can think of the result as a disk with half its

1Another way of phrasing this: the action, interpreted as a map G × X → X, should be continuous,
where G on the left-hand side is interpreted as a set with the discrete topology.
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boundary: this is RP2 from before. The resulting space has a name: real projective
2-space, denoted RP2.

RP2

This gives us a covering projection S2 → RP2 (note that the pre-image of a
sufficiently small patch is just two copies of it on S2.)

Example 66.4.5 (Fundamental group of RP2)
As above, we saw that there was a covering projection S2 → RP2. Moreover the
fiber of any point has size two. Since S2 is simply connected, we have a natural
bijection π1(RP2) to a set of size two; that is,∣∣∣π1(RP2)

∣∣∣ = 2.

This can only occur if π1(RP2) ∼= Z/2Z, as there is only one group of order two!

Question 66.4.6. Show each of the continuous maps x 7→ g ·x is in fact a homeomorphism.
(Name its continuous inverse).

§66.5 The algebra of fundamental groups
Prototypical example for this section: S1, with fundamental group Z.

Next up, we’re going to turn functions between spaces into homomorphisms of funda-
mental groups.

Let X and Y be topological spaces and f : (X,x0)→ (Y, y0). Recall that we defined a
group homomorphism

f♯ : π1(X,x0)→ π1(Y0, y0) by [γ] 7→ [f ◦ γ].

More importantly, we have:

Proposition 66.5.1
Let p : (E, e0)→ (B, b0) be a covering projection of path-connected spaces. Then
the homomorphism p♯ : π1(E, e0)→ π1(B, b0) is injective. Hence pimg

♯ (π1(E, e0)) is
an isomorphic copy of π1(E, e0) as a subgroup of π1(B, b0).

Proof. We’ll show ker p♯ is trivial. It suffices to show if γ is a nulhomotopic loop in B
then its lift is nulhomotopic.

By definition, there’s a homotopy F : [0, 1]× [0, 1]→ B taking γ to the constant loop
1B. We can lift it to a homotopy F̃ : [0, 1]× [0, 1]→ E that establishes γ̃ ≃ 1̃B. But 1E
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is a lift of 1B (duh) and lifts are unique.

Example 66.5.2 (Subgroups of Z)
Let’s look at the space S1 with fundamental group Z. The group Z has two types
of subgroups:

• The trivial subgroup. This corresponds to the canonical projection R→ S1,
since π1(R) is the trivial group (R is simply connected) and hence its image
in Z is the trivial group.

• nZ for n ≥ 1. This is given by the covering projection S1 → S1 by z 7→ zn.
The image of a loop in the covering S1 is a “multiple of n” in the base S1.

It turns out that these are the only covering projections of S1 by path-connected
spaces: there’s one for each subgroup of Z. (We don’t care about disconnected spaces
because, again, a covering projection via disconnected spaces is just a bunch of unrelated
“good” coverings.) For this statement to make sense I need to tell you what it means for
two covering projections to be equivalent.

Definition 66.5.3. Fix a space B. Given two covering projections p1 : E1 → B and
p2 : E2 → B a map of covering projections is a continuous function f : E1 → E2 such
that p2 ◦ f = p1.

E1 E2

B

f

p1
p2

Then two covering projections p1 and p2 are isomorphic if there are f : E1 → E2 and
g : E2 → E1 such that f ◦ g = idE1 and g ◦ f = idE2 .

Remark 66.5.4 (For category theorists) — The set of covering projections forms a
category in this way.

It’s an absolute miracle that this is true more generally: the greatest triumph of
covering spaces is the following result. Suppose a space X satisfies some nice conditions,
like:

Definition 66.5.5. A space X is called locally connected if for each point x ∈ X and
open neighborhood V of it, there is a connected open set U with x ∈ U ⊆ V .

Definition 66.5.6. A space X is semi-locally simply connected if for every point
x ∈ X there is an open neighborhood U such that all loops in U are nulhomotopic. (But
the contraction need not take place in U .)

Example 66.5.7 (These conditions are weak)
Pretty much every space I’ve shown you has these two properties. In other words,
they are rather mild conditions, and you can think of them as just saying “the
space is not too pathological”.
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Then we get:

Theorem 66.5.8 (Group theory via covering spaces)
Suppose B is a locally connected, semi-locally simply connected space. Then:

• Every subgroup H ⊆ π1(B) corresponds to exactly one covering projection
p : E → B with E path-connected (up to isomorphism).
(Specifically, H is the image of π1(E) in π1(B) through p♯.)

• Moreover, the normal subgroups of π1(B) correspond exactly to the regular
covering projections.

Hence it’s possible to understand the group theory of π1(B) completely in terms of
the covering projections.

Moreover, this is how the “universal cover” gets its name: it is the one corresponding
to the trivial subgroup of π1(B). Actually, you can show that it really is universal in
the sense that if p : E → B is another covering projection, then E is in turn covered
by the universal space. More generally, if H1 ⊆ H2 ⊆ G are subgroups, then the space
corresponding to H2 can be covered by the space corresponding to H1.

§66.6 A few harder problems to think about
problems
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