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47 Basic definitions of Riemann surfaces

Roughly speaking, the theory of Riemann surfaces is just the generalization of complex
analysis using ideas from differential geometry: Just like how a 2-manifold can be viewed
as a collection of patches of the real plane R2 smoothly welded together to form a more
complicated object, we take “pieces” of the complex plane C, analytically welded together
.

We already know that the theory of holomorphic function is very nice — they’re all
analytic! The same amount of rigidity is to be expected here.

In fact, on compact Riemann surfaces, the theories are even nicer than the case of
holomorphic functions! For example:

• For two Riemann surfaces X and Y where Y is compact, any meromorphic function
f : X → Y must in fact be holomorphic i.e. defined everywhere.

• If X is a compact Riemann surface, then a holomorphic function f : X → C is
constant.

• In the same setting as above, furthermore we have that if g : X → C is meromorphic,
then the number of zeros of g is equal to the number of poles of g, with multiplicity.

Remark 47.0.1 (Why do we have these nice properties?) — Roughly speaking, C is
not compact — it is isomorphic to the Riemann sphere with a hole removed. By
filling in the hole, we allow meromorphic functions to be extended taking value ∞
at places that previously was a pole.

As an orientable 2-manifold, we can define the genus of a Riemann surface — it is a
purely topological concept, yet it is crucially linked to several algebraic invariants in very
surprising ways. You may have heard of the elliptic curve in cryptography — they also
present as a Riemann surface, and a generalization, hyperelliptic curve, form a family
of Riemann surfaces of arbitrary genus ≥ 2!

§47.1 Complex structures

Recall the definitions in the previous chapters:

• A topological n-manifold is a Hausdorff space, with a covering {Ui}, each being
homeomorphic to Rn.

• A smooth n-manifold is a topological n-manifold, where all the transition maps are
smooth.

What do they have in common? Seemingly not too much. But essentially, they’re all
describing the same philosophy:

We take countably many patches {Ui}, and weld them together while
keeping the underlying structure.

491



492 Napkin, by Evan Chen (v1.6.20241027)

Here, a topological manifold has a topological structure, and a smooth manifold has a
smooth structure. In a similar manner, a complex manifold has a complex structure.

What do we mean by “structure” here?
First, a topological structure is familiar to you — it’s just a topology. Formally, the

topology is defined by the collection of open sets, but the actual meaning of a topological
structure dictates:

• whether a set is considered open or closed,

• whether a sequence of points converge to a given point,

• whether a map X → Y or Y → X is continuous (given Y is another topological
space),

• etc.

Given a topological n-manifold with an existing (Hausdorff) topology on it, we can tell
whether a local chart respects the topological structure; in other words, is a homeomor-
phism.

Example 47.1.1 ((0, 2) is a topological 1-manifold)
The open interval (0, 2) included in R can be considered a topological manifold.

⊆0 2

E1 E2

R

φ1 φ2

Two possible charts for the space, ϕ1 and ϕ2, are shown.
Their formulas are ϕ1 : (0, 2)→ (0, 2), ϕ1(x) = x and ϕ2 : (0, 2)→ (0, 1.3), ϕ2(x) =

x+ 0.35 · (1− x− |1− x|).

In the example above, you may notice that, even though the chart ϕ2 is a homeomor-
phism, it doesn’t look smooth. So, you want to define a smooth 2-manifold as something
like:

A surface S ⊆ R3 is a smooth 2-manifold if, for each p ∈ S, there exists an
open neighborhood V ⊆ S that is diffeomorphic to E ⊆ R2.

In fact, this is the actual definition in classical differential geometry — of course, this
isn’t completely general, for instance, we know that the Klein bottle cannot be embedded
into R3.

So, why didn’t we define something like this in Definition 46.2.2? The problem is, the
concept of a diffeomorphism isn’t defined on a Hausdorff topological space — in fact it
can’t be defined, right in the example above, you can see a homeomorphism that is not a
diffeomorphism — in other words, a topological space can be assigned different smooth
structures.
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So, the essence of what the definition Definition 46.2.2 is doing is, it implicitly defines
what a smooth structure mean, by inducing the smooth structure from each patch Ei ⊆ Rn
to the topological space M . The condition that the transition functions need to be smooth
is, of course, to ensure that the smooth structures on M induced by different ϕi are the
same.

In completely the same way, we could have replaced Definition 46.1.2 by:

A topological n-manifold M is a set with a collection of subsets {Ui} that
covers M , for each Ui there is a bijective map from it to a subset of Rn, say

ϕi : Ui → Ei ⊆ Rn

where each Ei is an open subset of Rn, satisfying that all the transition maps
are topological homeomorphisms.

Here, the ϕi are “set isomorphisms” and plays a similar role as the homeomorphisms
in Definition 46.2.2, and the topological space structure is similarly induced from the
patches Ei.

Example 47.1.2 ((0, 2) is a smooth 1-manifold)
Just as above, the open interval (0, 2) included in R can also be considered a smooth
manifold.

⊆0 2

E1 E2

R

φ1 φ2

This time around, ϕ1 is the same as above, but ϕ2 : (0, 2)→ (0, 2 + 1
e ) is defined by

ϕ2(x) =
{
x if x ≤ 1
x+ e−1/(x−1) otherwise.

Because all of ϕ1, ϕ2, and their inverses are smooth functions, the transition maps
ϕ1 ◦ ϕ−1

2 and ϕ2 ◦ ϕ−1
1 are thus smooth, satisfying the hypothesis of Definition 46.2.2.

You should take a moment to think through this idea — because smooth functions on
Rn are so natural, it’s easy to forget that a smooth manifold carries more structure than
just the topology.

Once again, as we have seen in the example above, Rn has more structure than just
being smooth — it has an analytic structure. The chart ϕ2 does not preserve this
structure.

So, for Riemann surface, we will just have:
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A Riemann surface is a smooth (real) 2-manifold which locally looks like
C, and carries an complex-smooth structure.

Of course, by the miracle of complex analysis — holomorphic functions are analytic! —
this is equivalent to stating that a Riemann surface carries a complex-analytic structure.

§47.2 Riemann surface
Prototypical example for this section: The Riemann sphere, or any open subset of C such
as {z ∈ C | |z| < 1}.

From the motivation above, the definition of a Riemann surface naturally falls out:

Definition 47.2.1 (Riemann surface). A Riemann surface X is a second countable
connected Hausdorff space with an open cover {Ui} of countably many sets homeomorphic
to open subsets of C, say by homeomorphisms

ϕi : Ui
∼=−→ Ei ⊆ C

such that the transition maps ϕij defined by

ϕij : Ei ∩ ϕimg
i (Ui ∩ Uj)

ϕ−1
i−−→ Ui ∩ Uj

ϕj−→ Ej ∩ ϕimg
j (Ui ∩ Uj).

are analytic functions. Each ϕi is called a complex chart, and together they form a
complex atlas.

We say that the complex atlas gives the Hausdorff space a complex structure.
Thus, in other words, a Riemann surface is a (second countable, connected, Hausdorff)
topological space with a complex structure.

[Mi95] has an alternative definition, by a maximal complex atlas. Both definitions
are the same, but in practice, it’s easier to specify finitely many complex charts than
specifying infinitely many ones.

A complex chart Ui → Ei should be think of as giving a local coordinate on Ui.
Formally:

Definition 47.2.2. For a point p ∈ X, open set U ⊆ X and complex chart ϕ : U → C,
let z = ϕ(x) for each x ∈ U , we call z a local coordinate. We say that the local
coordinate is centered at p if ϕ(p) = 0.

§47.3 Complex manifold
Analogously to the definition of a real n-manifold, we can define a complex manifold.
Just as above, the structure has much more rigidity than a smooth surface.

Definition 47.3.1 (Complex n-manifold). A complex n-manifold is a Hausdorff space
with an open cover {Ui} of countably many sets homeomorphic to open subsets of Cn,
say by homeomorphisms

ϕi : Ui
∼=−→ Ei ⊆ Cn

such that the transition maps ϕij are analytic functions.

Of course, a complex n-manifold is naturally a smooth (real) 2n-manifold.
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§47.4 Examples of Riemann surfaces
In this chapter, several examples will be given.

Example 47.4.1 (Open subsets of C)
Any connected open subset U ⊆ C is a Riemann surface.

U

This is a boring example (the whole thing can be defined without any welding),
but let’s go on.

Example 47.4.2 (The Riemann sphere)
The Riemann sphere C∞, as a smooth 2-manifold, is just a sphere.

Its complex structure is defined as follows:
Embed the sphere in R3 such that N = (0, 0, 1) and S = (0, 0, 0) are two antipodal

points.
Let E1 be the xy-plane, and let E2 be the set of points with z = 1.
Then, let ϕ1 : C∞ \ {N} → E1 be the stereographic projection from the sphere

(except the point N) to E1 through the point N , and let ϕ2 : C∞ \ {S} → E2 be the
stereographic projection from the sphere (except the point S) to E2 through the
point S.

We think of E1 and E2 as copies of the complex plane embedded in R3 by
z 7→ (Re z, Im z, 0) ∈ E1 and t 7→ (Re t,− Im t, 1) ∈ E2. Then ϕ1 and ϕ2 are complex
charts for C∞.

The domain of ϕ1 and ϕ2 covers C∞. To make C∞ into a complex manifold, we
must ensure that the complex structure induced by ϕ1 and ϕ2 are the same — indeed,
over any open set U that contains neither N nor S, the projections are related by
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ϕ1(p) = 1
ϕ2(p) for all p ∈ U .

This also explains why the minus sign is needed in t 7→ (Re t,− Im t, 1) — otherwise,
the projections will be related by ϕ1(p) = 1

(ϕ2(p)) , which is not analytic.
We can think of the Riemann sphere as the result of welding two copies of C

together in order to “fill in” the missing point ∞.

In the example above, the local coordinate given by ϕ1 is centered at S, and the local
coordinate given by ϕ2 is centered at N . The point ϕ−1

1 (4) would have local coordinate
z = 4 under the chart ϕ1, and local coordinate t = 1

4 under the chart ϕ2.

Example 47.4.3 (The complex torus)
Let L be the set Z[i] of complex numbers with both real and imaginary parts of C.
Then L forms an additive subgroup of C.

Consider the quotient C/L. The quotient map C→ C/L induces a natural complex
structure on C/L.

L

C/L

Here we draw C/L as a square, but you should imagine that the top and bottom
edge, as well as the left and right edges, are smoothly welded together.

For each small patch of the torus, we can isomorphically map it to C by taking a
suitable component of the preimage of the quotient map — the different choices of
the projection are related by transition functions ϕij(x) = x+ a for a ∈ L, this is
analytic.

The complex torus is compact, thus any holomorphic function on C/L is constant.
Meromorphic functions are more interesting, and also difficult to construct.

And some non-examples.

Example 47.4.4
The disjoint union of two Riemann spheres is not a Riemann surface, because it is
not connected.

The condition that a Riemann surface must be connected is merely a technical condition
such that theorems are nice — we don’t lose much by requiring this, because any
topological space with a complex structure can be broken down into disjoint union of
Riemann surfaces, one for each connected component.



48 Morphisms between Riemann
surfaces

§48.1 Definition

The definition is what we would expect — since a Riemann surface’s main feature is a
complex structure, a map f : C → C is a morphism between Riemann surfaces if and
only if it is holomorphic.

Definition 48.1.1. Let X and Y be Riemann surfaces. A mapping f : X → Y is
holomorphic at p ∈ X if and only if there exists charts ϕ1 : U1 → E1 on X with p ∈ U1
and ϕ2 : U2 → E2 on Y with f(p) ∈ U2 such that the composition ϕ2 ◦ f ◦ ϕ−1

1 is
holomorphic at ϕ1(p). We say f is a morphism between Riemann surfaces if and
only if it is holomorphic at all points of X.

In other words: f is holomorphic if and only if it is holomorphic as function mapping
between local coordinates.

Example 48.1.2
Some examples follows.

• The function f : C→ C by f(x) = x3 is a morphism.
Note that this function is not bijective. At each point p ̸= 0, there is an open
neighborhood on which f has an inverse, but f has no inverse at 0.

• The embedding of the complex plane into the Riemann sphere, C ↪→ C∞, is a
morphism.

§48.2 Functions to the Riemann sphere

Prototypical example for this section: The meromorphic function 1
z can be made into a

holomorphic C→ C∞ function.

In this section, we will see that the Riemann sphere C∞ can be viewed as “C with a
point at infinity added”. This interpretation allows us to interpret meromorphic functions
f : X → C as holomorphic maps g : X → C∞, which allows a much better handling of
meromorphic functions — there’s no longer any singularity, the resulting function g is
holomorphic everywhere!

First, we see that C∞ can be naturally interpreted as C with a single point added:
With notation as in Example 47.4.2, identify C∞ \ {N} with E1 (and thus with C)
through the map ϕ1, and we let ∞ be the point N .

Question 48.2.1. Convince yourself that it makes sense to call the point ∞ — for every
sequence of points {zi} on C such that |zi| → +∞, then ϕ−1

1 (zi)→∞ on C∞ as a topological
space.

497
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So, let X be a Riemann surface, and f : X → C be a meromorphic function on X.
Naturally, g can be defined by

g(z) =
{
f(z) if f(z) ̸=∞
∞ if f(z) =∞.

Then g is continuous — but furthermore, it’s analytic.

Question 48.2.2. Clearly, at points z ∈ X where g(z) ̸=∞, then g is analytic.
Convince yourself that g is also analytic at z ∈ X where g(z) =∞. (With notation as

in Example 47.4.2, take a small open set U ⊆ X, and re-parametrize gimg(U) ⊆ C∞ by
t = 1/z.)

Therefore,

Proposition 48.2.3
There is a one-to-one correspondence between meromorphic functions f : X → C
and holomorphic maps g : X → C∞ such that g is not identically ∞.

Or, more informally,

Plugging in the hole at ∞ of C allows us to analytically extend meromor-
phic functions to C ∪∞ maps which is holomorphic everywhere.

§48.3 Some other nice properties
We have just seen in the last section that the Riemann sphere C∞ allows us to remove
the singularities of a meromorphic functions.

Informally speaking, this is because C∞ is a “compactfication” of C — adding a point
to make it compact — and compact Riemann surfaces enjoy many nice properties.

Proposition 48.3.1
Let X and Y be compact, f : X → Y be holomorphic and not constant. For each
point y ∈ Y , define dy be the total multiplicity of the points in the preimage of y.

Then, dy is well-defined and constant.

You can see why this proposition is surprising:

Example 48.3.2 (The proposition does not hold for smooth compact manifolds)
Consider the following function f : X → Y between compact smooth real 1-manifold,
depicted as a plot with x and y-axis. (Note that a compact 1-manifold cannot
be embedded into R, because compact subsets of R are closed and bounded, thus
necessarily have a boundary. A proper graph would live in a 4-dimensional space,
which is rather difficult to visualize, so we settle with an approximate representation.)
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Here, X and Y are both isomorphic to the unit circle.
We count the number of points in the fiber above each point in Y :

• Above point A, there are infinitely many points.

• Above point B, there is only one point. (You can argue that this point has
“multiplicity 2” however)

• Above point C, there are two points.

• Above point D, the fiber is empty.

Definition 48.3.3. The value dy above is called the degree of the map f , written
deg(f).

Example 48.3.4
The map z 7→ zk, when extended to a C∞ → C∞ map, has degree k.

If t ̸= 0, then we know that t has k distinct k-th roots. But if t = 0, its preimage only
consist of the point 0 — in this case, we wish to say z = 0 is a “multiple point” — we
will formalize it next section when we defines the multiplicity of a map.

If you have read Section 74.1, this is in fact the same as the concept of a degree in
homology when X and Y are both Riemann spheres — it counts how many spherical
bags that im f consists of. But, in this case, the theory is extra nice — not only that the
graph is homotopy equivalent to one that covers each point d times, but each point is in
fact covered exactly d times!

This theme will be recurrent in complex analysis and Riemann surfaces. Basically:

If the “things” are counted properly, the formula is very nice.

The proof of the proposition is not difficult — the main observation is that the theorem
is true for functions of the form f(z) = zn, and locally around each point p ∈ X, f is
either an isomorphism or has the form above. So dy is locally constant, and thus constant
because Y is connected.

§48.4 Multiplicity of a map
Prototypical example for this section: f(x) = (x− 3)2 has mult3(f) = 2.
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In the previous section, we informally talk about the multiplicity of a map at a point.
We will rigorously define it in this section.

Example 48.4.1
Consider the map f : C→ C given by f(z) = z5 + 1.

Above each point y ∈ C, the fiber fpre(y) has 5 points — except when y = 1, then
fpre(1) = {0} has only 1 point.

This behavior is undesirable, and we would like to say that the function f maps 5
“identical copies” of the point 0 to the point 1. (Another way you could see it is that, for
each sequences {yi} converging to 1, there are 5 different sequences {xi} converging to 0
such that f(xi) = yi for each i.)

Inspired by this, we will define multiplicity in a way such that:

• z 7→ zm has multiplicity m, for integer m ≥ 1.

• If we perform an analytic reparametrization of the source or the target, then the
degree does not change.

Turns out these two properties completely defines the degree! We have the follow-
ing.

Proposition 48.4.2
Let f : X → Y be a nonconstant holomorphic map defined at p ∈ X. Then there
is a unique integer m ≥ 1 such that, for every chart ϕ2 : U2 → V2 on Y centered at
f(p) (that is, ϕ2(f(p)) = 0), there is a chart ϕ1 : U1 → V1 on X centered at p such
that the induced map ϕ2 ◦ F ◦ ϕ−1

1 : V1 → V2 has the form z 7→ zm.

In other words, once we fix a chart of Y , there exist a chart of (an open subset of) X
such that the induced map between open subsets of C is a power map; furthermore, the
exponent is independent of the selection.

Every map looks locally like z 7→ zm.

Proof. Essentially, use the Taylor expansion to determine m, then the selection of ϕ1 is
pretty much fixed by the restrictions.

Definition 48.4.3. The value m above is the multiplicity of f at point p, written
multp(f).

Example 48.4.4 (More examples of multiplicity of a map at a point)
We consider some examples.

• The function z 7→ z−2, extended to a C→ C∞ map, has multiplicity 2 at point
0 — “two copies” of the point 0 is mapped to the point ∞.

• The function f(z) = (z − 1)(z − 2)5 has mult2(f) = 5 — more generally, if p is
a root of f , then multp(f) is the multiplicity of the root.
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• The function z 7→ z+1 has multiplicity 1 everywhere — in fact, the multiplicity
of a nonconstant map at “most” points will be 1.

These are the official terms:

Definition 48.4.5. A point p such that multp(f) > 1 is called a ramification point.
In that case, the point f(p) is called a branch point.

§48.5 The sum of the orders of a meromorphic function
Yet another case where we get a nice formula.

Example 48.5.1
Let us consider some meromorphic C∞ → C∞ functions (defined by extending a
C→ C function the obvious way), and list the zeros and poles of it (with multiplicity).

Function Zeros Poles
5 None None

(x+ 1)2 −1, −1 ∞, ∞
1

x2+1 ∞, ∞ i, −i
x+1
x+2 −1 −2

Every time, the number of zeros equals the number of poles. This is not a coinci-
dence!

Proposition 48.5.2
Let f : X → C be a nonconstant meromorphic function on a compact Riemann
surface X. Then ∑

p

ordp(f) = 0.

Of course, we need X to be compact — there certainly are C → C functions that has
several zeros, but no poles.

Proof. We extend f to a X → C∞ function, then the sum of multiplicities of points in
the fiber of 0 is equal to that in the fiber of ∞.

§48.6 The Hurwitz formula
write this
one. It’s
quite nice
actually §48.7 The identity theorem

The following propositions are expected — the same behavior is seen in complex analysis
with holomorphic functions.

Theorem 48.7.1
Let f, g : X → Y be holomorphic maps between Riemann surfaces. If f = g on a
nonempty open subset of X, then f = g.
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This is the analog of Problem 31C⋆. Note that here the assumption that X is connected is
used — the disjoint union of two copies of C is a smooth 2-manifold, but not a Riemann
manifold.

That is,

Holomorphic maps are rigid — the value of a function on a tiny subset
determines its value everywhere.



49 Affine and projective plane curves

In this chapter, we will define affine and projective plane curves. This has two purposes:

• Many interesting curves in R2 can be defined as the set of roots of a polynomial.
This is just a natural generalization.

• We will see that, in fact, every compact Riemann surfaces can be written as a
projective curve! Thus, by studying the projective curves, we have in fact studied
all compact Riemann surfaces.

We will see what these means in the following sections.

§49.1 Affine plane curves
Consider some familiar curves on the plane.

• A line can be represented by an equation y = ax+ b, or x = c.

• A circle can be written as the set of y = ±
√

1− x2 for −1 ≤ x ≤ 1.

There is not much going on so far, but here is a picture.

y

x

x = 2y

x2 + y2 = 1

As you can see, the definitions above are actually quite clumsy. We can do better by
defining the points on the curve implicitly:

• A line can be represented as the set of (x, y) such that ax+ by + c = 0.

• A circle can be represented as the set of (x, y) such that x2 + y2 = 1.

Of course, this way it is harder computationally to compute the coordinate of a point,
but the definition is nicer.

The point is:

Many of the interesting curves can be written as the set of roots of a
polynomial.

503
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So we will try to do the same here — intuitively, if we start with complex dimension
2 and specify one polynomial, then the remaining part has complex dimension 1 i.e. a
Riemann surface.

First, there is a technical detail we need to sort out — the set of roots of a polynomial
need not be a smooth curve.

Example 49.1.1
The set of roots of x2 − y2 = 0 in R2 is not a curve near the origin — there are two
intersecting curves.

y

x

x2 − y2 = 0

This can be easily handled by placing a restriction on the polynomial. Let f(x, y) a
polynomial, and X = {(x, y) ∈ R2 | f(x, y) = 0}. Then:

Theorem 49.1.2
For a point (x, y) ∈ X such that not both ∂f

∂x and ∂f
∂y vanishes, then X is smooth

near (x, y).

If at a point (x, y) ∈ X such that ∂f
∂x ̸= 0 or ∂f

∂y ̸= 0, we say X is smooth or
nonsingular at (x, y).

In fact, we have something more. With notation as above, let (x, y) ∈ X, then:

• Suppose ∂f
∂x ̸= 0, then near the point (x, y), X can be parametrized by x = g(y) for

some analytic function g.

• Suppose ∂f
∂y ≠ 0, then near the point (x, y), X can be parametrized by y = h(x) for

some analytic function h.

All these are just the implicit function theorem.

Exercise 49.1.3. Check the statement above on the circle x2 + y2 = 1, at the points (0, 1)
and (1, 0).

The exact same statement holds if we replace R2 with C2.
Next, we want the set of roots X to actually be a Riemann surface, not just a set of

points in C2. So, we would need to find a suitable analytic structure on X.
In the circle above, what would be a suitable analytic structure? One possible thought

is to unroll the circle by arc-length and map it onto R, but for a Riemann surface this
isn’t even well-defined — how would you unroll, let’s say a sphere onto a plane?

Another possibility is, given the statement of the implicit function above, we declare:
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• On an open set U ⊆ X where ∂f
∂x ̸= 0 for all points in U , suppose U is small enough

such that X can be parametrized by x = g(y) for some analytic function g, then
the map ϕ such that ϕ(x, y) = ϕ(g(y), y) = y is a complex chart.

• Similar for the ∂f
∂y ̸= 0 case.

A possible complex chart is depicted below. Intuitively, the fact that ∂f
∂y = 0 at the

two points (1, 0) and (−1, 0) reflects that this “project-to-x” complex chart cannot be
used at these points.

Actually, in the real analytic case, the two definitions above are equivalent. You can
optionally do the exercise below.

Exercise 49.1.4. Show this for the circle above. (One possibility is to write down an
explicit formula for the arc length and show it is analytic)

While this definition is already somewhat natural, there is something more to this.
In category theory, we study properties of objects by studying the maps between them.
The set X above has a natural map — the inclusion map into R2, and R2 has an obvious
existing analytic structure.

X

֒
ι−−−−→

R2

The analytic structure defined above is natural in the following sense:

• For a function g such that Y g−→ X
ι−→ R2, then g is analytic if and only if ι ◦ g is

analytic.

• For a function X
ι−→ R2 g−→ Y , then g is analytic if and only if g ◦ ι is analytic.

• X
ι−→ R2, then ι is analytic, and for any other complex structure X ′ ι′−→ R2 such

that ι′ is analytic, there exists an unique analytic map X ′ → X.
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In fact, each of the bullet point uniquely determines the complex structure on X.
In some sense, this is like a universal property for our natural analytic structure.
Of course, we haven’t defined what an analytic real manifold is. Brave readers may

try to rigorously formalize all these concepts and prove the statement above.
There is another technical detail that needs to be sorted out. The set of zeros of

f(x, y) = (y − 1)(y − 2) is:

y

x

This is certainly smooth — but it’s not connected. We required a Riemann surface to be
connected.

Apart from these two issues, our final statement is:

Definition 49.1.5. Given a polynomial f(z, w) ∈ C[z, w], let X = {(z, w) ∈ C2 |
f(z, w) = 0} be the set of roots of f . Suppose that X is connected, and for all (z, w) ∈ X,
f is smooth at (z, w) (that is, either ∂f

∂z ≠ 0 or ∂f
∂w ̸= 0). Then, X is a Riemann surface —

we call X an (smooth) affine plane curve, with complex charts defined by:

• On an open set U such that ∂f
∂z ≠ 0 everywhere on U , then ϕ : U → C, ϕ(z, w) = w

is a complex chart.

• On an open set U such that ∂f
∂w ̸= 0 everywhere on U , then ϕ : U → C, ϕ(z, w) = z

is a complex chart.

We call them affine because the plane is “flat”, unlike the projective plane CP2 which
is more “curved” in some sense.

Of course, we should have some examples — with these tools, we are in a position to
define an (affine) elliptic curve, and other affine curves.

Example 49.1.6 (A parabola)
Consider the Riemann surface cut out by w = z2. Its real part looks like a parabola:

w = z2

Since drawing a graph in 4 dimensions is difficult, we will project the Riemann
surface onto 3 dimensions. The result is:
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This Riemann surface is in fact isomorphic to the complex plane C by (z, w) 7→ z.

Example 49.1.7 (The circle)
We all know what the real part of the circle looks like. Visualizing the whole Riemann
surface is a bit more difficult, however.

The highlighted red circle is the real part. Note that the fact that the plane is shown
to be self-intersecting is merely an artifact of the projection.

Although the circle is not isomorphic to the complex plane C (we won’t be able
to prove this any time soona), it is in fact isomorphic to the hyperbola x2 − y2 = 1
given by the transformation y 7→ y · i. With another rotation and multiplication
by a constant, it is in turn isomorphic to the hyperbola xy = 1, which is “almost”
isomorphic to the line x = y, missing one point (0, 0).

aIf you have read the homotopy chapter, this Riemann surface has a deformation retract to its
real part — the circle, thus is homotopic to it. We know the complex plane C is nulhomotopic
instead.

Example 49.1.8 (The elliptic curve y2 = x3 − x)
The real part looks like this. (The complex part is not drawn this time.)
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y

x

While we won’t be able to prove this any time soon, turns out this Riemann
surface is not isomorphic to C — even if we allow deleting finitely many points.

§49.2 The projective line CP1

We will define the projective line — as it will turn out, it is isomorphic to the Riemann
sphere C∞ which we have already defined. So this section is only to show how our tools
work.

As you might have guessed by the name: as a set of points, CP1 is the quotient of the
set of points C2 \ {0}, modulo the relation (x, y) ∼ (λx, λy) for any λ ∈ C \ {0}.

As a topological complex manifold, fortunately, it is still easy — C2 \ {0} has a natural
topology, and CP1 gets the quotient topology.

Exercise 49.2.1. Define the topology on the space RP1 analogously.

Exercise 49.2.2. Let X ⊆ R2 be a line that does not pass through the point (0, 0). Show
that X f−→ R2 q−→ RP1 is an embedding i.e. X q◦f−−→ im(q ◦ f) ⊆ RP1 is a homeomorphism.

As a Riemann surface, the usual textbook definition goes:

Definition 49.2.3 (Complex structure of CP1). Cover CP1 by two open sets, U1 con-
sisting of points with nonzero x coordinate, and U2 consisting of points with nonzero
y-coordinate. Then the two complex charts ϕ1 : U1 → C given by ϕ1(x, y) = y/x and
ϕ2 : U2 → C given by ϕ2(x, y) = x/y determines a complex structure.

And goes on to prove that the two open sets indeed cover the whole of CP1, the value
y/x is well-defined, transition maps are holomorphic, etc.

The definition above is elementary, but uninstructive. Where does the complex charts
come from?

Given what we have done in the previous chapter, it should be obvious where we should
go from here. There are two things to try:

• Let X be an affine plane curve in C2 that does not contain the point 0. Then the
map X ↪→ C2 ↠ CP1 should be an isomorphism whenever some certain derivative
does not vanish.
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• We can also use maps: the complex structure is such that whenever we have
Y

f−→ C2 q−→ CP1 or C2 q−→ CP1 g−→ Y , then f is analytic if and only if q ◦f is analytic;
and g is analytic if and only if g ◦ q is analytic.

Both are equivalent to the definition above — in fact, the definition is merely a
special case of the first bullet point, where X is taken to be the line x = 1 and y = 1
respectively. Coincidentally, the 2 resulting complex charts is the simplest one to write
down algebraically, and they already cover the whole CP1, so it is often taken to be the
definition. There is no reason why it must be these 2 lines however — you might as well
use x+ y = 1 and x− y = 1.

§49.3 Projective plane curves

Instead of using affine plane curves X ⊆ C2, this time around, we will define projective
plane curves X ⊆ CP2.

Apart from “just another source of example”, projective plane curves have a distinctive
advantage — they’re compact! This allows many nice properties to hold — we have seen
a few in the last chapter.

We start with defining the projective plane CP2. Of course it is C3 \ {0} quotient
by the relation (x, y, z) ∼ (λx, λy, λz). It has a natural 2-dimensional complex structure
induced from C3 by the quotient map.

The above definition is natural, but abstract. Concretely, we can write:

Question 49.3.1. Define the three complex-manifold charts (on the open set where they’re
well-defined) by:

ϕ0(x, y, z) = (y/x, z/x)
ϕ1(x, y, z) = (x/y, z/y)
ϕ2(x, y, z) = (x/z, y/z).

Convince yourself that this complex manifold structure is the correct one.

Then, a projective plane curve X is defined to be the set of points (x, y, z) such that
f(x, y, z) = 0 — again, satisfying certain smoothness and connectedness conditions.
Unfortunately, if the polynomial were e.g. f(x, y, z) = x− 1, it will not be well-defined,
as f(1, 0, 0) = 0 but f(2, 0, 0) = 1. So we require that f is homogeneous — that way,
f(x, y, z) is still not well-defined, but at least we know whether f(x, y, z) = 0.

The complex structure on a projective plane curve is similarly defined by the universal
property.

The definition is short and natural, but abstract. A more concrete definition is given
below.

Question 49.3.2. With notation as above, define U0, U1 and U2 to be the domain of ϕ0, ϕ1

and ϕ2 respectively. Note that Ui
ϕi−→ C2 gives an isomorphism between Ui and the affine

plane C2.
Convince yourself that the intersection of a projective plane curve X with one of the Ui

is a (possibly empty) affine plane curve, when mapped to C2, and all the mappings are
isomorphisms.

We need some examples.
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Example 49.3.3 (The Riemann sphere, again)
The Riemann sphere can alternatively be defined as the set of points where z = 0 in
CP2.

There’s nothing interesting about this — we already know how the Riemann
surface looks like. It just serves as a trivial example.

Example 49.3.4 (An elliptic curve, again)
Let f(x, y) = x3 − x− y2. We know that the set of roots of f in the affine plane C2

is the elliptic curve.
Identifying C2 with U2, most points in CP2 can be written as (x, y, 1). We want to

find a polynomial g(x, y, z) such that its set of roots in CP2, restricted to U2, equals
to the elliptic curve.

Intuitively, by the identity theorem, this should suffices to uniquely determines
the Riemann surface. Indeed, our target polynomial g is:

g(x, y, z) = x3 − xz2 − y2z.

This is just the laziest way to homogenize the polynomial f , multiplying the least
power of z to make the result a homogeneous polynomial, and that g(x, y, 1) = f(x, y).

We have that CP2 is compact, and the set of roots of g is closed, therefore the
resulting Riemann surface is compact! As promised.

As it turns out, unlike the Riemann sphere, the Riemann surface defined by the elliptic
curve above has genus 1 ! We have the first example that is definitely distinct from thevisualize this
Riemann sphere.

Exercise 49.3.5. In the example above, what if we multiply a larger power of z? For
instance

g(x, y, z) = x3z − xz2 − y2z.

Example 49.3.6 (A hyperelliptic curve)
Let f(x, y) = (x − x1)(x − x2) · · · (x − x2k+1) − y2, where all of x1, . . . , x2k+1 are
distinct complex numbers.

We can homogenize f to get g(x, y, z) = (x−x1z)(x−x2z) · · · (x−x2k+1z)−y2z2k−1.
As above, the set of roots of g in CP2 cuts out a Riemann surface — once again,

this has genus k!
Therefore, we have seen examples of compact Riemann surfaces of all the genera

simply by picking different values of k.

Saying that we have “seen” the surfaces themselves is not quite accurate — but you can
try to visualize these hyperelliptic curves the same way the elliptic curve is visualized.

§49.4 Filling in the holes
Prototypical example for this section: The Riemann sphere is formed by filling in a single
hole in the complex plane C.

write this
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§49.5 Nodes of a plane curve
Prototypical example for this section: The set defined by the equation x2 − y2 = 0 has a
simple node.





50 Differential forms

§50.1 Differential form on C

In this section, we will generalize the definition of what can be contour integrated.

Definition 50.1.1 (Differential 1-forms on C). A 1-form ω on an open set U ⊆ C is
an expression of the form f(z)dRe +g(z)d Im, where f(z) and g(z) are smooth U → C
functions.

Here, smooth means being infinitely differentiable when interpreted as R2 → R2

functions.
This is almost the same as the definition of a 1-form on R2! Here, Re and Im takes

the role of e∨
1 and e∨

2 the obvious way.
The only difference is, as you can observe, f(z) and g(z) returns complex numbers

instead of real numbers — but this is mostly inconsequential, by the projection principle
(Theorem 43.2.1), the 1-form ω is equivalent to a pair of real-valued 1-forms (Reω, Imω).

The reason why we want to do what we did is simply for convenience — by abuse of
notation, let z be the function z 7→ z, then we want dz to be a 1-form that returns the
change in z.

§50.2 Visualization of differential forms
Because ω takes in a point and returns a R-linear map from the tangent space, the
obvious way to visualize it is to draw a quiver diagram — for each point, the value of
ωp(v) is plotted for vectors v, which we interpret as “if we integrate a curve c in the
direction of v, with length approximately the length of v, close to the point p, then the
result is approximately the labeled value.

To integrate a differential form ω over a curve c, simply add up the numbers that
corresponds to the direction of movement of c that appears in the diagram.

With that visualization, here are some examples.

Example 50.2.1 (The 1-form dz)
We may visualize dz, which is just the change in z, as follows.
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The integration
∫
c dz can be computed by adding up the value of the vectors together,

so we get 2 + i — this is indeed equal to the change of z as we travel along the curve,
0− (−2− i) = 2 + i.

Since having the arrows extending the whole length can be confusing, we will
shorten the arrow like the following.
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Example 50.2.2 (Another holomorphic 1-form: d(z2) = 2z · dz)
While we have never defined what a holomorphic 1-form is, it makes intuitive sense
for the definition to satisfy that: if f(z) is holomorphic, then df(z) should be a
holomorphic 1-form.

In any case, if you perform the same procedure as above and compute the differential
change of z2 along the tangent vectors, you will get the following.
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Unfortunately, it gets a bit cluttered regardless. Anyway, as you can see, at
each point z and along each direction, the value of the 1-form d(z2) is 2z times
the corresponding value of the 1-form dz, thus it makes sense for us to define
multiplication such that d(z2) = 2z · dz.

Example 50.2.3 (A non-holomorphic form: dz)
In both of the examples above, we see that, at each point z, ωz(e2) = i ·ωz(e1), where
e1 = (1, 0) and e2 = (0, 1) — in other words, rotating the vector counterclockwise
by 90 deg multiplies the value of the differential form by i.

The natural question would be: Is this the property of all 1-forms? Turns out
it isn’t. (Later on, we will see that this is a common property of all holomorphic
1-forms, or more generally, all type (1, 0) 1-forms.)

Consider the following example: let ω = dz — this is just the change in value of z.
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Example 50.2.4 (Another non-holomorphic form: z · dz)
Just as how a smooth function f(z) is holomorphic if and only if it is complex-
differentiable, we should define a holomorphic 1-form such that a smooth 1-form ω
is holomorphic if and only if we can compute its differential dω.

We certainly haven’t defined a 2-form yet, nor have we defined what it means to
differentiate a 1-form ω to a 2-form.

§50.2.i Holomorphic forms
With the above examples in mind, we defines:

Definition 50.2.5 (Holomorphic 1-forms on the complex plane). A 1-form ω is holo-
morphic if and only if it can be written as f(z) · dz for some holomorphic function
f .

And also a few other types.

Definition 50.2.6 (Type (1, 0) and type (0, 1) 1-forms). A 1-form is of type (1, 0) if it
is locally of the form f(z)dz for smooth f . Similarly, a 1-form is of type (0, 1) if it is
locally of the form f(z)dz for smooth f .

Example 50.2.7 (Some type (1, 0) 1-forms)
Looking at the examples above:

• The holomorphic forms, dz or 2z · dz, are of course type (1, 0).

• z · dz is still a type (1, 0) form, even though it is not holomorphic.

• dz, however, is not a type (1, 0) form.

Why do we care? Note that it is nontrivial that the definition above is well-defined — it
only makes sense because a holomorphic function scales every direction the same amount!

Intuitively,

A (1, 0) form ω is a form such that ωp(e2) = ωp(e1) · i.

§50.2.ii Putting the pieces together: 1-forms on a Riemann surface
Unsurprisingly, now we can define a 1-form on a Riemann surface.write this



51 The Riemann-Roch theorem

§51.1 Motivation
Recall a basic fact in complex analysis:

A holomorphic C→ C function is uniquely determined by its Taylor series
expansion at the origin.

Compared to the case of real smooth function, this is already very rigid — the
value of the function in a small neighborhood of the origin determines the value of the
function everywhere — but, in order to specify a function, you still need infinitely many
coordinates!

Meanwhile, we have Liouville’s theorem:

A bounded holomorphic C→ C function is constant.

As we have learnt earlier, this theorem, when phrased in terms of Riemann surfaces, can
be more elegantly rephrased to the following:

A holomorphic C∞ → C function is constant.

In other words, in order to specify a holomorphic C∞ → C, you only need a single
complex number ! That is, the C-vector space Hom(C∞,C) has dimension 1.

Naturally, you may ask, “is there anything inbetween”? There is! And the Riemann-
Roch theorem is the main ingredient to understand how these things work.

So, how are we going to define this? If you compare the two situations above, a
holomorphic C→ C function is a meromorphic C∞ → C function, which is allowed to
have a pole at ∞, and nowhere else.

So,

By smoothly interpolate between “allow pole of arbitrary order” and “must
be holomorphic”, we can produce many interesting spaces of functions.

Conveniently, back in chapter 32, we have defined the multiplicity of a zero and the
order of a pole of a meromorphic function. So, the natural point between these two
extremes is to allow a pole of order at most d.

For notational convenience, we defines:

Definition 51.1.1 (Order of a meromorphic function). Let f be meromorphic at p. We
define ordp(f) to be:

• d, if f has a zero of multiplicity d at p;

• −d, if f has a pole of order d at p;

• 0, otherwise.
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Example 51.1.2 (The space of functions with pole of order at most 4 on C∞)
Let L(4 · ∞) be the set of meromorphic C∞ → C function, being holomorphic
everywhere except ∞, and has a pole of order at most 4 at ∞ — in other words,

L(4 · ∞) = {f meromorphic on C∞ | f defined on C∞ \ {∞}, ord∞(f) ≥ −4}.

(The notation L(−) will be explained later.)
Obviously, this forms a natural C-vector space.
Consider the Taylor series of any f ∈ L(4 · ∞) at the origin:

f(z) = c−m
zm

+ c−m+1
zm−1 + · · ·+ c−1

z
+ c0 + c1z + · · ·

Obviously, because f is defined at the origin, it cannot have any nonzero coefficient
c−m for m > 0. But more importantly, it cannot have any nonzero coefficient cm for
m > 4 either!a

Did you see what happened here? We start with requiring the function to be
analytic and does not blow up too badly, and we end up with just the algebraic
function — the polynomials!

In particular, L(4 · ∞) consists of the polynomials of degree ≤ 4, and

dimL(4 · ∞) = 5

as a C-vector space.
aThe reason is actually not very straightforward, but you can see for yourself why it is true: if

there are only finitely many nonzero terms, then the order of the pole at ∞, (− ord∞(f)), is
precisely the degree of the highest nonzero coefficient.

Example 51.1.3 (More complicated L(−) spaces)
There’s no reason why we should restrict ourselves to considering only the functions
that blow up at ∞ — as we will see, more general meromorphic functions can be
considered, as long as we restrict the order of the poles.

Let L(−1 · 3 + 4 · i+ 5 · ∞) be the set of meromorphic functions f : C∞ → C that
are:

• holomorphic everywhere in C∞, possibly with the exception of the points 3, i,
and ∞;

• at 3, it must have a root of order ≥ 1;

• at i, it cannot have a pole of order more than 4;

• at ∞, it cannot have a pole of order more than 5.

So, for example, (z 7→ z − 3), (z 7→ (z−3)3

(z−i)2 ), or (z 7→ (z − 3)4) are functions in the
set, but not (z 7→ (z − 3)2 + 1) or (z 7→ (z − 3)7).

As before, this is a C-vector space, and furthermore, it is also finite-dimensional!
What should its dimension be?

Well, note that there is a 1-1 bijection between functions f ∈ L(−1 ·3+4 · i+3 ·∞)
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and functions g ∈ L(−1 · 3 + 7 · ∞) by

g = Φ(f) = (z 7→ f(z) · (z − i)4),

where, as you could probably have guessed by now, L(−1 · 3 + 7 · ∞) is the space of
meromorphic functions that has at least a zero at 3 and at most a pole of order 7 at
∞.

Using that information, it shouldn’t be too hard for you to see that the dimension
should be 7.

For another piece of motivation: Later on, we will also define the concept of divisors
and line bundles. If you have learned about these concepts in algebraic geometry
context, you might be interested to learn what they are actually about; otherwise, it
is still very surprising that these theorems can be naturally generalized to completely
algebraic settings, and your intuition from the case of analytic manifold will mostly work
verbatim — in fact, you can even define the genus of a number field, like Q[

√
2]!

§51.2 Divisors
Prototypical example for this section: (−3) · i+ (−4) · ∞ is a divisor on C∞.

We start with defining a convenient notation for the above concepts.
First, observe that the condition “f must have a zero of order at most 4 at the origin”

can be conveniently written as
z4 | f.

In other words, z4 must be a divisor of f .
This notation works if f is a polynomial, since we already know what it means for two

polynomials to divide each other.
Generalizing, we could say “f cannot have a pole of order more than 3 at the point i,

and f cannot have a pole of order more than 4 at the point ∞” by

(z − i)−3 · (z −∞)−4 | f.

Of course, at this point, the notation is purely formal — there is no interpretation as
“functions” that could be assigned to the expression (z −∞), for instance.

Those objects are, appropriately enough, called divisors. So we come to the formal
definition:

Definition 51.2.1 (Divisors). Let X be a Riemann manifold, then a divisor D on X is
a function D : X → Z, which is nonzero on a discrete set of points.

The formal objects (z − i)−3 · (z −∞)−4 above, from now on, we will consider it as a
function D : C∞ → Z by

D(z) =


−3 z = i

−4 z =∞
0 otherwise.

Abuse of Notation 51.2.2. For a point p ∈ X, we write p to mean the divisor that
takes value 1 at p, and 0 elsewhere.

Because divisors are integer-valued functions, we can add two divisors together or
multiply a divisor with an integer, the result is an integer. So,
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Example 51.2.3 ((z − i)−3 · (z −∞)−4 as a divisor)
The divisor D that corresponds to the formal object (z − i)−3 · (z −∞)−4 above can
be written as (−3) · i+ (−4) · ∞.

§51.3 Degree of a divisor

Prototypical example for this section: deg((−3) · i+ (−4) · ∞) = −7.

If the surface X is compact, any discrete set of points is finite. Thus, a divisor D on
X has finite support.

This allows us to define the degree of a divisor:

Definition 51.3.1 (Degree of a divisor). For a divisor D on a compact surface X, its
degree is

∑
p∈X D(p).

Of course, the sum is well-defined because only finitely many terms are nonzero.

§51.4 The principal divisor of a meromorphic function

Prototypical example for this section: div (z−3)2

z−i = 2 · 3 + (−1) · i+ (−1) · ∞ has degree 0.

After defining a divisor, we want a convenient notation to formalize our fuzzy notation
earlier of a divisor “divides” a function.

Definition 51.4.1 (Divisor of a meromorphic function). Let f be meromorphic on a
Riemann surface X. Then the divisor of f , div(f), is such that

div(f)(p) = ordp(f).

We can also write it as a formal sum: div(f) =
∑
p ordp(f) · p — by the abuse of

notation above, this would be an actual sum if f has finitely many roots and poles.
If a divisor D is equal to div(f) for some f , we call D a principal divisor. (Compare

this with a principal ideal, being an ideal generated by one element!)
Looking at the prototype example of this section, you might have guessed the following

for the Riemann sphere. In fact, much more is true:

Proposition 51.4.2
If a divisor D on a compact surface X is principal, then degD = 0.

Let us not forget our goal of defining a convenient notation to talk about the space
of functions with bounded poles. With the notation defined above, if f = z, div f =
1 · 0 + (−1) · ∞, and we want to say f “divides” the divisor (−1) · ∞. The natural
definition would be:

Definition 51.4.3 (The partial ordering of divisors). We write D ≥ 0 if D(p) ≥ 0 for
all p ∈ X.

For two divisors D1 and D2, we write D1 ≥ D2 if D1 −D2 ≥ 0.

And finally,
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Definition 51.4.4. Let D be a divisor on a Riemann surface X. Then the space of
meromorphic functions with poles bounded by D is

L(D) = {f meromorphic on X | div(f) ≥ −D}.

Exercise 51.4.5. This exercise is just for you to get familiar with the notation. Show the
following:

• For two divisors D1 ≤ D2, then L(D1) ⊆ L(D2).

• If X is compact, then L(0) ∼= C.

• If X is compact and degD < 0, then L(D) = {0}.

§51.5 The Riemann-Roch theorem
Explain
canonical
divisor

Theorem 51.5.1 (The Riemann-Roch theorem)
Let D be a divisor on an algebraic curve X of genus g, and K be a canonical divisor
on X. Then

dimL(D)− dimL(K −D) = deg(D) + 1− g.

List some
applications





52 Line bundles

§52.1 Overview
You might have heard about line bundles, which is somehow “a set L with a map
π : L → X where the preimage of each point is a line”. And then, in the algebraic
geometry section, you come across the concept of “section” which appears to be just a
function.

That sounds reasonable, but you may ask, “so what? Isn’t it then just another complex
manifold which has one more dimension than X? Why not just study complex manifold?”

It’s true, but there are more structures on a line bundle:

• You can take the product of two line bundles, which somehow “add up the twists”
of both line bundles.

• A section is not just a function — you can think of a section as the graph of a
function in the special case that the “graph paper” itself is flat, but if it is curved
like a Möbius strip, you will see that there is no way to assign a “function value” to
each point of the “graph paper” — a situation which we will call “the line bundle
is not trivial”.

In other words, a line bundle vastly generalizes the “space of the graph of a function”.
Later on, you will see a deep hidden connection between line bundles and linearly

equivalent classes of divisors, and how they are all linked by the so-called Picard group.

§52.2 Definition
Let X be a Riemann surface.

In this section, we will view X as just a curve — that is, a 1-dimensional object instead
of a 2-dimensional object — because:

• It is easier to visualize things when they can be embedded in 3-dimensional space.
(Try to draw the graph of ... with both real and complex part, and you will see
what I mean!)

• Since all of our functions of interest are analytic, the behavior of a function elsewhere
is determined by its value on the real axis.

Looking only at the real part can makes some intuition slipped however — for example,
it is possible to overlook that the circle x2 + y2 = 1 and the hyperbola x2 = 1 + y2 cuts
out Riemann surfaces in C2 of the same shape, or that the function 1

x2+1 has a pole at
x = ±i. So, be careful.

Definition 52.2.1. A line bundle L is a set, together with:

• A projection map π : L→ X,

• An open cover {Ui} of X,

• For each Ui, a line bundle chart ϕ : π−1(U)→ C× U that bijectively maps each
point in π−1(p) to a point in C× p,

523
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• For two open sets U1 and U2, the transition function ϕ2 ◦ϕ−1
1 : C×U1 → C×U2

must be a C-vector space isomorphism restricted to C× p→ C× p for each point
p ∈ U1 × U2, and the scaling factor must be an analytic function on U .

Remark 52.2.2 (Warning) — Typically, we draw a graph of the function f(x) by
the set of points (x, y) where y = f(x).

This time, we use the notation in [Mi95] — the target of a line bundle chart is
C×U instead of U ×C — so if we consider a section the generalization of a function,
the coordinate would look like (y, x) instead.

The definition is dense, but essentially:

A line bundle is a set with a line bundle structure, consisting of an analytic
structure and a 1-dimensional vector space structure.

The transition maps is simply to weld the pieces of the line bundle together, just like
how they welded pieces of a Riemann surface in Chapter 47.

Another definition, we will explain this one later.

Definition 52.2.3 (Sections of a line bundle). Let L be a line bundle. A section on an
open set U is a map f : U → L such that π ◦ f is the identity map on U .

We call a section f : X → L a global section.
The section f : U → L is an analytic section if for every U1 ⊆ U such that there is a

line bundle chart ϕ : π−1(U1)→ C× U1, then ϕ ◦ f↾U1 : U1 → C× U1 is analytic.

We will see this definition later on in algebraic geometry, Definition 82.2.2.

Remark 52.2.4 — In most books, they will first define what a sheaf is, then instead
of “analytic section”, they say “a section of the sheaf of analytic functions” (or
regular functions, etc.)

§52.3 Visualizing a line bundle
Just as how you can keep all the information of the Riemann sphere C∞ in your head at
once just by visualizing a sphere (with the analytic structure viewed as some “compatible
grids” on the surface), you should also be able to keep all the information of a line bundle
in your head at once — at least in the simplest cases.

First, we visualize C×X where X = C. Looking at only the real parts, it looks like a
plane.

X

As a line bundle, the preimage of each point is a line.



52 Line bundles 525

X

Question 52.3.1. In symbols, what subset of C×X does a vertical line correspond to?

They are not just disparate lines however — there are two more structures. First one is
a vector space structure — of course the dimension of C as a C-vector space is 1. We
can visualize it by marking the points 1, 2, 3, . . . on the line.

X

The other structure is that the lines must “smoothly varies” as p varies over X. We
visualize this by drawing, well, a grid.

X

Question 52.3.2. How does the picture of the grid correspond to the formal definition of a
line bundle chart? (Hint: take the preimage of the vertical lines x = c and the horizontal
lines y = c with respect to the line bundle chart ϕ : L→ C× U , where U ⊆ X, then use the
analytic structure on X to identify open subsets of U with open subsets of C.)

So far, nothing surprising — this is just the usual grid graph, where we can draw
functions on it like y = x2 − 1, and a function is analytic if it is analytic with respect to
the grid.
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X

Of course, instead of a function, we call this a section. This particular section is in
fact analytic, as you would expect.

Let us take a look at which “grids” represent the same line bundle structure. For this
part, we will look at {z ∈ C | |z − 3| < 2}, its real part being (1, 5).

1 5

If we apply an analytic reparametrization on the segment (1, 5) — for example let
t = 25/x, then the grid becomes like the following. It still represents the same line bundle
structure — in other words, the two charts are compatible.

1 5

If we rescale the vertical direction by an analytically-varying function, it still represents
the same line bundle structure.

1 5

However, if we rescale the vertical direction by something that is not linear, the vector
space structure will be changed. The following grid does not represent the same line
bundle structure:
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1 5

Intuitively, this makes sense — in a vector space, you can add two elements together
and get another element — in our case, if a, b ∈ L such that π(a) = π(b), we can compute
c = a + b and get another element c ∈ L with π(c) = π(a) = π(b). If we rescale the
vertical direction non-linearly, the element c will be changed.

Finally, don’t forget that L still has an analytic structure — even though a section
isn’t necessarily a function, we are still able to say when a section is analytic.

Question 52.3.3. Verify that everything explained above matches the formal definition.
(This is important! Fuzzy pictures won’t help you to understand the concepts; and if
your intuition is incomplete or inaccurate, you will have a lot of trouble understanding the
subsequent parts.)

So far, everything just looks like a graph paper, on which a section looks just like a
function.1 Let us consider a more complicated space X — the Riemann sphere.

Because we are looking at the real part only, so once again, C∞ looks like just a circle.

As before, we let z and t parametrize the points on the surface, with t = 1
z wherever

both are defined.
Still, we need two dimensions to embed a circle. So, the real part of C×C∞ may looks

something like the following:

1As warned above, “graph coordinate” is written (y, x).
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The grid lines are drawn, and the origin z = 0, is marked with a dot. The vertical lines
mark the position z = 0, z = 1

2 , z = 1, z = 3
2 , . . . .

On the opposite side, we may have something like the following. The vertical lines
mark the position t = 0, t = 1

2 , t = 1, t = 3
2 , . . . .

Question 52.3.4. Check that, on C× U for any open set U ⊆ C∞ that contains neither 0
nor ∞, the two line bundle charts above define the same line bundle structure. (What are
the transition functions?)

So, we have the so-called trivial line bundle C× C∞.
As promised, there are also nontrivial line bundles here.
First, recall from the section above: over any open set U that contains neither 0 nor
∞, we can consider another line bundle chart that scales the vertical direction by a factor
of z, this induces the same line bundle structure on U .

z

Question 52.3.5. Let ϕp and ϕg be the line bundle charts corresponding to the purple and
green grid, respectively. Verify that if a point q ∈ L satisfies ϕp(q) = (y, z) for z /∈ {0,∞},
then ϕg(q) = ( y

z , z).

Now — note that the trivial line bundle C× C∞ above can be seen as welding the two
pieces together, such that the purple line (y, z) gets welded to the red line (y, t) for each
y. There is nothing that restricts us to that specific welding method, however — this
time around, we will try to weld the green line (yz , z) to the red line (y, t) for each y.

The thing will look like this. It looks quite complicated, so this time 4 views are shown.
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The cylinder this time is only for illustrative purpose. Let us see what is going on.

• First, near the purple and the red point, the graph lines looks like our usual
situation.

Note that because t = 1
z , looking from outside, the red coordinate lines will looks

flipped.

• On the positive side (z > 0 and t > 0), no problem — we just need to squeeze the
purple lines closer together — as depicted in the figure.

• On the negative side, however — note that the green line (yz , z) moves downwards
when y increases, so we will need to “twist the graph paper” for it to go up.

In the figure, this is depicted as a singularity where all the horizontal lines intersect,
but in reality, you should think of it as we twisting the “graph paper” by 180
degrees and weld it to the other part.

This is a Möbius strip!
Thus, it appears to be obvious that this line bundle is not isomorphic to the trivial

one, whatever “isomorphic” might mean.

Question 52.3.6. Check that what we did above makes sense when y, z and t are not real
— in particular, C \ {0} is a connected set, unlike R \ {0}. You probably won’t be able to
visualize the “graph paper” this time (it is 4-dimensional!), so you will have to keep your
intuition confined in the real part and use algebra for the rest.
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§52.4 Morphisms between line bundles
In order to formally define what it means for two line bundles to be isomorphic, we need
to be able to define morphisms. It is exactly what you expect — it must respect the line
bundle structure (that is, the vector space structure and the analytic structure) on L1
and L2.

Definition 52.4.1. Let π1 : L1 → X and π2 : L2 → X be line bundles. A line bundle
morphism α : L1 → L2 is a set morphism such that:

• π2 ◦ α = π1, and

• if ϕ1 : π−1
1 (U1)→ C× U1 and ϕ2 : π−1

2 (U2)→ C× U2 are line bundle charts, then
the composition

ϕ2 ◦ α ◦ ϕ−1
1 : C× (U1 ∩ U2)→ C× (U1 ∩ U2)

has the form (s, p) 7→ (f(p) · s, p) where f is analytic on U1 ∩ U2.

Exercise 52.4.2. The function f(p) above must be nonzero for all p ∈ U1 ∩ U2. Why?
(Hint: invert the function by swapping the role of ϕ1 and ϕ2.)

Question 52.4.3. Check that the above definition is the equivalent to the following: α is a
line bundle morphism if and only if

• it maps a point q ∈ π−1
1 (x) to some point α(q) ∈ π−1

2 (x) (that is, each fiber gets
mapped to the corresponding fiber), and

• for every analytic section s : U → L1 on open set U ⊆ X, then α(s) is an analytic
section s : U → L2.

Example 52.4.4
Let X = C. Then α : C × X → C × X by α(y, x) = (y · x2, x) is a line bundle
homomorphism.

This line bundle homomorphism is not an isomorphism, because every point (y, 0)
gets mapped to (0, 0).

The definition of line bundle isomorphism is what you would expect.

Definition 52.4.5 (Isomorphism of line bundles). Two line bundles L1 and L2 are
isomorphic if there are line bundle isomorphisms α : L1 → L2 and β : L2 → L1 that are
inverse of each other.

§52.5 Relation to invertible sheaves
write (ac-
tually we
haven’t de-
fined sheaf
yet either)
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