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53 Algebraic integers

Here’s a first taste of algebraic number theory.
This is really close to the border between olympiads and higher math. You’ve always

known that a+
√

2b had a “norm” a2−2b2, and that somehow this norm was multiplicative.
You’ve also always known that roots come in conjugate pairs. You might have heard of
minimal polynomials but not know much about them.

This chapter and the next one will make all these vague notions precise. It’s drawn
largely from the first chapter of [Og10].

§53.1 Motivation from high school algebra
This is adapted from my blog, Power Overwhelming1.

In high school precalculus, you’ll often be asked to find the roots of some polynomial
with integer coefficients. For instance,

x3 − x2 − x− 15 = (x− 3)(x2 + 2x+ 5)

has roots 3, −1 + 2i, −1− 2i. Or as another example,

x3 − 3x2 − 2x+ 2 = (x+ 1)(x2 − 4x+ 2)

has roots −1, 2 +
√

2, 2−
√

2. You’ll notice that the irrational roots, like −1± 2i and
2±
√

2, are coming up in pairs. In fact, I think precalculus explicitly tells you that the
complex roots come in conjugate pairs. More generally, it seems like all the roots of the
form a+ b

√
c come in “conjugate pairs”. And you can see why.

But a polynomial like
x3 − 8x+ 4

has no rational roots. (The roots of this are approximately −3.0514, 0.51730, 2.5341.)
Or even simpler,

x3 − 2

has only one real root, 3√2. These roots, even though they are irrational, have no
“conjugate” pairs. Or do they?

Let’s try and figure out exactly what’s happening. Let α be any complex number. We
define a minimal polynomial of α over Q to be a polynomial such that

• P (x) has rational coefficients, and leading coefficient 1,

• P (α) = 0.

• The degree of P is as small as possible. We call degP the degree of α.

Example 53.1.1 (Examples of minimal polynomials)
(a)
√

2 has minimal polynomial x2 − 2.

(b) The imaginary unit i =
√
−1 has minimal polynomial x2 + 1.

1URL: https://blog.evanchen.cc/2014/10/19/why-do-roots-come-in-conjugate-pairs/
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(c) A primitive pth root of unity, ζp = e
2πi

p , has minimal polynomial xp−1 + xp−2 +
· · ·+ 1, where p is a prime.

Note that 100x2 − 200 is also a polynomial of the same degree which has
√

2 as a root;
that’s why we want to require the polynomial to be monic. That’s also why we choose to
work in the rational numbers; that way, we can divide by leading coefficients without
worrying if we get non-integers.

Why do we care? The point is as follows: suppose we have another polynomial A(x)
such that A(α) = 0. Then we claim that P (x) actually divides A(x)! That means that
all the other roots of P will also be roots of A.

The proof is by contradiction: if not, by polynomial long division we can find a quotient
and remainder Q(x), R(x) such that

A(x) = Q(x)P (x) +R(x)

and R(x) ̸≡ 0. Notice that by plugging in x = α, we find that R(α) = 0. But
degR < degP , and P (x) was supposed to be the minimal polynomial. That’s impossible!

It follows from this and the monotonicity of the minimal polynomial that it is unique
(when it exists), so actually it is better to refer to the minimal polynomial.

Exercise 53.1.2. Can you find an element in C that has no minimal polynomial?

Let’s look at a more concrete example. Consider A(x) = x3 − 3x2 − 2x+ 2 from the
beginning. The minimal polynomial of 2 +

√
2 is P (x) = x2 − 4x+ 2 (why?). Now we

know that if 2 +
√

2 is a root, then A(x) is divisible by P (x). And that’s how we know
that if 2 +

√
2 is a root of A, then 2−

√
2 must be a root too.

As another example, the minimal polynomial of 3√2 is x3 − 2. So 3√2 actually has two
conjugates, namely, α = 3√2 (cos 120◦ + i sin 120◦) and β = 3√2 (cos 240◦ + i sin 240◦).
Thus any polynomial which vanishes at 3√2 also has α and β as roots!

Question 53.1.3 (Important but tautological: irreducible ⇐⇒ minimal). Let α be a
root of the polynomial P (x). Show that P (x) is the minimal polynomial if and only if it is
irreducible.

§53.2 Algebraic numbers and algebraic integers
Prototypical example for this section:

√
2 is an algebraic integer (root of x2 − 2), 1

2 is an
algebraic number but not an algebraic integer (root of x− 1

2).
Let’s now work in much vaster generality. First, let’s give names to the new numbers

we’ve discussed above.
Definition 53.2.1. An algebraic number is any α ∈ C which is the root of some
polynomial with coefficients in Q. The set of algebraic numbers is denoted Q.

Remark 53.2.2 — One can equally well say algebraic numbers are those that are
roots of some polynomial with coefficients in Z (rather than Q), since any polynomial
in Q[x] can be scaled to one in Z[x].

Definition 53.2.3. Consider an algebraic number α and its minimal polynomial P
(which is monic and has rational coefficients). If it turns out the coefficients of P are
integers, then we say α is an algebraic integer.

The set of algebraic integers is denoted Z.
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Remark 53.2.4 — One can show, using Gauss’s Lemma, that if α is the root of
any monic polynomial with integer coefficients, then α is an algebraic integer. So in
practice, if I want to prove that

√
2 +
√

3 is an algebraic integer, then I only have to
say “the polynomial (x2 − 5)2 − 24 works” without checking that it’s minimal.

Sometimes for clarity, we refer to elements of Z as rational integers.

Example 53.2.5 (Examples of algebraic integers)
The numbers

4, i =
√
−1, 3√2,

√
2 +
√

3

are all algebraic integers, since they are the roots of the monic polynomials x− 4,
x2 + 1, x3 − 2 and (x2 − 5)2 − 24.

The number 1
2 has minimal polynomial x− 1

2 , so it’s an algebraic number but not
an algebraic integer. (In fact, the rational root theorem also directly implies that
any monic integer polynomial does not have 1

2 as a root!)

There are two properties I want to give for these off the bat, because they’ll be used
extensively in the tricky (but nice) problems at the end of the section. The first we prove
now, since it’s very easy:

Proposition 53.2.6 (Rational algebraic integers are rational integers)
An algebraic integer is rational if and only if it is a rational integer. In symbols,

Z ∩Q = Z.

Proof. Let α be a rational number. If α is an integer, it is the root of x− α, hence an
algebraic integer too.

Conversely, if P is a monic polynomial with integer coefficients such that P (α) = 0
then (by the rational root theorem, say) it follows α must be an integer.

The other is that:

Proposition 53.2.7 (Z is a ring and Q is a field)
The algebraic integers Z form a ring. The algebraic numbers Q form a field.

We could prove this now if we wanted to, but the results in the next chapter will more or
less do it for us, and so we take this on faith temporarily.

§53.3 Number fields
Prototypical example for this section: Q(

√
2) is a typical number field.

Given any algebraic number α, we’re able to consider fields of the form Q(α). Let us
write down the more full version.

Definition 53.3.1. A number field K is a field containing Q as a subfield which is a
finite-dimensional Q-vector space. The degree of K is its dimension.
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Example 53.3.2 (Prototypical example)
Consider the field

K = Q(
√

2) =
{
a+ b

√
2 | a, b ∈ Q

}
.

This is a field extension of Q, and has degree 2 (the basis being 1 and
√

2).

You might be confused that I wrote Q(
√

2) (which should permit denominators)
instead of Q[

√
2], say. But if you read through Example 5.5.4, you should see that the

denominators don’t really matter: 1
3−

√
2 = 1

7(3 +
√

2) anyways, for example. You can
either check this now in general, or just ignore the distinction and pretend I wrote square
brackets everywhere.

Exercise 53.3.3 (Unimportant). Show that if α is an algebraic number, then Q(α) ∼= Q[α].

Example 53.3.4 (Adjoining an algebraic number)
Let α be the root of some irreducible polynomial P (x) ∈ Q[x]. The field Q(α) is
a field extension as well, and the basis is 1, α, α2, . . . , αm−1, where m = degP . In
particular, the degree of Q(α) is the degree of P .

Example 53.3.5 (Non-examples of number fields)
R and C are not number fields since there is no finite Q-basis of them.

§53.4 Primitive element theorem, and monogenic extensions
Prototypical example for this section: Q(

√
3,
√

5) ∼= Q(
√

3 +
√

5). Can you see why?

I’m only putting this theorem here because I was upset that no one told me it was true
(it’s a very natural conjecture), and I hope to not do the same to the reader. However,
I’m not going to use it in anything that follows.

Theorem 53.4.1 (Artin’s primitive element theorem)
Every number field K is isomorphic to Q(α) for some algebraic number α.

The proof is left as Problem 59F, since to prove it I need to talk about field extensions
first.

The prototypical example

Q(
√

3,
√

5) ∼= Q(
√

3 +
√

5)

makes it clear why this theorem should not be too surprising.

§53.5 A few harder problems to think about
Problem 53A. Find a polynomial with integer coefficients which has

√
2 + 3√3 as a

root.
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Problem 53B (Brazil 2006). Let p be an irreducible polynomial in Q[x] and degree
larger than 1. Prove that if p has two roots r and s whose product is 1 then the degree
of p is even.

Problem 53C⋆. Consider n roots of unity ε1, . . . , εn. Assume the average 1
n(ε1+· · ·+εn)

is an algebraic integer. Prove that either the average is zero or ε1 = · · · = εn. (Used in
Lemma 22.2.2.)

Problem 53D†. Which rational numbers q satisfy cos(qπ) ∈ Q?

Problem 53E (MOP 2010). There are n > 2 lamps arranged in a circle; initially one is
on and the others are off. We may select any regular polygon whose vertices are among
the lamps and toggle the states of all the lamps simultaneously. Show it is impossible to
turn all lamps off.

Problem 53F (Kronecker’s theorem). Let α be an algebraic integer. Suppose all its
Galois conjugates have absolute value one. Prove that αN = 1 for some positive integer
N .

Problem 53G. Is there an algebraic integer with absolute value one which is not a root
of unity?

Problem 53H. Is the ring of algebraic integers Noetherian?
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§54.1 Norms and traces
Prototypical example for this section: a+ b

√
2 as an element of Q(

√
2) has norm a2− 2b2

and trace 2a.
Remember when you did olympiads and we had like a2 + b2 was the “norm” of a+ bi?

Cool, let me tell you what’s actually happening.
First, let me make precise the notion of a conjugate.

Definition 54.1.1. Let α be an algebraic number, and let P (x) be its minimal polynomial,
of degree m. Then the m roots of P are the (Galois) conjugates of α.

It’s worth showing at the moment that there are no repeated conjugates.

Lemma 54.1.2 (Irreducible polynomials have distinct roots)
An irreducible polynomial in Q[x] cannot have a complex double root.

Proof. Let f(x) ∈ Q[x] be the irreducible polynomial and assume it has a double root α.
Take the derivative f ′(x). This derivative has three interesting properties.

• The degree of f ′ is one less than the degree of f .

• The polynomials f and f ′ are not relatively prime because they share a factor
x− α.

• The coefficients of f ′ are also in Q.

Consider g = gcd(f, f ′). We must have g ∈ Q[x] by Euclidean algorithm. But the first
two facts about f ′ ensure that g is nonconstant and deg g < deg f . Yet g divides f ,
contradiction to the fact that f should be a minimal polynomial.

Hence α has exactly as many conjugates as the degree of α.
Now, we would like to define the norm of an element N(α) as the product of its

conjugates. For example, we want 2 + i to have norm (2 + i)(2− i) = 5, and in general
for a+ bi to have norm a2 + b2. It would be really cool if the norm was multiplicative;
we already know this is true for complex numbers!

Unfortunately, this doesn’t quite work: consider

N(2 + i) = 5 and N(2− i) = 5.

But (2 + i)(2− i) = 5, which doesn’t have norm 25 like we want, since 5 is degree 1 and
has no conjugates at all. The reason this “bad” thing is happening is that we’re trying
to define the norm of an element, when we really ought to be defining the norm of an
element with respect to a particular K.

What I’m driving at is that the norm should have different meanings depending on
which field you’re in. If we think of 5 as an element of Q, then its norm is 5. But thought
of as an element of Q(i), its norm really ought to be 25. Let’s make this happen: for K
a number field, we will now define NK/Q(α) to be the norm of α with respect to K as
follows.

539
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Definition 54.1.3. Let α ∈ K have degree n, so Q(α) ⊆ K, and set k = (degK)/n.
The norm of α is defined as

NK/Q(α) :=
(∏

Galois conj of α
)k
.

The trace is defined as

TrK/Q(α) := k ·
(∑

Galois conj of α
)
.

The exponent of k is a “correction factor” that makes the norm of 5 into 52 = 25 when
we view 5 as an element of Q(i) rather than an element of Q. For a “generic” element of
K, we expect k = 1.

Exercise 54.1.4. Use what you know about nested vector spaces to convince yourself that
k is actually an integer.

Example 54.1.5 (Norm of a+ b
√

2)
Let α = a+ b

√
2 ∈ Q(

√
2) = K. If b ̸= 0, then α and K have the degree 2. Thus the

only conjugates of α are a± b
√

2, which gives the norm

(a+ b
√

2)(a− b
√

2) = a2 − 2b2,

The trace is (a− b
√

2) + (a+ b
√

2) = 2a.
Nicely, the formula a2 − 2b2 and 2a also works when b = 0.

Example 54.1.6 (Norm of a+ b 3√2 + c 3√4)
Let α = a + b 3√2 + c 3√4 ∈ Q( 3√2) = K. As above, if b ̸= 0 or c ̸= 0, then α
and K have the same degree 3. The conjugates of α are a + b 3√2ω + c 3√4ω2 and
a + b 3√2ω2 + c 3√4ω, and we can compute NK/Q(α) = a3 + 2b3 + 4c3 − 6abc and
TrK/Q(α) = 3a.

Note that in this case the conjugates of α does not lie in the field K!

Of importance is:

Proposition 54.1.7 (Norms and traces are rational integers)
If α is an algebraic integer, its norm and trace are rational integers.

Question 54.1.8. Prove it. (Vieta formula.)

That’s great, but it leaves a question unanswered: why is the norm multiplicative? To
do this, I have to give a new definition of norm and trace.

Remark 54.1.9 — Another way to automatically add the “corrective factor” is to
use the embeddings of K into C.

As we will see later, in Theorem 59.3.1, there are exactly d = degK embeddings of
K into C, say σ1, . . . , σd. Then, TrK/Q(α) =

∑d
i=1 σi(α) and NK/Q(α) =

∏d
i=1 σi(α).



54 The ring of integers 541

Theorem 54.1.10 (Morally correct definition of norm and trace)
Let K be a number field of degree n, and let α ∈ K. Let µα : K → K denote the
map

x 7→ αx

viewed as a linear map of Q-vector spaces. Then,

• the norm of α equals the determinant detµα, and

• the trace of α equals the trace Trµα.

The definition of the determinant has an obvious geometrical interpretation: viewing
K ∼= Qn as a vector space, the determinant measures how much Qn is stretched when
multiplied by α. That is, given a parallelepiped with volume v in Qn, it will be transformed
to one with volume |N(α)|v under the transformation µα.

Since the trace and determinant don’t depend on the choice of basis, you can pick
whatever basis you want and use whatever definition you got in high school. Fantastic,
right?

Example 54.1.11 (Explicit computation of matrices for a+ b
√

2)
Let K = Q(

√
2), and let 1,

√
2 be the basis of K. Let

α = a+ b
√

2

(possibly even b = 0), and notice that(
a+ b

√
2
) (
x+ y

√
2
)

= (ax+ 2yb) + (bx+ ay)
√

2.

We can rewrite this in matrix form as[
a 2b
b a

] [
x
y

]
=
[
ax+ 2yb
bx+ ay

]
.

Consequently, we can interpret µα as the matrix

µα =
[
a 2b
b a

]
.

Of course, the matrix will change if we pick a different basis, but the determinant
and trace do not: they are always given by

detµα = a2 − 2b2 and Trµα = 2a.

This interpretation explains why the same formula should work for a+ b
√

2 even in the
case b = 0.

Proof. I’ll prove the result for just the norm; the trace falls out similarly. Set

n = degα, kn = degK.

The proof is split into two parts, depending on whether or not k = 1.
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Proof if k = 1. Set n = degα = degK. Thus the norm actually is the product of the
Galois conjugates. Also,

{1, α, . . . , αn−1}

is linearly independent in K, and hence a basis (as dimK = n). Let’s use this as the
basis for µα.

Let
xn + cn−1x

n−1 + · · ·+ c0

be the minimal polynomial of α. Thus µα(1) = α, µα(α) = α2, and so on, but µα(αn−1) =
−cn−1α

n−1 − · · · − c0. Therefore, µα is given by the matrix

M =


0 0 0 . . . 0 −c0
1 0 0 . . . 0 −c1
0 1 0 . . . 0 −c2
...

...
... . . . 0 −cn−2

0 0 0 . . . 1 −cn−1

 .

Thus
detM = (−1)nc0

and we’re done by Vieta’s formulas. ■

Proof if k > 1. We have nested vector spaces

Q ⊆ Q(α) ⊆ K.

Let e1, . . . , ek be a Q(α)-basis for K (meaning: interpret K as a vector space over Q(α),
and pick that basis). Since {1, α, . . . , αn−1} is a Q basis for Q(α), the elements

e1, e1α, . . . , e1α
n−1

e2, e2α, . . . , e2α
n−1

...
... . . . ...

ek, ekα, . . . , ekα
n−1

constitute a Q-basis of K. Using this basis, the map µα looks like
M

M
. . .

M


︸ ︷︷ ︸

k times

where M is the same matrix as above: we just end up with one copy of our old matrix
for each ei. Thus detµα = (detM)k, as needed. ■

Question 54.1.12. Verify the result for traces as well.

From this it follows immediately that

NK/Q(αβ) = NK/Q(α) NK/Q(β)

because by definition we have
µαβ = µα ◦ µβ,

and that the determinant is multiplicative. In the same way, the trace is additive.
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§54.2 The ring of integers
Prototypical example for this section: If K = Q(

√
2), then OK = Z[

√
2]. But if K =

Q(
√

5), then OK = Z[1+
√

5
2 ].

Z makes for better number theory than Q. In the same way, focusing on the algebraic
integers of K gives us some really nice structure, and we’ll do that here.

Definition 54.2.1. Given a number field K, we define

OK := K ∩ Z

to be the ring of integers of K; in other words OK consists of the algebraic integers of
K.

We do the classical example of a quadratic field now. Before proceeding, I need to
write a silly number theory fact.

Exercise 54.2.2 (Annoying but straightforward). Let a and b be rational numbers, and d a
squarefree positive integer.

• If d ≡ 2, 3 (mod 4), prove that 2a, a2 − db2 ∈ Z if and only if a, b ∈ Z.

• For d ≡ 1 (mod 4), prove that 2a, a2 − db2 ∈ Z if and only if a, b ∈ Z OR if
a− 1

2 , b−
1
2 ∈ Z.

You’ll need to take mod 4.

Example 54.2.3 (Ring of integers of K = Q(
√

3))
Let K be as above. We claim that

OK = Z[
√

3] =
{
m+ n

√
3 | m,n ∈ Z

}
.

We set α = a + b
√

3. Then α ∈ OK when the minimal polynomial has integer
coefficients.

If b = 0, then the minimal polynomial is x− α = x− a, and thus α works if and
only if it’s an integer. If b ̸= 0, then the minimal polynomial is

(x− a)2 − 3b2 = x2 − 2a · x+ (a2 − 3b2).

From the exercise, this occurs exactly for a, b ∈ Z.

Example 54.2.4 (Ring of integers of K = Q(
√

5))
We claim that in this case

OK = Z
[

1 +
√

5
2

]
=
{
m+ n · 1 +

√
5

2 | m,n ∈ Z
}
.

The proof is exactly the same, except the exercise tells us instead that for b ̸= 0, we
have both the possibility that a, b ∈ Z or that a, b ∈ Z − 1

2 . This reflects the fact
that 1+

√
5

2 is the root of x2 − x− 1 = 0; no such thing is possible with
√

3.
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In general, the ring of integers of K = Q(
√
d) is

OK =


Z[
√
d] d ≡ 2, 3 (mod 4)

Z
[

1+
√
d

2

]
d ≡ 1 (mod 4).

What we’re going to show is that OK behaves in K a lot like the integers do in Q. First we
show K consists of quotients of numbers in OK . In fact, we can do better:

Example 54.2.5 (Rationalizing the denominator)
For example, consider K = Q(

√
3). The number x = 1

4+
√

3 is an element of K, but
by “rationalizing the denominator” we can write

1
4 +
√

3
= 4−

√
3

13 .

So we see that in fact, x is 1
13 of an integer in OK .

The theorem holds true more generally.

Theorem 54.2.6 (K = Q · OK)
Let K be a number field, and let x ∈ K be any element. Then there exists an integer
n such that nx ∈ OK ; in other words,

x = 1
n
α

for some α ∈ OK .

Exercise 54.2.7. Prove this yourself. (Start by using the fact that x has a minimal
polynomial with rational coefficients. Alternatively, take the norm.)

Now we are going to show OK is a ring; we’ll check it is closed under addition and
multiplication. To do so, the easiest route is:

Lemma 54.2.8 (α ∈ Z ⇐⇒ Z[α] finitely generated)
Let α ∈ Q. Then α is an algebraic integer if and only if the abelian group Z[α] is
finitely generated.

Proof. Note that α is an algebraic integer if and only if it’s the root of some nonzero,
monic polynomial with integer coefficients. Suppose first that

αN = cN−1α
N−1 + cN−2α

N−2 + · · ·+ c0.

Then the set 1, α, . . . , αN−1 generates Z[α], since we can repeatedly replace αN until all
powers of α are less than N .

Conversely, suppose that Z[α] is finitely generated by some b1, . . . , bm. Viewing the bi
as polynomials in α, we can select a large integer N (say N = deg b1 + · · ·+deg bm+2015)
and express αN in the bi’s to get

αN = c1b1(α) + · · ·+ cmbm(α).
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The above gives us a monic polynomial in α, and the choice of N guarantees it is not
zero. So α is an algebraic integer.

Example 54.2.9 (1
2 isn’t an algebraic integer)

We already know 1
2 isn’t an algebraic integer. So we expect

Z
[1

2

]
=
{
a

2m | a,m ∈ Z and m ≥ 0
}

to not be finitely generated, and this is the case.

Question 54.2.10. To make the last example concrete: name all the elements of Z[ 1
2 ] that

cannot be written as an integer combination of{
1
2 ,

7
8 ,

13
64 ,

2015
4096 ,

1
1048576

}

Now we can state the theorem.

Theorem 54.2.11 (Algebraic integers are closed under + and ×)
The set Z is closed under addition and multiplication; i.e. it is a ring. In particular,
OK is also a ring for any number field K.

Proof. Let α, β ∈ Z. Then Z[α] and Z[β] are finitely generated. Hence so is Z[α, β].
(Details: if Z[α] has Z-basis a1, . . . , am and Z[β] has Z-basis b1, . . . , bn, then take the mn
elements aibj .)

Now Z[α± β] and Z[αβ] are subsets of Z[α, β] and so they are also finitely generated.
Hence α± β and αβ are algebraic integers.

In fact, something even better is true. As you saw, for Q(
√

3) we had OK = Z[
√

3];
in other words, OK was generated by 1 and

√
3. Something similar was true for Q(

√
5).

We claim that in fact, the general picture looks exactly like this.

Theorem 54.2.12 (OK is a free Z-module of rank n)
Let K be a number field of degree n. Then OK is a free Z-module of rank n, i.e.
OK ∼= Z⊕n as an abelian group. In other words, OK has a Z-basis of n elements as

OK = {c1α1 + · · ·+ cn−1αn−1 + cnαn | ci ∈ Z}

where αi are algebraic integers in OK .

The proof will be postponed to a later chapter.
This last theorem shows that in many ways OK is a “lattice” in K. That is, for a

number field K we can find α1, . . . , αn in OK such that

OK ∼= α1Z⊕ α2Z⊕ · · · ⊕ αnZ
K ∼= α1Q⊕ α2Q⊕ · · · ⊕ αnQ

as abelian groups.
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§54.3 On monogenic extensions
Recall that it turned out number fields K could all be expressed as Q(α) for some α. We
might hope that something similar is true of the ring of integers: that we can write

OK = Z[θ]

in which case {1, θ, . . . , θn−1} serves both as a basis of K and as the Z-basis for OK (here
n = [K : Q]). In other words, we hope that the basis of OK is actually a “power basis”.

This is true for the most common examples we use:

• the quadratic field, and

• the cyclotomic field in Problem 54E†.

Unfortunately, it is not true in general: the first counterexample is K = Q(α) for α a
root of X3 −X2 − 2X − 8.

We call an extension with this nice property monogenic. As we’ll later see, monogenic
extensions have a really nice factoring algorithm, Theorem 55.5.4.

Remark 54.3.1 (What went wrong with OK?) — As we have just mentioned above,
as an abelian group, OK ∼= Z3, so it’s generated by finitely many elements.

In fact, {1, α, β} is a basis of OK , where β = α+α2

2 . The group generated by
{1, α, α2} has index 2 in OK – that is, |OK/⟨1, α, α2⟩| = 2, and we misses β.

If we try to pick {1, β, β2} as a basis instead, again we get |OK/⟨1, β, β2⟩| = 2,
and we misses α. If you explicitly compute it out, you can get β2 = 3α2+7α

2 + 6 =
3β + 2α+ 6.

While this is not a proof that the extension is not monogenic, hopefully it gives
you a feeling of the structure of OK .

§54.4 A few harder problems to think about
Problem 54A⋆. Show that α is a unit of OK (meaning α−1 ∈ OK) if and only if
NK/Q(α) = ±1.

Problem 54B⋆. Let K be a number field. What is the field of fractions of OK?

Problem 54C (Russian olympiad 1984). Find all integers m and n such that(
5 + 3

√
2
)m

=
(
3 + 5

√
2
)n
.

Problem 54D (USA TST 2012). Decide whether there exist a, b, c > 2010 satisfying

a3 + 2b3 + 4c3 = 6abc+ 1.

Problem 54E† (Cyclotomic Field). Let p be an odd rational prime and ζp a primitive
pth root of unity. Let K = Q(ζp). Prove that OK = Z[ζp]. (In fact, the result is true
even if p is not a prime.)
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Took long enough.

§55.1 Motivation
Suppose we’re interested in solutions to the Diophantine equation n = x2 + 5y2 for a
given n. The idea is to try and “factor” n in Z[

√
−5], for example

6 = (1 +
√
−5)(1−

√
−5).

Unfortunately, this is not so simple, because as I’ve said before we don’t have unique
factorization of elements:

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√
−5
)
.

One reason this doesn’t work is that we don’t have a notion of a greatest common divisor.
We can write (35, 77) = 7, but what do we make of (3, 1 +

√
−5)?

The trick is to use ideals as a “generalized GCD”. Recall that by (a, b) I mean the ideal
{ax+ by | x, y ∈ Z[

√
−5]}. You can see that (35, 77) = (7), but (3, 1 +

√
−5) will be left

“unsimplified” because it doesn’t represent an actual value in the ring. Using these sets
(ideals) as elements, it turns out that we can develop a full theory of prime factorization,
and we do so in this chapter.

In other words, we use the ideal (a1, . . . , am) to interpret a “generalized GCD” of a1,
. . . , am. In particular, if we have a number x we want to represent, we encode it as just
(x).

Going back to our example of 6,

(6) = (2) · (3) =
(
1 +
√
−5
)
·
(
1−
√
−5
)
.

Please take my word for it that in fact, the complete prime factorization of (6) into prime
ideals is

(6) = (2, 1−
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5) = p2q1q2.

In fact, (2) = p2, (3) = q1q2, (1 +
√
−5) = pq1, (1−

√
−5) = pq2. So 6 indeed factorizes

uniquely into ideals, even though it doesn’t factor into elements.
As one can see above, ideal factorization is more refined than element factorization.

Once you have the factorization into ideals, you can from there recover all the factorizations
into elements. The upshot of this is that if we want to write n as x2 + 5y2, we just have
to factor n into ideals, and from there we can recover all factorizations into elements,
and finally all ways to write n as x2 + 5y2. Since we can already break n into rational
prime factors (for example 6 = 2 · 3 above) we just have to figure out how each rational
prime p | n breaks down. There’s a recipe for this, Theorem 55.5.4! In fact, I’ll even tell
you what is says in this special case:

• If t2 + 5 factors as (t+ c)(t− c) (mod p), then (p) = (p, c+
√
−5)(p, c−

√
−5).

• Otherwise, (p) is a prime ideal.

In this chapter we’ll develop this theory of unique factorization in full generality.

547
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Remark 55.1.1 — In this chapter, I’ll be using the letters a, b, p, q for ideals of
OK . When fractional ideals arise, I’ll use I and J for them.

§55.2 Ideal arithmetic
Prototypical example for this section: (x)(y) = (xy), and (x) + (y) = (gcd(x, y)). In any
case, think in terms of generators.

First, I have to tell you how to add and multiply two ideals a and b.

Definition 55.2.1. Given two ideals a and b of a ring R, we define

a + b := {a+ b | a ∈ a, b ∈ b}
a · b := {a1b1 + · · ·+ anbn | ai ∈ a, bi ∈ b} .

(Note that infinite sums don’t make sense in general rings, which is why in a · b we cut
off the sum after some finite number of terms.) You can readily check these are actually
ideals. This definition is more natural if you think about it in terms of the generators of
a and b.

Proposition 55.2.2 (Ideal arithmetic via generators)
Suppose a = (a1, a2, . . . , an) and b = (b1, . . . , bm) are ideals in a ring R. Then

(a) a + b is the ideal generated by a1, . . . , an, b1, . . . , bm.

(b) a · b is the ideal generated by aibj , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof. Pretty straightforward; just convince yourself that this result is correct.

In other words, for sums you append the two sets of generators together, and for products
you take products of the generators. Note that for principal ideals, this coincides with
“normal” multiplication, for example

(3) · (5) = (15)

in Z.

Remark 55.2.3 — Note that for an ideal a and an element c, the set

ca = {ca | a ∈ a}

is equal to (c) · a. So “scaling” and “multiplying by principal ideals” are the same
thing. This is important, since we’ll be using the two notions interchangeably.

Remark 55.2.4 — The addition of two ideals does not correspond to the addition
of elements — for example, (4) + (6) = (4, 6) = (2), but 4 + 6 = 10.

This is the best we can hope for — addition of elements does not make sense for
ideals — for example, 1 + 1 = 2 and 1 + (−1) = 0, but as ideals, (1) = (−1).

In fact, addition of ideal is the straightforward generalization of gcd of elements —
as you can check in the example above, gcd(4, 6) = 2.

Nevertheless, I hope you agree that a + b is a natural notation, compared to
something like (a, b).
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Because factorization involves multiplying, instead of adding, the ideals together,
we will not need to use the notation a + b any time soon.

Finally, since we want to do factorization we better have some notion of divisibility.
So we define:

Definition 55.2.5. We say a divides b and write a | b if a ⊇ b.

Note the reversal of inclusions! So (3) divides (15), because (15) is contained in (3);
every multiple of 15 is a multiple of 3. And from the example in the previous section: In
Z[
√
−5], (3, 1−

√
−5) divides (3) and (1−

√
−5).

Finally, the prime ideals are defined as in Definition 5.3.1: p is prime if xy ∈ p implies
x ∈ p or y ∈ p. This is compatible with the definition of divisibility:

Exercise 55.2.6. A nonzero proper ideal p is prime if and only if whenever p divides ab, p
divides one of a or b.

As mentioned in Remark 5.3.3, this also lets us ignore multiplication by units: (−3) = (3).

§55.3 Dedekind domains
Prototypical example for this section: Any OK is a Dedekind domain.

We now define a Dedekind domain as follows.

Definition 55.3.1. An integral domain A is a Dedekind domain if it is Noetherian,
integrally closed, and every nonzero prime ideal of A is in fact maximal. (The last
condition is the important one.)

Remark 55.3.2 — Note that A is a Dedekind domain if and only if A = OK for
some field K, as we will prove below. We’re just defining this term for historical
reasons. . .

Here there’s one new word I have to define for you, but we won’t make much use of it.

Definition 55.3.3. Let R be an integral domain and let K be its field of fractions.
We say R is integrally closed if the only elements a ∈ K which are roots of monic
polynomials in R are the elements of R (which are roots of the trivial x− r polynomial).

The interesting condition in the definition of a Dedekind domain is the last one: prime
ideals and maximal ideals are the same thing. The other conditions are just technicalities,
but “primes are maximal” has real substance.

Example 55.3.4 (Z is a Dedekind domain)
The ring Z is a Dedekind domain. Note that

• Z is Noetherian (for obvious reasons).

• Z has field of fractions Q. If f(x) ∈ Z[x] is monic, then by the rational root
theorem any rational roots are integers (this is the same as the proof that
Z ∩Q = Z). Hence Z is integrally closed.

• The nonzero prime ideals of Z are (p), which also happen to be maximal.
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The case of interest is a ring OK in which we wish to do factorizing. We’re now going
to show that for any number field K, the ring OK is a Dedekind domain. First, the
boring part.

Proposition 55.3.5 (OK integrally closed and Noetherian)
For any number field K, the ring OK is integrally closed and Noetherian.

Proof. Boring, but here it is anyways for completeness.
Since OK ∼= Z⊕n,1 we get that it’s Noetherian.
Now we show that OK is integrally closed. Suppose that η ∈ K is the root of some

polynomial with coefficients in OK . Thus

ηn = αn−1 · ηn−1 + αn−2 · ηn−2 + · · ·+ α0

where αi ∈ OK . We want to show that η ∈ OK as well.
Well, from the above, OK [η] is finitely generated. . . thus Z[η] ⊆ OK [η] is finitely

generated. So η ∈ Z, and hence η ∈ K ∩ Z = OK .

Now let’s do the fun part. We’ll prove a stronger result, which will re-appear repeat-
edly.

Theorem 55.3.6 (Important: prime ideals divide rational primes)
Let OK be a ring of integers and p a nonzero prime ideal inside it. Then p contains
a rational prime p. Moreover, p is maximal.

For a concrete example, consider (2+i) ⊆ Z[i]. In this case, p = 5, and because p ∈ (2+i),
we get that the lattice is periodic in both dimensions with period 5, which implies finitely
many points in {a + bi | 0 ≤ a, b ≤ 4, a, b ∈ Z} suffices to cover all cosets modulo the
ideal.

The proof of the finiteness of the quotient here is closely related to the statement that
the mesh of the lattice is finite, which will be covered in the next section.

Proof. Take any α ̸= 0 in p. Its Galois conjugates are algebraic integers so their product
N(α)/α is in OK (even though each individual conjugate need not be in K). Consequently,
N(α) ∈ p, and we conclude p contains some integer.

Then take the smallest positive integer in p, say p. We must have that p is a rational
prime, since otherwise p ∋ p = xy implies one of x, y ∈ p. This shows the first part.

We now do something pretty tricky to show p is maximal. Look at OK/p; since p is
prime it’s supposed to be an integral domain. . . but we claim that it’s actually finite! To
do this, we forget that we can multiply on OK . Recalling that OK ∼= Z⊕n as an abelian
group, we obtain a map

Fp⊕n ∼= OK/(p) ↠ OK/p.

Hence |OK/p| ≤ pn is finite. Since finite integral domains are fields (Problem 5D⋆) we
are done.

Since every nonzero prime p is maximal, we now know that OK is a Dedekind domain.
Note that this tricky proof is essentially inspired by the solution to Problem 5G†.

1By Theorem 54.2.12.
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Remark 55.3.7 — An alternative proof for the first part is: because p is an ideal,
α · OK ⊆ p, but α · OK is a free Z-module of rank n, so p is squeezed between two
free Z-modules of rank n, by Theorem 18.1.5 we must have p is also free of rank n.
So the quotient is finite, then use Lemma 56.8.8.

§55.4 Unique factorization works
Okay, I’ll just say it now!

Unique factorization works perfectly in Dedekind domains!

Remark 55.4.1 (Comparison between Dedekind domain and UFD) — If we temporarily
forget about the Noetherian and integrally closed condition, we have:

• An integral domain admits unique factorization of elements if the prime
elements and the irreducible elements are the same.

• An integral domain admits unique factorization of ideals if the prime ideals
and the maximal ideals are the same.

Notice the similarity — in either case, the Noetherian condition is “merely” to ensure
that, if you keep extracting prime factors, you will terminate in a finite time.

Example 55.4.2 (What went wrong if A is not integrally closed?)
Consider A = 2Z, which is an ideal of Z. Clearly, every nonzero prime ideal is
maximal.

Nevertheless, in A, (2 · 3 · 5) = (60) is not a prime ideal (so of course it isn’t a
maximal ideal), but we cannot break it down into, for example, (2 · 3) · (5).

Theorem 55.4.3 (Prime factorization works)
Let a be a nonzero proper ideal of a Dedekind domain A. Then a can be written as
a finite product of nonzero prime ideals pi, say

a = pe1
1 pe2

2 . . . peg
g

and this factorization is unique up to the order of the pi.
Moreover, a divides b if and only if for every prime ideal p, the exponent of p in a

is less than or equal to the corresponding exponent in b.

I won’t write out the proof, but I’ll describe the basic method of attack. Section 3
of [Ul08] does a nice job of explaining it. When we proved the fundamental theorem of
arithmetic, the basic plot was:

(1) Show that if p is a rational prime2 then p | bc means p | b or p | c. (This is called
2Note that the kindergarten definition of a prime is that “p isn’t the product of two smaller integers”.

This isn’t the correct definition of a prime: the definition of a prime is that p | bc means p | b or
p | c. The kindergarten definition is something called “irreducible”. Fortunately, in Z, primes and
irreducibles are the same thing, so no one ever told you that your definition of “prime” was wrong.
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Euclid’s Lemma.)

(2) Use strong induction to show that every N > 1 can be written as the product of
primes (easy).

(3) Show that if p1 . . . pm = q1 . . . qn for some primes (not necessarily unique), then
p1 = qi for some i, say q1.

(4) Divide both sides by p1 and use induction.

What happens if we try to repeat the proof here? We get step 1 for free, because we’re
using a better definition of “prime”. We can also do step 3, since it follows from step 1.
But step 2 doesn’t work, because for abstract Dedekind domains we don’t really have a
notion of size. And step 4 doesn’t work because we don’t yet have a notion of what the
inverse of a prime ideal is.

Well, it turns out that we can define the inverse a−1 of an ideal, and I’ll do so by the
end of this chapter. You then need to check that a · a−1 = (1) = A. In fact, even this
isn’t easy. You have to check it’s true for prime ideals p, then prove prime factorization,
and then prove that this is true. Moreover, a−1 is not actually an ideal, so you need to
work in the field of fractions K instead of A.

So the main steps in the new situation are as follows:

(1) First, show that every ideal a divides p1 . . . pg for some finite collection of primes.
(This is an application of Zorn’s Lemma.)

(2) Define p−1 and show that pp−1 = (1).

(3) Show that a factorization exists (again using Zorn’s Lemma).

(4) Show that it’s unique, using the new inverse we’ve defined.

Finally, let me comment on how nice this is if A is a PID (like Z). Thus every element
a ∈ A is in direct correspondence with an ideal (a). Now suppose (a) factors as a product
of ideals pi = (pi), say,

(a) = (p1)e1(p2)e2 . . . (pn)en .

This verbatim reads
a = upe1

1 p
e2
2 . . . pen

n

where u is some unit (recall Definition 4.4.1). Hence, Dedekind domains which are PID’s
satisfy unique factorization for elements, just like in Z. (In fact, the converse of this is
true.)

§55.5 The factoring algorithm
Let’s look at some examples from quadratic fields. Recall that if K = Q(

√
d), then

OK =

Z[
√
d] d ≡ 2, 3 (mod 4)

Z
[

1+
√
d

2

]
d ≡ 1 (mod 4).

Also, recall that the norm of a+ b
√
−d is given by a2 + db2.
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Example 55.5.1 (Factoring 6 in the integers of Q(
√
−5))

Let OK = Z[
√
−5] arise from K = Q(

√
−5). We’ve already seen that

(6) = (2) · (3) =
(
1 +
√
−5
) (

1−
√
−5
)

and you can’t get any further with these principal ideals. But let

p =
(
1 +
√
−5, 2

)
=
(
1−
√
−5, 2

)
and q1 = (1 +

√
−5, 3), q2 = (1−

√
−5, 3).

Then it turns out (6) = p2q1q2. More specifically, (2) = p2, (3) = q1q2, and
(1 +

√
−5) = pq1 and (1−

√
−5) = pq2. (Proof in just a moment.)

I want to stress that all our ideals are computed relative to OK . So for example,

(2) = {2x | x ∈ OK} .

How do we know in this example that p is prime/maximal? (Again, these are the same
since we’re in a Dedekind domain.) Answer: look at OK/p and see if it’s a field. There
is a trick to this: we can express

OK = Z[
√
−5] ∼= Z[x]/(x2 + 5).

So when we take that mod p, we get that

OK/p = Z[x]/(x2 + 5, 2, 1 + x) ∼= F2[x]/(x2 + 5, x+ 1)

as rings.

Question 55.5.2. Conclude that OK/p ∼= F2, and satisfy yourself that q1 and q2 are also
maximal.

I should give an explicit example of an ideal multiplication: let’s compute

q1q2 =
(
(1 +

√
−5)(1−

√
−5), 3(1 +

√
−5), 3(1−

√
−5), 9

)
=
(
6, 3 + 3

√
−5, 3− 3

√
−5, 9

)
=
(
6, 3 + 3

√
−5, 3− 3

√
−5, 3

)
= (3)

where we first did 9− 6 = 3 (think Euclidean algorithm!), then noted that all the other
generators don’t contribute anything we don’t already have with the 3 (again these are
ideals computed in OK). You can do the computation for p2, pq1, pq2 in the same way.

Finally, it’s worth pointing out that we should quickly verify that p ≠ (x) for some
x; in other words, that p is not principal. Assume for contradiction that it is. Then x
divides both 1 +

√
−5 and 2, in the sense that 1 +

√
−5 = α1x and 2 = α2x for some

α1, α2 ∈ OK . (Principal ideals are exactly the “multiples” of x, so (x) = xOK .) Taking
the norms, we find that NK/Q(x) divides both

NK/Q(1 +
√
−5) = 6 and NK/Q(2) = 4.

Since p ̸= (1), x cannot be a unit, so its norm must be 2. But there are no elements of
norm 2 = a2 + 5b2 in OK .
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Example 55.5.3 (Factoring 3 in the integers of Q(
√
−17))

Let OK = Z[
√
−17] arise from K = Q(

√
−17). We know OK ∼= Z[x]/(x2 + 17). Now

OK/3OK ∼= Z[x]/(3, x2 + 17) ∼= F3[x]/(x2 − 1).

This already shows that (3) cannot be a prime (i.e. maximal) ideal, since otherwise
our result should be a field. Anyways, we have a projection

OK ↠ F3[x]/ ((x− 1)(x+ 1)) .

Let q1 be the pre-image of (x− 1) in the image, that is,

q1 = (3,
√
−17− 1).

Similarly,
q2 = (3,

√
−17 + 1).

We have OK/q1 ∼= F3, so q1 is maximal (prime). Similarly q2 is prime. Magically,
you can check explicitly that

q1q2 = (3).

Hence this is the factorization of (3) into prime ideals.

The fact that q1q2 = (3) looks magical, but it’s really true:

q1q2 = (3,
√
−17− 1)(3,

√
−17 + 1)

= (9, 3
√
−17 + 3, 3

√
−17− 3, 18)

= (9, 3
√
−17 + 3, 6)

= (3, 3
√
−17 + 3, 6)

= (3).

In fact, it turns out this always works in general: given a rational prime p, there is an
algorithm to factor p in any OK of the form Z[θ].

Theorem 55.5.4 (Factoring algorithm / Dedekind-Kummer theorem)
Let K be a number field. Let θ ∈ OK with |OK/Z[θ]| = j <∞, and let p be a prime
not dividing j. Then (p) = pOK is factored as follows:

Let f be the minimal polynomial of θ and factor f mod p as

f ≡
g∏
i=1

(f i)ei (mod p).

Then pi = (fi(θ), p) is prime for each i and the factorization of (p) is

OK ⊇ (p) =
g∏
i=1

pei
i .

In particular, if K is monogenic with OK = Z[θ] then j = 1 and the theorem applies
for all primes p.
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In almost all our applications in this book, K will be monogenic; i.e. j = 1. Here ψ
denotes the image in Fp[x] of a polynomial ψ ∈ Z[x].

Question 55.5.5. There are many possible pre-images fi we could have chosen (for example
if fi = x2 + 1 (mod 3), we could pick fi = x2 + 3x+ 7.) Why does this not affect the value
of pi?

Note that earlier, we could check the factorization worked for any particular case. The
proof that this works is much the same, but we need one extra tool, the ideal norm. After
that we leave the proposition as Problem 55E.

This algorithm gives us a concrete way to compute prime factorizations of (p) in any
monogenic number field with OK = Z[θ]. To summarize the recipe:

1. Find the minimal polynomial of θ, say f ∈ Z[x].

2. Factor f mod p into irreducible polynomials f1
e1f2

e2 . . . fg
eg .

3. Compute pi = (fi(θ), p) for each i.

Then your (p) = pe1
1 . . . p

eg
g .

Or even shorter:

In order to factorize p in Z[x]/(f(x)), we can factorize f(x) in Z[x]/(p)
instead.

Both are equivalent to factorizing 0 in Z[x]/(f(x), p) — in other words, writing Z[x]/(f(x), p)
as a direct sum of Z[x]-modules.

Exercise 55.5.6. Factor (29) in Z[i] using the above algorithm.

§55.6 Fractional ideals
Prototypical example for this section: Analog to Q for Z, allowing us to take inverses of
ideals. Prime factorization works in the nicest way possible.

We now have a neat theory of factoring ideals of A, just like factoring the integers.
Now note that our factorization of Z naturally gives a way to factor elements of Q; just
factor the numerator and denominator separately.

Let’s make the analogy clearer. The analogue of a rational number is as follows.

Definition 55.6.1. Let A be a Dedekind domain with field of fractions K. A fractional
ideal J of K is a set of the form

J = 1
x
· a where x ∈ A, and a is an integral ideal.

For emphasis, ideals of A will be sometimes referred to as integral ideals.

You might be a little surprised by this definition: one would expect that a fractional
ideal should be of the form a

b for some integral ideals a, b. But in fact, it suffices to just
take x ∈ A in the denominator. The analogy is that when we looked at OK , we found
that we only needed integer denominators: 1

4−
√

3 = 1
13(4 +

√
3). Similarly here, it will

turn out that we only need to look at 1
x · a rather than a

b , and so we define it this way
from the beginning. See Problem 55D† for a different equivalent definition.



556 Napkin, by Evan Chen (v1.6.20241027)

Example 55.6.2 (5
2Z is a fractional ideal)

The set
5
2Z =

{5
2n | n ∈ Z

}
= 1

2(5)

is a fractional ideal of Z.

Now, as we prescribed, the fractional ideals form a multiplicative group:

Theorem 55.6.3 (Fractional ideals form a group)
Let A be a Dedekind domain and K its field of fractions. For any integral ideal a,
the set

a−1 = {x ∈ K | xa ⊆ (1) = A}

is a fractional ideal with aa−1 = (1).

(This result is nontrivial. To prove aa−1 = (1), one approach is to prove it first for
prime a, then consider the factorization of a into prime ideals.)

Definition 55.6.4. Thus nonzero fractional ideals of K form a group under multiplication
with identity (1) = A. This ideal group is denoted JK .

Example 55.6.5 ((3)−1 in Z)
Please check that in Z we have

(3)−1 =
{1

3n | n ∈ Z
}

= 1
3Z.

It follows that every fractional ideal J can be uniquely written as

J =
∏
i

pni
i ·

∏
i

q−mi
i

where ni and mi are positive integers. In fact, a is an integral ideal if and only if all its
exponents are nonnegative, just like the case with integers. So, a perhaps better way
to think about fractional ideals is as products of prime ideals, possibly with negative
exponents.

§55.7 The ideal norm
One last tool is the ideal norm, which gives us a notion of the “size” of an ideal.

Definition 55.7.1. The ideal norm (or absolute norm) of a nonzero ideal a ⊆ OK is
defined as |OK/a| and denoted N(a).

Example 55.7.2 (Ideal norm of (5) in the Gaussian integers)
Let K = Q(i), OK = Z[i]. Consider the ideal (5) in OK . We have that

OK/(5) ∼= {a+ bi | a, b ∈ Z/5Z}
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so (5) has ideal norm 25, corresponding to the fact that OK/(5) has 52 = 25 elements.

Example 55.7.3 (Ideal norm of (2 + i) in the Gaussian integers)
You’ll notice that

OK/(2 + i) ∼= F5

since mod 2 + i we have both 5 ≡ 0 and i ≡ −2. (Indeed, since (2 + i) is prime we
had better get a field!) Thus N ((2 + i)) = 5; similarly N ((2− i)) = 5.

Thus the ideal norm measures how “roomy” the ideal is: that is, (5) is a lot more
spaced out in Z[i] than it is in Z. (This intuition will be important when we will actually
view OK as a lattice.)

Question 55.7.4. What are the ideals with ideal norm one?

Our example with (5) suggests several properties of the ideal norm which turn out to
be true:

Lemma 55.7.5 (Properties of the absolute norm)
Let a be a nonzero ideal of OK .

(a) N(a) is finite.

(b) For any other nonzero ideal b, N(ab) = N(a) N(b).

(c) If a = (a) is principal, then N(a) = |NK/Q(a)|.

I unfortunately won’t prove these properties, though we already did (a) in our proof that
OK was a Dedekind domain.

As with the case of the norm of an element, the ideal norm also has a geometrical
interpretation: Recall that if a = (a), let µa be the multiplication-by-a map, then
NK/Q(a) = | detµa| measures how much K is stretched under µa when viewed as a
Q-vector space.

Exercise 55.7.6. Convince yourself that if µa(OK) ⊆ OK , then |OK/aOK | is exactly equal
to | detµa|.

This explains why N(a) = |NK/Q(a)|, although note that a = (a) = (−a), so there need
not be an unique multiplication-by-a map.

The fact that N is completely multiplicative lets us also consider the norm of a fractional
ideal J by the natural extension

J =
∏
i

pni
i ·

∏
i

q−mi
i =⇒ N(J) :=

∏
i N(pi)ni∏
i N(qi)mi

.

Thus N is a natural group homomorphism JK → Q×.

§55.8 A few harder problems to think about
Problem 55A. Show that there are three different factorizations of 77 in OK , where
K = Q(

√
−13).
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Problem 55B. Let K = Q( 3√2); take for granted that OK = Z[ 3√2]. Find the factoriza-
tion of (5) in OK .

Problem 55C (Fermat’s little theorem). Let p be a prime ideal in some ring of integers
OK . Show that for α ∈ OK ,

αN(p) ≡ α (mod p).

Problem 55D†. Let A be a Dedekind domain with field of fractions K, and pick J ⊆ K.
Show that J is a fractional ideal if and only if

(i) J is closed under addition and multiplication by elements of A, and

(ii) J is finitely generated as an abelian group.

More succinctly: J is a fractional ideal ⇐⇒ J is a finitely generated A-module.

Problem 55E. In the notation of Theorem 55.5.4, let I =
∏g
i=1 p

ei
i . Assume for simplicity

that K is monogenic, hence OK = Z[θ].

(a) Prove that each pi is prime.

(b) Show that (p) divides I.

(c) Use the norm to show that (p) = I.
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We now have a neat theory of unique factorization of ideals. In the case of a PID, this
in fact gives us a UFD. Sweet.

We’ll define, in a moment, something called the class group which measures how far
OK is from being a PID; the bigger the class group, the farther OK is from being a PID.
In particular, OK is a PID if it has trivial class group.

Then we will provide some inequalities which let us put restrictions on the class group;
for instance, this will let us show in some cases that the class group must be trivial.
Astonishingly, the proof will use Minkowski’s theorem, a result from geometry.

§56.1 The class group
Prototypical example for this section: PID’s have trivial class group.

Let K be a number field, and let JK denote the multiplicative group of fractional
ideals of OK . Let PK denote the multiplicative group of principal fractional ideals:
those of the form (x) = xOK for some x ∈ K.

Question 56.1.1. Check that PK is also a multiplicative group. (This is really easy: name
xOK · yOK and (xOK)−1.)

As JK is abelian, we can now define the class group (or ideal class group) to be the
quotient

ClK := JK/PK .

The elements of ClK are called classes.
Equivalently,

The class group ClK is the set of nonzero fractional ideals modulo scaling
by a constant in K.

You can also think of the classes as the “shapes” of the ideals, as two ideals belong to
the same class if and only if they’re isomorphic as OK-modules.

Example 56.1.2 (Ideal classes in Q(
√
−5))

If the field is an imaginary quadratic field, visualizing the class of an ideal is really
easy: because multiplication by a complex number corresponds to a combination of
a scaling and a rotation (i.e. it preserves angles), two ideals belong to the same class
if they are similar, that is, you can overlap one onto the another using rotation and
scaling.

When the field is K = Q(
√
−5), the ring of integers is OK = Z[

√
−5].

The first picture below depicts the ideal (1) ⊆ OK . The second picture depicts
(2, 1 +

√
−5) ⊆ OK , which is not a principal ideal.

559
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In particular, ClK is trivial if all ideals are principal, since the nonzero principal ideals
are the same up to scaling.

The size of the class group is called the class number. It’s a beautiful theorem that
the class number is always finite, and the bulk of this chapter will build up to this result.
It requires several ingredients.

§56.2 The discriminant of a number field

Prototypical example for this section: Quadratic fields.

Let’s say I have K = Q(
√

2). As we’ve seen before, this means OK = Z[
√

2], meaning

OK =
{
a+ b

√
2 | a, b ∈ Z

}
.

The key insight now is that you might think of this as a lattice: geometrically, we want
to think about this the same way we think about Z2.

Perversely, we might try to embed this into Q2 by sending a + b
√

2 to (a, b). But
this is a little stupid, since we’re rudely making K, which somehow lives inside R and
is “one-dimensional” in that sense, into a two-dimensional space. It also depends on a
choice of basis, which we don’t like. A better way is to think about the fact that there
are two embeddings σ1 : K → C and σ2 : K → C, namely the identity, and conjugation:

σ1(a+ b
√

2) = a+ b
√

2
σ2(a+ b

√
2) = a− b

√
2.

Fortunately for us, these embeddings both have real image. This leads us to consider the
set of points

(σ1(α), σ2(α)) ∈ R2 as α ∈ K.

This lets us visualize what OK looks like in R2. The points of K are dense in R2, but
the points of OK cut out a lattice.
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−2

−1

0

1

2
−
√
2

√
2

1 +
√
2

To see how big the lattice is, we look at how {1,
√

2}, the generators of OK , behave.
The point corresponding to a+ b

√
2 in the lattice is

a · (1, 1) + b · (
√

2,−
√

2).

The mesh of the lattice1 is defined as the hypervolume of the “fundamental parallelepiped”
I’ve colored blue above. For this particular case, it ought to be equal to the area of that
parallelogram, which is

det
[
1 −

√
2

1
√

2

]
= 2
√

2.

The definition of the discriminant is precisely this, except with an extra square factor (since
permutation of rows could lead to changes in sign in the matrix above). Problem 57B⋆

shows that the squaring makes ∆K an integer.
To make the next definition, we invoke:

Theorem 56.2.1 (The n embeddings of a number field)
Let K be a number field of degree n. Then there are exactly n field homomorphisms
K ↪→ C, say σ1, . . . , σn, which fix Q.

Proof. Deferred to Theorem 59.3.1, once we have the tools of Galois theory.

In fact, in Theorem 59.3.4 we see that for α ∈ K, we have that σi(α) runs over the
conjugates of α as i = 1, . . . , n. It follows that

TrK/Q(α) =
n∑
i=1

σi(α) and NK/Q(α) =
n∏
i=1

σi(α).

This allows us to define:
1Most authors call this the volume, but I think this is not the right word to use – lattices have “volume”

zero since they are just a bunch of points! In contrast, the English word “mesh” really does refer to
the width of a “gap”.
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Definition 56.2.2. Suppose α1, . . . , αn is a Z-basis of OK . The discriminant of the
number field K is defined by

∆K := det

σ1(α1) . . . σn(α1)
... . . . ...

σ1(αn) . . . σn(αn)


2

.

This does not depend on the choice of the {αi}; we will not prove this here.

Example 56.2.3 (Discriminant of K = Q(
√

2))
We have OK = Z[

√
2] and as discussed above the discriminant is

∆K = (−2
√

2)2 = 8.

Example 56.2.4 (Discriminant of Q(i))
Let K = Q(i). We have OK = Z[i] = Z⊕ iZ. The embeddings are the identity and
complex conjugation which take 1 to (1, 1) and i to (i,−i). So

∆K = det
[
1 1
i −i

]2

= (−2i)2 = −4.

This example illustrates that the discriminant need not be positive for number fields
which wander into the complex plane (the lattice picture is a less perfect analogy).
But again, as we’ll prove in the problems the discriminant is always an integer.

Example 56.2.5 (Discriminant of Q(
√

5))
Let K = Q(

√
5). This time, OK = Z⊕ 1+

√
5

2 Z, and so the discriminant is going to
look a little bit different. The embeddings are still a+ b

√
5 7→ a+ b

√
5, a− b

√
5.

Applying this to the Z-basis
{

1, 1+
√

5
2

}
, we get

∆K = det
[

1 1
1+

√
5

2
1−

√
5

2

]2

= (−
√

5)2 = 5.

Exercise 56.2.6. Extend all this to show that if K = Q(
√
d) for d ̸= 1 squarefree, we have

∆K =
{
d if d ≡ 1 (mod 4)
4d if d ≡ 2, 3 (mod 4).

Actually, let me point out something curious: recall that the polynomial discriminant
of Ax2 +Bx+ C is B2 − 4AC. Then:

• In the d ≡ 1 (mod 4) case, ∆K is the discriminant of x2 − x− d−1
4 , which is the

minimal polynomial of 1
2(1 +

√
d). Of course, OK = Z[1

2(1 +
√
d)].

• In the d ≡ 2, 3 (mod 4) case, ∆K is the discriminant of x2−d which is the minimal
polynomial of

√
d. Once again, OK = Z[

√
d].
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This is not a coincidence! Problem 57C⋆ asserts that this is true in general; hence the
name “discriminant”.

§56.3 The signature of a number field
Prototypical example for this section: Q( 100√2) has signature (2, 49).

In the example of K = Q(i), we more or less embedded K into the space C. However,
K is a degree two extension, so what we’d really like to do is embed it into R2. To do so,
we’re going to take advantage of complex conjugation.

Let K be a number field and σ1, . . . , σn be its embeddings. We distinguish between
the real embeddings (which map all of K into R) and the complex embeddings
(which map some part of K outside R). Notice that if σ is a complex embedding, then
so is the conjugate σ ̸= σ; hence complex embeddings come in pairs.

Definition 56.3.1. Let K be a number field of degree n, and set

r1 = number of real embeddings
r2 = number of pairs of complex embeddings.

The signature of K is the pair (r1, r2). Observe that r1 + 2r2 = n.

Example 56.3.2 (Basic examples of signatures)
(a) Q has signature (1, 0).

(b) Q(
√

2) has signature (2, 0).

(c) Q(i) has signature (0, 1).

(d) Let K = Q( 3√2), and let ω be a cube root of unity. The elements of K are

K =
{
a+ b

3√2 + c
3√4 | a, b, c ∈ Q

}
.

Then the signature is (1, 1), because the three embeddings are

σ1 : 3√2 7→ 3√2, σ2 : 3√2 7→ 3√2ω, σ3 : 3√2 7→ 3√2ω2.

The first of these is real and the latter two are conjugate pairs.

Example 56.3.3 (Even more signatures)
In the same vein Q( 99√2) and Q( 100√2) have signatures (1, 49) and (2, 49).

Question 56.3.4. Verify the signatures of the above two number fields.

From now on, we will number the embeddings of K in such a way that

σ1, σ2, . . . , σr1

are the real embeddings, while

σr1+1 = σr1+r2+1, σr1+2 = σr1+r2+2, . . . , σr1+r2 = σr1+2r2 .
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are the r2 pairs of complex embeddings. We define the canonical embedding of K as

K
ι
↪→ Rr1 × Cr2 by α 7→ (σ1(α), . . . , σr1(α), σr1+1(α), . . . , σr1+r2(α)) .

All we’ve done is omit, for the complex case, the second of the embeddings in each
conjugate pair. This is no big deal, since they are just conjugates; the above tuple is all
the information we need.

For reasons that will become obvious in a moment, I’ll let τ denote the isomorphism

τ : Rr1 × Cr2 ∼−→ Rr1+2r2 = Rn

by breaking each complex number into its real and imaginary part, as

α 7→
(
σ1(α), . . . , σr1(α),
Reσr1+1(α), Im σr1+1(α),
Reσr1+2(α), Im σr1+2(α),
. . . ,

Reσr1+r2(α), Im σr1+r2(α)
)
.

Example 56.3.5 (Example of canonical embedding)
As before let K = Q( 3√2) and set

σ1 : 3√2 7→ 3√2, σ2 : 3√2 7→ 3√2ω, σ3 : 3√2 7→ 3√2ω2

where ω = −1
2 +

√
3

2 i, noting that we’ve already arranged indices so σ1 = id is real
while σ2 and σ3 are a conjugate pair. So the embeddings K ι

↪→ R × C ∼−→ R3 are
given by

α
ι7−→ (σ1(α), σ2(α)) τ7−→ (σ1(α), Reσ2(α), Im σ2(α)) .

For concreteness, taking α = 9 + 3√2 gives

9 + 3√2 ι7→
(
9 + 3√2, 9 + 3√2ω

)
=
(

9 + 3√2, 9− 1
2

3√2 +
6√108

2 i

)
∈ R× C

τ7→
(

9 + 3√2, 9− 1
2

3√2,
6√108

2

)
∈ R3.

Now, the whole point of this is that we want to consider the resulting lattice when we
take OK . In fact, we have:

Lemma 56.3.6
Consider the composition of the embeddings K ↪→ Rr1 ×Cr2 ∼−→ Rn. Then as before,
OK becomes a lattice L in Rn, with mesh equal to

1
2r2

√
|∆K |.
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Proof. Fun linear algebra problem (you just need to manipulate determinants). Left as
Problem 56D.

From this we can deduce:

Lemma 56.3.7
Consider the composition of the embeddings K ↪→ Rr1 × Cr2 ∼−→ Rn. Let a be an
ideal in OK . Then the image of a is a lattice La in Rn with mesh equal to

N(a)
2r2

√
|∆K |.

Sketch of Proof. Let
d = N(a) := |OK/a|.

Then in the lattice La, we somehow only take 1
dth of the points which appear in the

lattice L, which is why the area increases by a factor of N(a). To make this all precise
I would need to do a lot more with lattices and geometry than I have space for in this
chapter, so I will omit the details. But I hope you can see why this is intuitively true.

§56.4 Minkowski’s theorem
Now I can tell you why I insisted we move from Rr1 × Cr2 to Rn. In geometry, there’s a
really cool theorem of Minkowski’s that goes as follows.

Theorem 56.4.1 (Minkowski)
Let S ⊆ Rn be a convex set containing 0 which is centrally symmetric (meaning
that x ∈ S ⇐⇒ −x ∈ S). Let L be a lattice with mesh d. If either

(a) The volume of S exceeds 2nd, or

(b) The volume of S equals 2nd and S is compact,

then S contains a nonzero lattice point of L.

Question 56.4.2. Show that the condition 0 ∈ S is actually extraneous in the sense that
any nonempty, convex, centrally symmetric set contains the origin.

Sketch of Proof. Part (a) is surprisingly simple and has a very olympiad-esque solution:
it’s basically Pigeonhole on areas. We’ll prove part (a) in the special case n = 2, L = Z2

for simplicity as the proof can easily be generalized to any lattice and any n. Thus we
want to show that any such convex set S with area more than 4 contains a lattice point.

Dissect the plane into 2× 2 squares

[2a− 1, 2a+ 1]× [2b− 1, 2b+ 1]

and overlay all these squares on top of each other. By the Pigeonhole Principle, we
find there exist two points p ≠ q ∈ S which is mapped to the same point. Since S is
symmetric, −q ∈ S. Then 1

2(p− q) ∈ S (convexity) and is a nonzero lattice point.
I’ll briefly sketch part (b): the idea is to consider (1+ε)S for ε > 0 (this is “S magnified

by a small factor 1 + ε”). This satisfies condition (a). So for each ε > 0 the set of nonzero
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lattice points in (1 + ε)S, say Sε, is a finite nonempty set of (discrete) points (the “finite”
part follows from the fact that (1 + ε)S is bounded). So there has to be some point that’s
in Sε for every ε > 0 (why?), which implies it’s in S.

§56.5 The trap box

The last ingredient we need is a set to apply Minkowski’s theorem to. I propose:

Definition 56.5.1. Let M be a positive real. In Rr1 × Cr2 , define the box S to be the
set of points (x1, . . . , xr1 , z1, . . . , zr2) such that

r1∑
i=1
|xi|+ 2

r2∑
j=1
|zj | ≤M.

Note that this depends on the value of M .

Think of this box as a mousetrap: anything that falls in it is going to have a small
norm, and our goal is to use Minkowski to lure some nonzero element into it.

S

−2

−1

0

1

2
−
√
2

√
2

1 +
√
2

That is, suppose α ∈ a falls into the box I’ve defined above, which means

M ≥
r1∑
i=1
|σi(α)|+ 2

r1+r2∑
i=r1+1

|σi(α)| =
n∑
i=1
|σi(α)| ,

where we are remembering that the last few σ’s come in conjugate pairs. This looks
like the trace, but the absolute values are in the way. So instead, we apply AM-GM to
obtain:

Lemma 56.5.2 (Effect of the mousetrap)
Let α ∈ OK , and suppose ι(α) is in S (where ι : K ↪→ Rr1 × Cr2 as usual). Then

NK/Q(α) =
n∏
i=1
|σi(α)| ≤

(
M

n

)n
.

The last step we need to do is compute the volume of the box. This is again some
geometry I won’t do, but take my word for it:
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Lemma 56.5.3 (Size of the mousetrap)
Let τ : Rr1×Cr2 ∼−→ Rn as before. Then the image of S under τ is a convex, compact,
centrally symmetric set with volume

2r1 ·
(
π

2

)r2

· M
n

n! .

Question 56.5.4. (Sanity check) Verify that the above is correct for the signatures (r1, r2) =
(2, 0) and (r1, r2) = (0, 1), which are the possible signatures when n = 2.

§56.6 The Minkowski bound
We can now put everything we have together to obtain the great Minkowski bound.

Theorem 56.6.1 (Minkowski bound)
Let a ⊆ OK be any nonzero ideal. Then there exists 0 ̸= α ∈ a such that

NK/Q(α) ≤
( 4
π

)r2 n!
nn

√
|∆K | ·N(a).

Proof. This is a matter of putting all our ingredients together. Let’s see what things
we’ve defined already:

K Rr1 × Cr2 Rn

box S τ img(S) with volume 2r1
(
π
2
)r2 Mn

n!

OK Lattice L with mesh 2−r2
√
|∆K |

a Lattice La with mesh 2−r2
√
|∆K |N(a)

⊃ι τ

Pick a value of M such that the mesh of La equals 2−n of the volume of the box. Then
Minkowski’s theorem gives that some 0 ̸= α ∈ a lands inside the box — the mousetrap is
configured to force NK/Q(α) ≤ 1

nnMn. The correct choice of M is

Mn = Mn · 2n · mesh
vol box = 2n · n!

2r1 ·
(
π
2
)r2 · 2

−r2
√
|∆K |N(a)

which gives the bound after some arithmetic.

§56.7 The class group is finite

Definition 56.7.1. Let MK =
(

4
π

)r2 n!
nn

√
|∆K | for brevity. Note that it is a constant

depending on K.
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So that’s cool and all, but what we really wanted was to show that the class group is
finite. How can the Minkowski bound help? The key idea is the following:

The class of a is entirely determined by (α) · a−1.

Question 56.7.2. Verify this. (That is, if a and b are such that (α) · a−1 = (β) · b−1 for
some α ∈ a, β ∈ b, then prove that a = (γ)b for some γ ∈ K.)

Example 56.7.3
Recall this example:

(6) = (2, 1−
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5) = p2q1q2.

Consider a = (2) being principal, pick α = 2, then (α) ·a−1 = (1). If (α) ·a−1 = (1)
(or (2), or anything principal), we know a must be principal.

On the other hand, q1 = (3, 1 +
√
−5) is not principal, pick α = 3. We know

(3) = q1q2, so (α) · q−1
1 = q2 ̸= (1).

In both examples above, a | (α), so their quotient should be an “integer”. Indeed:

Question 56.7.4. Show that (α) · a−1 is an integral ideal. (Unwind definitions.)

You might notice that we can rewrite the Minkowski bound to say

N
(
(α) · a−1

)
≤MK

where MK is some constant depending on K.
This statement is helpful, because in fact, there are only finitely many integral ideals

with norm ≤MK .

Corollary 56.7.5 (Finiteness of class group)
Class groups are always finite.

Proof. We just have to show there are finitely many integral ideals as above; this will
mean there are finitely many classes.

Suppose we want to build such an ideal a = pe1
1 . . . pem

m . Recall that a prime ideal pi
must have some rational prime p inside it, meaning pi divides (p) and p divides N(pi).
So let’s group all the pi we want to build a with based on which (p) they came from.

(2) (3) (5) . . .

To be more dramatic: imagine you have a cherry tree; each branch corresponds to a
prime (p) and contains as cherries (prime ideals) the factors of (p) (finitely many). Your
bucket (the ideal a you’re building) can only hold a total weight (norm) of MK . So you
can’t even touch the branches higher than MK . You can repeat cherries (oops), but the
weight of a cherry on branch (p) is definitely ≥ p; all this means that the number of ways
to build a is finite.
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§56.8 Computation of class numbers
Definition 56.8.1. The order of ClK is called the class number of K.

Remark 56.8.2 — If ClK = 1, then OK is a PID, hence a UFD.

By computing the actual value of MK , we can quite literally build the entire “cherry
tree” mentioned in the previous proof. Let’s give an example how!

Proposition 56.8.3
The field Q(

√
−67) has class number 1.

Proof. Since K = Q(
√
−67) has signature (0, 1) and discriminant ∆K = −67 (since

−67 ≡ 1 (mod 4)) we can compute

MK =
( 4
π

)1
· 2!

22

√
67 ≈ 5.2.

That means we can cut off the cherry tree after (2), (3), (5), since any cherries on these
branches will necessarily have norm ≥ MK . We now want to factor each of these in
OK = Z[θ], where θ = 1+

√
−67

2 has minimal polynomial x2 − x + 17. But something
miraculous happens:

• When we try to reduce x2 − x + 17 (mod 2), we get an irreducible polynomial
x2 − x+ 1. By the factoring algorithm (Theorem 55.5.4) this means (2) is prime.

• Similarly, reducing mod 3 gives x2 − x+ 2, which is irreducible. This means (3) is
prime.

• Finally, for the same reason, (5) is prime.

It’s our lucky day; all of the ideals (2), (3), (5) are prime (already principal). To put it
another way, each of the three branches has only one (large) cherry on it. That means
any time we put together an integral ideal with norm ≤MK , it is actually principal. In
fact, these guys have norm 4, 9, 25 respectively. . . so we can’t even touch (3) and (5),
and the only ideals we can get are (1) and (2) (with norms 1 and 4).

Now we claim that’s all. Suppose b is an integral ideal such that N(b) ≤MK . By the
above, either b = (1) or b = (2), both of which are principal, and hence trivial in ClK .
So J is trivial in ClK too, as needed.

Let’s do a couple more.

Theorem 56.8.4 (Gaussian integers Z[i] form a UFD)
The field Q(i) has class number 1.

Proof. This is OK where K = Q(i), so we just want ClK to be trivial. We have
MK = 2

π

√
4 < 2. So every class has an integral ideal of norm b satisfying

N(b) ≤
( 4
π

)1
· 2!

22 ·
√

4 = 4
π
< 2.

Well, that’s silly: we don’t have any branches to pick from at all. In other words, we can
only have b = (1).
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Here’s another example of something that still turns out to be unique factorization,
but this time our cherry tree will actually have cherries that can be picked.

Proposition 56.8.5 (Z[
√

7] is a UFD)
The field Q(

√
7) has class number 1.

Proof. First we compute the Minkowski bound.

Question 56.8.6. Check that MK ≈ 2.646.

So this time, the only branch is (2). Let’s factor (2) as usual: the polynomial x2 + 7
reduces as (x− 1)(x+ 1) (mod 2), and hence

(2) =
(
2,
√

7− 1
) (

2,
√

7 + 1
)
.

Oops! We now have two cherries, and they both seem reasonable. But actually, I claim
that (

2,
√

7− 1
)

=
(
3−
√

7
)
.

Question 56.8.7. Prove this.

So both the cherries are principal ideals, and as before we conclude that ClK is trivial.
But note that this time, the prime ideal (2) actually splits; we got lucky that the two
cherries were principal but this won’t always work.

How about some nontrivial class groups? First, we use a lemma that will help us with
narrowing down the work in our cherry tree.

Lemma 56.8.8 (Ideals divide their norms)
Let b be an integral ideal with N(b) = n. Then b divides the ideal (n).

Proof. By definition, n = |OK/b|. Treating OK/b as an (additive) abelian group and
using Lagrange’s theorem, we find

0 ≡ α+ · · ·+ α︸ ︷︷ ︸
n times

= nα (mod b) for all α ∈ OK .

Thus (n) ⊆ b, done.

Alternatively, if you have read Chapter 59: If the extension K/Q is Galois, we can
actually prove that, analogous to Remark 54.1.9,

∏
σ∈Gal(K/Q) σ(b) = (n), implying the

result id(b) | (n).
Now we can give such an example.

Proposition 56.8.9 (Class group of Q(
√
−17))

The number field K = Q(
√
−17) has class group Z/4Z.
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You are not obliged to read the entire proof in detail, as it is somewhat gory. The idea is
just that there are some cherries which are not trivial in the class group.

Proof. Since ∆K = −68, we compute the Minkowski bound

MK = 4
π

√
17 < 6.

Now, it suffices to factor with (2), (3), (5). The minimal polynomial of
√
−17 is x2 +17,

so as usual

(2) = (2,
√
−17 + 1)2

(3) = (3,
√
−17− 1)(3,

√
−17 + 1)

(5) = (5)

corresponding to the factorizations of x2 +17 modulo each of 2, 3, 5. Set p = (2,
√
−17+1)

and q1 = (3,
√
−17− 1), q2 = (3,

√
−17 + 1). We can compute

N(p) = 2 and N(q1) = N(q2) = 3.

In particular, they are not principal. The ideal (5) is out the window; it has norm 25.
Hence, the three cherries are p, q1, q2.

The possible ways to arrange these cherries into ideals with norm ≤ 5 are{
(1), p, q1, q2, p

2
}
.

However, you can compute
p2 = (2)

so p2 and (1) are in the same class group; that is, they are trivial. In particular, the class
group has order at most 4.

From now on, let [a] denote the class (member of the class group) that a is in. Since p
isn’t principal (so [p] ̸= [(1)]), it follows that p has order two. So Lagrange’s theorem
says that ClK has order either 2 or 4.

Now we claim [q1]2 ̸= [(1)], which implies that q1 has order greater than 2. If not, q2
1

is principal. We know N(q1) = 3, so this can only occur if q2
1 = (3); this would force

q1 = q2. This is impossible since q1 + q2 = (1).
Thus, q1 has even order greater than 2. So it has to have order 4. From this we deduce

ClK ∼= Z/4Z.

Remark 56.8.10 — When we did this at Harvard during Math 129, there was a
five-minute interruption in which students (jokingly) complained about the difficulty
of evaluating 4

π

√
17. Excerpt:

“Will we be allowed to bring a small calculator on the exam?” – Student 1
“What does the size have to do with anything? You could have an Apple Watch” –
Professor
“Just use the fact that π ≥ 3” – me
“Even [other professor] doesn’t know that, how are we supposed to?” – Student 2
“You have to do this yourself!” – Professor
“This is an outrage.” – Student 1



572 Napkin, by Evan Chen (v1.6.20241027)

§56.9 Optional: Proof that OK is a free Z-module
We have the suitable tools to prove Theorem 54.2.12 now.

We know OK is a ring, so obviously it must be a Z-module. Suppose it is not a free
Z-module of degree n = |K : Q|. What could go wrong?

• First, it may happen that it is dense like Q or the ring extension Z[1
2 ] (which makes

it not finitely generated and not free).

• Even without that, it may happen that its rank is less than n.

The second possibility is much easier to discard. Let α1, . . . , αn be a basis of K. Using
Theorem 54.2.6, we have positive integers d1, . . . , dn such that d1α1, . . . , dnαn ∈ OK .
Since α1, . . . , αn are linearly independent, this implies rankOK ≥ n.

The other direction is harder. We wish to prove OK is “discrete” in some sense.
From now on, replace αi with diαi, so they are still a basis of the Q-vector space K,

and furthermore they are now in OK .
Three distinct proofs will be provided.

§56.9.i First proof

We will show that OK is contained in some free Z-module of rank n.

Specifically, we will show that OK ⊆ ⟨1dα1, . . . ,
1
dαn⟩ for some integer d ̸= 0.

Let us pretend that we already know OK is a free Z-module of rank n. How would we
compute d?

Exercise 56.9.1. These are a few naive attempts to compute d; unfortunately, they wouldn’t
work. Verify that on ⟨1, 1 + 2i⟩ ⊆ Z[i].

• Take d to be the first positive integer that belongs to ⟨α1, . . . , αn⟩. (Attempt inspired
by Theorem 55.3.6.)

• Take d to be the product of the norm of α1, . . . , αn.

Instead, we compute d by using an idea inspired by how we compute the mesh of the
lattice. Let A = ⟨α1, . . . , αn⟩, then it is a lattice and a free Z-module of rank n.

Exercise 56.9.2. Assume you already know OK is free of rank n. Show that |OK/A| is
finite. Conclude that for every x ∈ OK , then |OK/A| · x ∈ A.

Using the same argument as Problem 57B⋆, you can prove that the “discriminant”
(squared mesh) of the lattice spanned by α1, . . . , αn is an integer. Formally, let

d := det

σ1(α1) . . . σn(α1)
... . . . ...

σ1(αn) . . . σn(αn)


2

.

Exercise 56.9.3. Convince yourself (at least when all embeddings are real) that the ratio
of the meshes of OK and A is exactly the size of the quotient abelian group OK/A, that is∣∣∣ d

∆K

∣∣∣ = |OK/A|2. Conclude that for every x ∈ OK , then d · x ∈ A.
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Which implies OK ⊆ ⟨1dα1, . . . ,
1
dαn⟩, which is another free Z-module of rank n.

However, the argument above is circular since it assumes ∆K exists (it can only serve
as a motivation for where the value d comes from). The actual proof is the following.

Similar to Problem 57B⋆, we define

d := det[TrK/Q(αiαj)]i,j .

Then, because {αi}i spans K as a Q-vector space, there is some

x1
...
xn

 ∈ Q⊕n such that

[
α1 · · · αn

]x1
...
xn

 =
(
x
)
.

Which means
TrK/Q(α1α1) · · · TrK/Q(α1αn)

... . . . ...
TrK/Q(αnα1) · · · TrK/Q(αnαn)


x1

...
xn

 =


TrK/Q(α1x)

...
TrK/Q(αnx)

 .
Or, in short,

(some matrix ∈ GLn(Z) with determinant d) ·

x1
...
xn

 = (some vector ∈ Z⊕n).

Question 56.9.4. Finish the proof that d · x ∈ A. (Cramer’s rule. Or take the adjoint.)

Finally, we have that OK is squeezed between two free Z-modules of rank n, so it is
also free of rank n.2

Question 56.9.5. Finish this. (Theorem 18.1.5 can be used here.)

§56.9.ii Second proof
This time around, instead of dividing by d, we instead take the dual lattice.

What is the dual lattice, and why would we think about using it? One way to motivate
this proof is to look at the inverse of an ideal: if (1) | a (i.e. a is an integral ideal), then
a−1 | (1).

Here, a−1 := {x ∈ K | xa ∈ OK for all a ∈ a}.
We can think of doing something similar, considering

{x ∈ K | xa ∈ OK for all a ∈ ⟨α1, . . . , αn⟩}.

This set is actually a lattice of rank n, but this won’t work to prove the argument! We’re
trying to prove OK is “discrete” in the first place, if OK = K then the set above would
equal K as well.

Instead, we must rely on what we already know — the discreteness of Z. Define

S := {x ∈ K | TrK/Q(xa) ∈ Z for all a ∈ ⟨α1, . . . , αn⟩}.

This set is a bit larger than the previous set.
2We did something similar in Remark 55.3.7.
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Question 56.9.6. Verify that this set is a superset of the previous one. Then conclude that
OK ⊆ S.

Exercise 56.9.7. Consider ⟨1, 2i⟩ ⊆ Z[i]. What would the set S be? (Recall that the trace
in C is just twice the real part.)

S is still a lattice of rank n — and this time, we can actually prove it! Since we already
know Z is discrete.

Now, this is a purely algebraic problem, we will only need to use knowledge of vector
space here. Each element x ∈ K can be written as a vector

F (x) :=

x1
...
xn

 ∈ Q⊕n

if we use the basis {α1, . . . , αn}.

Exercise 56.9.8. Show that (x, y) 7→ TrK/Q(x·y) can then be written as an invertible matrix
in GLn(Q) — specifically, there exists M ∈ GLn(Q) such that TrK/Q(x · y) = F (x)⊤MF (y),
where F (x)⊤ is the transpose of F (x).

Which makes (x, y) 7→ TrK/Q(x · y) almost an inner product (see Chapter 13), except
that it is not positive definite (for example, in C, we have Tr((1 + i)2) = 0). But having
the matrix invertible suffices to do the following:

Exercise 56.9.9. Finish the proof. (Hint: Consider the matrix
[
F (α1) · · · F (αn)

]
∈

GLn(Q). What is the condition on F (x) such that x ∈ S?)

§56.9.iii Third proof
Recall that we wish to prove OK is a free Z-module of rank n. To do that, we suppose it
cannot be generated by n elements, then show that OK is not discrete, and this causes
trouble because we know the norm is continuous.

Exercise 56.9.10. Consider K ∼= Q⊕n, this gives a topology on K. Verify that x 7→ |N(x)|
is indeed continuous.

We have that for every x ∈ OK , then |N(x)| ∈ Z.

Exercise 56.9.11. Conclude that there is a ball B(0, r) in the topology above that contains
no element of OK , except 0.

Now, what goes wrong if OK cannot be generated by n elements? Things go wrong
quickly:

Exercise 56.9.12. Suppose ⟨α1, . . . , αn⟩ generates K as a Q-vector space. Let x ∈ OK such
that x is not a Z-linear combination of {α1, . . . , αn}. Show that there is z1, . . . , zn ∈ [− 1

2 ,
1
2 ]

not all zero, and z a Z-linear combination of {α1, . . . , αn} such that x+ z =
∑n

i=1 ziαi.
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Exercise 56.9.13. With notation as above, suppose z1 ̸= 0. Show that if we replace α1
with z1, then the new set {z1, α2, . . . , αn} still spans K as a Q-vector space; furthermore,
the mesh of the lattice gets decreased by at least a half.

Example 56.9.14
Suppose A ⊆ C is a lattice. We know 1 ∈ A and i ∈ A, so Z[i] ⊆ A.

Assume we know in addition that 2.3− 3.1i ∈ A.

Because A is closed under addition, we know that (2.3 − 3.1i) + (−2 + 3i) =
0.3 − 0.1i ∈ A. We replace 1 in the basis with 0.3 − 0.1i. Then, the lattice
⟨i, 0.3− 0.1i⟩ ⊆ A has smaller mesh than ⟨1, i⟩ as expected.

Since we can do this indefinitely (OK never gets spanned), the mesh decreases to 0
rapidly.

So, are we done? Since the mesh goes to 0, maybe the smallest distance of some αi
also go to 0? Almost, but not quite:

Example 56.9.15
Consider α1 = 1 + 3i and α2 = 2 + 7i.
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α1

α2

The mesh of the lattice spanned by α1 and α2 is 1, however, neither α1 nor α2 are
particularly close to the origin.

We need to apply Minkowski bound here again: suppose the mesh is d, then the cube
centered at origin with volume 2nd contains a nonzero lattice point.3 This point’s distance
cannot be more than

√
n · n
√
d away from the origin.

Remark 56.9.16 — Speaking of which, the LLL lattice basis reduction algorithm
can be used to find in practice a point on the lattice that is close enough to the
origin.

For d small enough,
√
n · n
√
d < r where r is the ball of no lattice point we have shown

above, which gives a contradiction. So we’re done!

§56.10 A few harder problems to think about
Problem 56A. Show that K = Q(

√
−163) has trivial class group, and hence OK =

Z
[

1+
√

−163
2

]
is a UFD.4

Problem 56B. Determine the class group of Q(
√
−31).

Problem 56C (China TST 1998). Let n be a positive integer. A polygon in the plane
(not necessarily convex) has area greater than n. Prove that one can translate it so that
it contains at least n+ 1 lattice points.
Problem 56D (Lemma 56.3.6). Consider the composition of the embeddings K ↪→
Rr1 × Cr2 ∼−→ Rn. Show that the image of OK ⊆ K has mesh equal to

1
2r2

√
|∆K |.

Problem 56E. Let p ≡ 1 (mod 4) be a prime. Show that there are unique integers
a > b > 0 such that a2 + b2 = p.
Problem 56F (Korea national olympiad 2014). Let p be an odd prime and k a positive
integer such that p | k2 + 5. Prove that there exist positive integers m, n such that
p2 = m2 + 5n2.

3Using a sphere would of course make for a better bound, but its volume is a bit harder to calculate.
4In fact, n = 163 is the largest number for which Q(

√
−n) has trivial class group. The complete list

is 1, 2, 3, 7, 11, 19, 43, 67, 163, the Heegner numbers. You might notice Euler’s prime-generating
polynomial t2 + t+ 41 when doing the above problem. Not a coincidence!



57 More properties of the discriminant

I’ll remind you that the discriminant of a number field K is given by

∆K := det

σ1(α1) . . . σn(α1)
... . . . ...

σ1(αn) . . . σn(αn)


2

where α1, . . . , αn is a Z-basis for K, and the σi are the n embeddings of K into C.
Several examples, properties, and equivalent definitions follow.

§57.1 A few harder problems to think about
Problem 57A⋆ (Discriminant of cyclotomic field). Let p be an odd rational prime and
ζp a primitive pth root of unity. Let K = Q(ζp). Show that

∆K = (−1)
p−1

2 pp−2.

Problem 57B⋆ (Trace representation of ∆K). Let α1, . . . , αn be a basis for OK . Prove
that

∆K = det


TrK/Q(α2

1) TrK/Q(α1α2) . . . TrK/Q(α1αn)
TrK/Q(α2α1) TrK/Q(α2

2) . . . TrK/Q(α2αn)
...

... . . . ...
TrK/Q(αnα1) TrK/Q(αnα2) . . . TrK/Q(αnαn)

 .
In particular, ∆K is an integer.

Problem 57C⋆ (Root representation of ∆K). The discriminant of a quadratic polyno-
mial Ax2 +Bx+C is defined as B2− 4AC. More generally, the polynomial discriminant
of a polynomial f ∈ Z[x] of degree n is

∆(f) := c2n−2 ∏
1≤i<j≤n

(zi − zj)2

where z1, . . . , zn are the roots of f , and c is the leading coefficient of f .
Suppose K is monogenic with OK = Z[θ]. Let f denote the minimal polynomial of θ

(hence monic). Show that
∆K = ∆(f).

Problem 57D. Show that if K ̸= Q is a number field then |∆K | > 1.

Problem 57E (Brill’s theorem). For a number field K with signature (r1, r2), show that
∆K > 0 if and only if r2 is even.

Problem 57F (Stickelberger theorem). Let K be a number field. Prove that

∆K ≡ 0 or 1 (mod 4).
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58 Bonus: Let’s solve Pell’s equation!

This is an optional aside, and can be safely ignored. (On the other hand, it’s pretty
short.)

§58.1 Units
Prototypical example for this section: ±1, roots of unity, 3− 2

√
2 and its powers.

Recall according to Problem 54A⋆ that α ∈ OK is invertible if and only if

NK/Q(α) = ±1.

We let O×
K denote the set of units of OK .

Question 58.1.1. Show that O×
K is a group under multiplication. Hence we name it the

unit group of OK .

What are some examples of units?

Example 58.1.2 (Examples of units in a number field)
1. ±1 are certainly units, present in any number field.

2. If OK contains a root of unity ω (i.e. ωn = 1), then ω is a unit. (In fact, ±1
are special cases of this.)

3. Of course, not all units of OK are roots of unity. For example, if OK = Z[
√

3]
(from K = Q(

√
3)) then the number 2 +

√
3 is a unit, as its norm is

NK/Q(2 +
√

3) = 22 − 3 · 12 = 1.

Alternatively, just note that the inverse 2−
√

3 ∈ OK as well:(
2−
√

3
) (

2 +
√

3
)

= 1.

Either way, 2−
√

3 is a unit.

4. Given any unit u ∈ O×
K , all its powers are also units. So for example, (3−2

√
2)n

is always a unit of Z[
√

2], for any n. If u is not a root of unity, then this
generates infinitely many new units in O×

K .

Question 58.1.3. Verify the claims above that

(a) Roots of unity are units, and

(b) Powers of units are units.

One can either proceed from the definition or use the characterization NK/Q(α) = ±1. If
one definition seems more natural to you, use the other.

579
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§58.2 Dirichlet’s unit theorem
Prototypical example for this section: The units of Z[

√
3] are ±(2 +

√
3)n.

Definition 58.2.1. Let µ(OK) denote the set of roots of unity contained in a number
field K (equivalently, in OK).

Example 58.2.2 (Examples of µ(OK))
(a) If K = Q(i), then OK = Z[i]. So

µ(OK) = {±1,±i} where K = Q(i).

(b) If K = Q(
√

3), then OK = Z[
√

3]. So

µ(OK) = {±1} where K = Q(
√

3).

(c) If K = Q(
√
−3), then OK = Z[1

2(1 +
√
−3)]. So

µ(OK) =
{
±1, ±1±

√
−3

2

}
where K = Q(

√
−3)

where the ±’s in the second term need not depend on each other; in other words
µ(OK) =

{
z | z6 = 1

}
.

Exercise 58.2.3. Show that we always have that µ(OK) comprises the roots to xn − 1 for
some integer n. (First, show it is a finite group under multiplication.)

We now quote, without proof, the so-called Dirichlet’s unit theorem, which gives us a
much more complete picture of what the units in OK are. Legend says that Dirichlet
found the proof of this theorem during an Easter concert in the Sistine Chapel.

Theorem 58.2.4 (Dirichlet’s unit theorem)
Let K be a number field with signature (r1, r2) and set

s = r1 + r2 − 1.

Then there exist units u1, . . . , us such that every unit α ∈ O×
K can be written

uniquely in the form
α = ω · un1

1 . . . uns
s

for ω ∈ µ(OK) is a root of unity, and n1, . . . , ns ∈ Z.

More succinctly:

We have O×
K
∼= Zr1+r2−1 × µ(OK).

A choice of u1, . . . , us is called a choice of fundamental units.
Here are some example applications.
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Example 58.2.5 (Some unit groups)
(a) Let K = Q(i) with signature (0, 1). Then we obtain s = 0, so Dirichlet’s Unit

theorem says that there are no units other than the roots of unity. Thus

O×
K = {±1,±i} where K = Q(i).

This is not surprising, since a+ bi ∈ Z[i] is a unit if and only if a2 + b2 = 1.

(b) Let K = Q(
√

3), which has signature (2, 0). Then s = 1, so we expect exactly
one fundamental unit. A fundamental unit is 2 +

√
3 (or 2 −

√
3, its inverse)

with norm 1, and so we find

O×
K =

{
±(2 +

√
3)n | n ∈ Z

}
.

(c) Let K = Q( 3√2) with signature (1, 1). Then s = 1, so we expect exactly one
fundamental unit. The choice 1 + 3√2 + 3√4. So

O×
K =

{
±
(
1 + 3√2 + 3√4

)n
| n ∈ Z

}
.

I haven’t actually shown you that these are fundamental units, and indeed computing
fundamental units is in general hard.

§58.3 Finding fundamental units

Here is a table with some fundamental units.

d Unit
d = 2 1 +

√
2

d = 3 2 +
√

3
d = 5 1

2(1 +
√

5)
d = 6 5 + 2

√
6

d = 7 8 + 3
√

7
d = 10 3 +

√
10

d = 11 10 + 3
√

11

In general, determining fundamental units is computationally hard.
However, once I tell you what the fundamental unit is, it’s not too bad (at least in

the case s = 1) to verify it. For example, suppose we want to show that 10 + 3
√

11 is
a fundamental unit of K = Q(

√
11), which has ring of integers Z[

√
11]. If not, then for

some n > 1, we would have to have

10 + 3
√

11 = ±
(
x+ y

√
11
)n
.

For this to happen, at the very least we would need |y| < 3. We would also have
x2 − 11y2 = ±1. So one can just verify (using y = 1, 2) that this fails.

The point is that: Since (10, 3) is the smallest (in the sense of |y|) integer solution to
x2− 11y2 = ±1, it must be the fundamental unit. This holds more generally, although in
the case that d ≡ 1 (mod 4) a modification must be made as x, y might be half-integers
(like 1

2(1 +
√

5)).
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Theorem 58.3.1 (Fundamental units of Pell’s equations)
Assume d is a squarefree integer.

(a) If d ≡ 2, 3 (mod 4), and (x, y) is a minimal integer solution to x2 − dy2 = ±1,
then x+ y

√
d is a fundamental unit.

(b) If d ≡ 1 (mod 4), and (x, y) is a minimal half-integer solution to x2 − dy2 = ±1,
then x+ y

√
d is a fundamental unit. (Equivalently, the minimal integer solution

to a2 − db2 = ±4 gives 1
2(a+ b

√
d).)

(Any reasonable definition of “minimal” will work, such as sorting by |y|.)

§58.4 Pell’s equation
This class of results completely eradicates Pell’s Equation. After all, solving

a2 − d · b2 = ±1

amounts to finding elements of Z[
√
d] with norm ±1. It’s a bit weirder in the d ≡ 1

(mod 4) case, since in that case K = Q(
√
d) gives OK = Z[1

2(1 +
√
d)], and so the

fundamental unit may not actually be a solution. (For example, when d = 5, we get the
solution (1

2 ,
1
2).) Nonetheless, all integer solutions are eventually generated.

To make this all concrete, here’s a simple example.

Example 58.4.1 (x2 − 5y2 = ±1)
Set K = Q(

√
5), so OK = Z[1

2(1+
√

5)]. By Dirichlet’s unit theorem, O×
K is generated

by a single element u. The choice

u = 1
2 + 1

2
√

5

serves as a fundamental unit, as there are no smaller integer solutions to a2−5b2 = ±4.
The first several powers of u are

n un Norm
−2 1

2(3−
√

5) 1
−1 1

2(1−
√

5) −1
0 1 1
1 1

2(1 +
√

5) −1
2 1

2(3 +
√

5) 1
3 2 +

√
5 −1

4 1
2(7 + 3

√
5) 1

5 1
2(11 + 5

√
5) −1

6 9 + 4
√

5 1

One can see that the first integer solution is (2, 1), which gives −1. The first solution
with +1 is (9, 4). Continuing the pattern, we find that every third power of u gives
an integer solution (see also Problem 58B), with the odd ones giving a solution to
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x2 − 5y2 = −1 and the even ones a solution to x2 − 5y2 = +1. All solutions are
generated this way, up to ± signs (by considering ±u±n).

§58.5 A few harder problems to think about
Problem 58A (Fictitious account of the battle of Hastings). Determine the number of
soldiers in the following battle:

The men of Harold stood well together, as their wont was, and formed thirteen
squares, with a like number of men in every square thereof, and woe to the
hardy Norman who ventured to enter their redoubts; for a single blow of
Saxon war-hatched would break his lance and cut through his coat of mail . .
. when Harold threw himself into the fray the Saxons were one might square
of men, shouting the battle-cries, “Ut!”, “Olicrosse!”, “Godemite!”

Problem 58B. Let d > 0 be a squarefree integer, and let u denote the fundamental unit
of Q(

√
d). Show that either u ∈ Z[

√
d], or un ∈ Z[

√
d] ⇐⇒ 3 | n.

Problem 58C. Show that there are no integer solutions to

x2 − 34y2 = −1

despite the fact that −1 is a quadratic residue mod 34.
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