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43 Multivariable calculus done correctly

As I have ranted about before, linear algebra is done wrong by the extensive use
of matrices to obscure the structure of a linear map. Similar problems occur with
multivariable calculus, so here I would like to set the record straight.

Since we are doing this chapter using morally correct linear algebra, it’s imperative
you’re comfortable with linear maps, and in particular the dual space V ∨ which we will
repeatedly use.

In this chapter, all vector spaces have norms and are finite-dimensional over R. So in
particular every vector space is also a metric space (with metric given by the norm), and
we can talk about open sets as usual.

§43.1 The total derivative

Prototypical example for this section: If f(x, y) = x2 + y2, then (Df)(x,y) = 2xe∨
1 + 2ye∨

2 .

First, let f : [a, b] → R. You might recall from high school calculus that for every
point p ∈ R, we defined f ′(p) as the derivative at the point p (if it existed), which we
interpreted as the slope of the “tangent line”.

xp

f ′(p)

That’s fine, but I claim that the “better” way to interpret the derivative at that point
is as a linear map, that is, as a function. If f ′(p) = 1.5, then the derivative tells me that
if I move ε away from p then I should expect f to change by about 1.5ε. In other words,

The derivative of f at p approximates f near p by a linear function.

What about more generally? Suppose I have a function like f : R2 → R, say

f(x, y) = x2 + y2

for concreteness or something. For a point p ∈ R2, the “derivative” of f at p ought to
represent a linear map that approximates f at that point p. That means I want a linear
map T : R2 → R such that

f(p+ v) ≈ f(p) + T (v)

for small displacements v ∈ R2.

451



452 Napkin, by Evan Chen (v1.6.20250629)

Even more generally, if f : U → W with U ⊆ V open (in the ∥•∥V metric as usual),
then the derivative at p ∈ U ought to be so that

f(p+ v) ≈ f(p) + T (v) ∈W.

(We need U open so that for small enough v, p+ v ∈ U as well.) In fact this is exactly
what we were doing earlier with f ′(p) in high school.

p + v

p

Image derived from [gk]

The only difference is that, by an unfortunate coincidence, a linear map R→ R can be
represented by just its slope. And in the unending quest to make everything a number so
that it can be AP tested, we immediately forgot all about what we were trying to do in
the first place and just defined the derivative of f to be a number instead of a function.

The fundamental idea of Calculus is the local approximation of functions
by linear functions. The derivative does exactly this.

Jean Dieudonné as quoted in [Pu02] continues:
In the classical teaching of Calculus, this idea is immediately obscured by
the accidental fact that, on a one-dimensional vector space, there is a one-
to-one correspondence between linear forms and numbers, and therefore the
derivative at a point is defined as a number instead of a linear form. This
slavish subservience to the shibboleth of numerical interpretation
at any cost becomes much worse . . .

So let’s do this right. The only thing that we have to do is say what “≈” means, and
for this we use the norm of the vector space.
Definition 43.1.1. Let U ⊆ V be open. Let f : U →W be a continuous function, and
p ∈ U . Suppose there exists a linear map T : V →W such that

lim
∥v∥V →0

∥f(p+ v)− f(p)− T (v)∥W
∥v∥V

= 0.

Then T is the total derivative of f at p. We denote this by (Df)p, and say f is
differentiable at p.

If (Df)p exists at every point, we say f is differentiable.
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Question 43.1.2. Check if that V = W = R, this is equivalent to the single-variable
definition. (What are the linear maps from V to W?)

Example 43.1.3 (Total derivative of f(x, y) = x2 + y2)
Let V = R2 with standard basis e1, e2 and let W = R, and let f (xe1 + ye2) =
x2 + y2. Let p = ae1 + be2. Then, we claim that

(Df)p : R2 → R by v 7→ 2a · e∨
1 (v) + 2b · e∨

2 (v).

Here, the notation e∨
1 and e∨

2 makes sense, because by definition (Df)p ∈ V ∨: these are
functions from V to R!

Let’s check this manually with the limit definition. Set v = xe1 + ye2, and note that
the norm on V is ∥(x, y)∥V =

√
x2 + y2 while the norm on W is just the absolute value

∥c∥W = |c|. Then we compute

∥f(p+ v)− f(p)− T (v)∥W
∥v∥V

=
∣∣(a+ x)2 + (b+ y)2 − (a2 + b2)− (2ax+ 2by)

∣∣√
x2 + y2

= x2 + y2√
x2 + y2 =

√
x2 + y2

→ 0

as ∥v∥ → 0. Thus, for p = ae1 + be2 we indeed have (Df)p = 2a · e∨
1 + 2b · e∨

2 .

Remark 43.1.4 — As usual, differentiability implies continuity.

Remark 43.1.5 — Although U ⊆ V , it might be helpful to think of vectors from U
and V as different types of objects (in particular, note that it’s possible for 0V /∈ U).
The vectors in U are “inputs” on our space while the vectors coming from V are
“small displacements”. For this reason, I deliberately try to use p ∈ U and v ∈ V
when possible.

§43.2 The projection principle

You may have learned single-variable calculus as the topic of doing differentiation and
integration on single-variable functions R→ R. So “multivariable calculus” ought to be
calculus with functions Rn → Rm. You might notice there are two upgrades happening
here:

• The domain got upgraded from R to Rn.

• The codomain got upgraded from R to Rm.

The point of this section is that the second upgrade is super easy in comparison to
the first upgrade, and basically doesn’t require doing anything new. All the interesting
actions happens because we upgraded the domain, not the codomain. Here’s why:
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Theorem 43.2.1 (Projection principle)
Let U be an open subset of the vector space V . Let W be an m-dimensional real
vector space with basis w1, . . . , wm. Then there is a bijection between continu-
ous functions f : U → W and m-tuples of continuous f1, f2, . . . , fm : U → R by
projection onto the ith basis element, i.e.

f(v) = f1(v)w1 + · · ·+ fm(v)wm.

Proof. Obvious.

The theorem remains true if one replaces “continuous” by “differentiable”, “smooth”,
“arbitrary”, or most other reasonable words. Translation:

To think about a function f : U → Rm, it suffices to think about each
coordinate separately.

For this reason, we’ll most often be interested in functions f : U → R. That’s why the
dual space V ∨ is so important.

§43.3 Total and partial derivatives
Prototypical example for this section: If f(x, y) = x2 + y2, then (Df) : (x, y) 7→ 2x · e∨

1 +
2y · e∨

2 , and ∂f
∂x = 2x, ∂f

∂y = 2y.

Let U ⊆ V be open and let V have a basis e1, . . . , en. Suppose f : U → R is a function
which is differentiable everywhere, meaning (Df)p ∈ V ∨ exists for every p. In that case,
one can consider Df as itself a function:

Df : U → V ∨

p 7→ (Df)p.

This is a little crazy: to every point in U we associate a function in V ∨. We say Df is
the total derivative of f , to reflect how much information we’re dealing with. We say
(Df)p is the total derivative at p.

Let’s apply the projection principle now to Df . Since we picked a basis e1, . . . , en of
V , there is a corresponding dual basis e∨

1 , e∨
2 , . . . , e∨

n . The Projection Principle tells us
that Df can thus be thought of as just n functions, so we can write

Df = ψ1e∨
1 + · · ·+ ψne∨

n .

In fact, we can even describe what the ψi are.

Definition 43.3.1. The ith partial derivative of f : U → R, denoted

∂f

∂ei
: U → R

is defined by
∂f

∂ei
(p) := lim

t→0

f(p+ tei)− f(p)
t

.

You can think of it as “f ′ along ei”.
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Question 43.3.2. Check that if Df exists, then

(Df)p(ei) = ∂f

∂ei
(p).

Remark 43.3.3 — Of course you can write down a definition of ∂f
∂v for any v

(rather than just the ei).

From the above remarks, we can derive that

Df = ∂f

∂e1
· e∨

1 + · · ·+ ∂f

∂en
· e∨

n .

and so given a basis of V , we can think of Df as just the n partials.

Remark 43.3.4 — Keep in mind that each ∂f
∂ei

is a function from U to the reals.
That is to say,

(Df)p = ∂f

∂e1
(p)︸ ︷︷ ︸

∈R

·e∨
1 + · · ·+ ∂f

∂en
(p)︸ ︷︷ ︸

∈R

·e∨
n ∈ V ∨.

Example 43.3.5 (Partial derivatives of f(x, y) = x2 + y2)
Let f : R2 → R by (x, y) 7→ x2 + y2. Then in our new language,

Df : (x, y) 7→ 2x · e∨
1 + 2y · e∨

2 .

Thus the partials are

∂f

∂x
: (x, y) 7→ 2x ∈ R and ∂f

∂y
: (x, y) 7→ 2y ∈ R

With all that said, I haven’t really said much about how to find the total derivative
itself. For example, if I told you

f(x, y) = x sin y + x2y4

you might want to be able to compute Df without going through that horrible limit
definition I told you about earlier.

Fortunately, it turns out you already know how to compute partial derivatives, because
you had to take AP Calculus at some point in your life. It turns out for most reasonable
functions, this is all you’ll ever need.

Theorem 43.3.6 (Continuous partials implies differentiable)
Let U ⊆ V be open and pick any basis e1, . . . , en. Let f : U → R and suppose that
∂f
∂ei

is defined for each i and moreover is continuous. Then f is differentiable and
Df is given by

Df =
n∑
i=1

∂f

∂ei
· e∨

i .
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Proof. Not going to write out the details, but. . . given v = t1e1 + · · ·+ tnen, the idea is to
just walk from p to p+ t1e1, p+ t1e1 + t2e2, . . . , up to p+ t1e1 + t2e2 + · · ·+ tnen = p+ v,
picking up the partial derivatives on the way. Do some calculation.

Remark 43.3.7 — The continuous condition cannot be dropped. The function

f(x, y) =
{

xy
x2+y2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0).

is the classic counterexample – the total derivative Df does not exist at zero, even
though both partials do.

Example 43.3.8 (Actually computing a total derivative)
Let f(x, y) = x sin y + x2y4. Then

∂f

∂x
(x, y) = sin y + y4 · 2x

∂f

∂y
(x, y) = x cos y + x2 · 4y3.

So Theorem 43.3.6 applies, and Df = ∂f
∂xe∨

1 + ∂f
∂y e∨

2 , which I won’t bother to write
out.

The example f(x, y) = x2 + y2 is the same thing. That being said, who cares about
x sin y + x2y4 anyways?

§43.4 (Optional) A word on higher derivatives

Let U ⊆ V be open, and take f : U →W , so that Df : U → Hom(V,W ).
Well, Hom(V,W ) can also be thought of as a normed vector space in its own right: it

turns out that one can define an operator norm on it by setting

∥T∥ := sup
{
∥T (v)∥W
∥v∥V

| v ̸= 0V

}
.

So Hom(V,W ) can be thought of as a normed vector space as well. Thus it makes sense
to write

D(Df) : U → Hom(V,Hom(V,W ))

which we abbreviate as D2f . Dropping all doubt and plunging on,

D3f : U → Hom(V,Hom(V,Hom(V,W ))).

I’m sorry. As consolation, we at least know that Hom(V,W ) ∼= V ∨⊗W in a natural way,
so we can at least condense this to

Dkf : V → (V ∨)⊗k ⊗W

rather than writing a bunch of Hom’s.
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Remark 43.4.1 — If k = 2, W = R, then D2f(v) ∈ (V ∨)⊗2, so it can be represented
as an n× n matrix, which for some reason is called a Hessian.

The most important property of the second derivative is that

Theorem 43.4.2 (Symmetry of D2f)
Let f : U → W with U ⊆ V open. If (D2f)p exists at some p ∈ U , then it is
symmetric, meaning

(D2f)p(v1, v2) = (D2f)p(v2, v1).

I’ll just quote this without proof (see e.g. [Pu02, §5, theorem 16]), because double
derivatives make my head spin. An important corollary of this theorem:

Corollary 43.4.3 (Clairaut’s theorem: mixed partials are symmetric)
Let f : U → R with U ⊆ V open be twice differentiable. Then for any point p such
that the quantities are defined,

∂

∂ei
∂

∂ej
f(p) = ∂

∂ej
∂

∂ei
f(p).

§43.5 Towards differential forms
This concludes the exposition of what the derivative really is: the key idea I want to
communicate in this chapter is that Df should be thought of as a map from U → V ∨.

The next natural thing to do is talk about integration. The correct way to do this is
through a so-called differential form: you’ll finally know what all those stupid dx’s and
dy’s really mean. (They weren’t just there for decoration!)

§43.6 A few harder problems to think about

Problem 43A⋆ (Chain rule). Let U1
f−→ U2

g−→ U3 be differentiable maps between open
sets of normed vector spaces Vi, and let h = g ◦ f . Prove the Chain Rule: for any point
p ∈ U1, we have

(Dh)p = (Dg)f(p) ◦ (Df)p.

Problem 43B. Let U ⊆ V be open, and f : U → R be differentiable k times. Show
that (Dkf)p is symmetric in its k arguments, meaning for any v1, . . . , vk ∈ V and any
permutation σ on {1, . . . , k} we have

(Dkf)p(v1, . . . , vk) = (Dkf)p(vσ(1), . . . , vσ(k)).





44 Differential forms
In this chapter, all vector spaces are finite-dimensional real inner product spaces. We

first start by (non-rigorously) drawing pictures of all the things that we will define in
this chapter. Then we re-do everything again in its proper algebraic context.

§44.1 Pictures of differential forms
Before defining a differential form, we first draw some pictures. The key thing to keep in
mind is

“The definition of a differential form is: something you can integrate.”
— Joe Harris

We’ll assume that all functions are smooth, i.e. infinitely differentiable.
Let U ⊆ V be an open set of a vector space V . Suppose that we have a function

f : U → R, i.e. we assign a value to every point of U .
U

3

√
2

−1

0

Definition 44.1.1. A 0-form f on U is just a smooth function f : U → R.

Thus, if we specify a finite set S of points in U we can “integrate” over S by just adding
up the values of the points:

0 +
√

2 + 3 + (−1) = 2 +
√

2.

So, a 0-form f lets us integrate over 0-dimensional “cells”.
But this is quite boring, because as we know we like to integrate over things like curves,

not single points. So, by analogy, we want a 1-form to let us integrate over 1-dimensional
cells: i.e. over curves. What information would we need to do that? To answer this, let’s
draw a picture of a curve c, which can be thought of as a function c : [0, 1]→ U .

U

c

p
v

459
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We might think that we could get away with just specifying a number on every point
of U (i.e. a 0-form f), and then somehow “add up” all the values of f along the curve.
We’ll use this idea in a moment, but we can in fact do something more general. Notice
how when we walk along a smooth curve, at every point p we also have some extra
information: a tangent vector v. So, we can define a 1-form α as follows. A 0-form just
took a point and gave a real number, but a 1-form will take both a point and a
tangent vector at that point, and spit out a real number. So a 1-form α is a
smooth function on pairs (p, v), where v is a tangent vector at p, to R. Hence

α : U × V → R.

Actually, for any point p, we will require that α(p,−) is a linear function in terms of
the vectors: i.e. we want for example that α(p, 2v) = 2α(p, v). So it is more customary
to think of α as:

Definition 44.1.2. A 1-form α is a smooth function

α : U → V ∨.

Like with Df , we’ll use αp instead of α(p). So, at every point p, αp is some linear
functional that eats tangent vectors at p, and spits out a real number. Thus, we think of
αp as an element of V ∨;

αp ∈ V ∨.

Remark 44.1.3 (Warning: arc length isn’t a 1-form) — You might recall that, in
high school calculus, the “arc-length element” ds can be integrated along a curve:∫
c ds is the length of the curve c.

This is not a 1-form! More on this later. (To be brief: basically, the issue is that it’s
not a linear function. In some places you’ll see ds =

√
dx2 + dy2 written colloquially,

which should give you a sense that ds does not behave like a linear thing in dx and
dy.)

Next, we draw pictures of 2-forms. This should, for example, let us integrate over a
blob (a so-called 2-cell) of the form

c : [0, 1]× [0, 1]→ U

i.e. for example, a square in U . In the previous example with 1-forms, we looked at
tangent vectors to the curve c. This time, at points we will look at pairs of tangent
vectors in U : in the same sense that lots of tangent vectors approximate the entire curve,
lots of tiny squares will approximate the big square in U .

U
c

p

v

w
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So what should a 2-form β be? As before, it should start by taking a point p ∈ U , so βp
is now a linear functional: but this time, it should be a linear map on two vectors v and
w. Here v and w are not tangent so much as their span cuts out a small parallelogram.
So, the right thing to do is in fact consider

βp ∈ V ∨ ∧ V ∨.

That is, to use the wedge product to get a handle on the idea that v and w span a
parallelogram. Another valid choice would have been (V ∧ V )∨; in fact, the two are
isomorphic,1 but it will be more convenient to write it in the former.2

§44.2 Pictures of exterior derivatives
Next question:

How can we build a 1-form from a 0-form?

Let f be a 0-form on U ; thus, we have a function f : U → R. Then in fact there is a
very natural 1-form on U arising from f , appropriately called df . Namely, given a point
p and a tangent vector v, the differential form (df)p returns the change in f along v. In
other words, it’s just the total derivative (Df)p(v).

U

3

√
2

−1

0

√
2 + ε

v

Thus, df measures “the change in f”.
Now, even if I haven’t defined integration yet, given a curve c from a point a to b,

what do you think ∫
c
df

should be equal to? Remember that df is the 1-form that measures “infinitesimal change
in f”. So if we add up all the change in f along a path from a to b, then the answer we
get should just be ∫

c
df = f(b)− f(a).

This is the first case of something we call Stokes’ theorem.
Generalizing, how should we get from a 1-form to a 2-form? At each point p, the

2-form β gives a βp which takes in a “parallelogram” and returns a real number. Now
suppose we have a 1-form α. Then along each of the edges of a parallelogram, with an
appropriate sign convention the 1-form α gives us a real number. So, given a 1-form α,
we define dα to be the 2-form that takes in a parallelogram spanned by v and w, and
returns the measure of α along the boundary.

1We only consider finite-dimensional V .
2See Section 44.5.
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Now, what happens if you integrate dα along the entire square c? The right picture
is that, if we think of each little square as making up the big square, then the adjacent
boundaries cancel out, and all we are left is the main boundary. This is again just a case
of the so-called Stokes’ theorem.

U
c

p

Image from [Na]

§44.3 Differential forms
Prototypical example for this section: Algebraically, something that looks like fe∨

1∧e∨
2 +. . . ,

and geometrically, see the previous section.
Let’s now get a handle on what dx means. Fix a real vector space V of dimension n,

and let e1, . . . , en be a standard basis. Let U be an open set.

Definition 44.3.1. We define a differential k-form α on U to be a smooth (infinitely
differentiable) map α : U →

∧k(V ∨). (Here
∧k(V ∨) is the wedge product.)

Like with Df , we’ll use αp instead of α(p).

Example 44.3.2 (k-forms for k = 0, 1)
(a) A 0-form is just a function U → R.

(b) A 1-form is a function U → V ∨. For example, the total derivative Df of a
function V → R is a 1-form.

(c) Let V = R3 with standard basis e1, e2, e3. Then a typical 2-form is given by

αp = f(p) · e∨
1 ∧ e∨

2 + g(p) · e∨
1 ∧ e∨

3 + h(p) · e∨
2 ∧ e∨

3 ∈
2∧

(V ∨)

where f, g, h : V → R are smooth functions.

Now, by the projection principle (Theorem 43.2.1) we only have to specify a function
on each of

(n
k

)
basis elements of

∧k(V ∨). So, take any basis {ei} of V , and take the usual
basis for

∧k(V ∨) of elements
e∨
i1 ∧ e∨

i2 ∧ · · · ∧ e∨
ik
.

Thus, a general k-form takes the shape

αp =
∑

1≤i1<···<ik≤n
fi1,...,ik(p) · e∨

i1 ∧ e∨
i2 ∧ · · · ∧ e∨

ik
.

Since this is a huge nuisance to write, we will abbreviate this to just

α =
∑
I

fI · deI
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where we understand the sum runs over I = (i1, . . . , ik), and deI represents e∨
i1 ∧ · · · ∧ e∨

ik
.

Now that we have an element
∧k(V ∨), what can it do? Well, first let me get the

definition on the table, then tell you what it’s doing.

Definition 44.3.3 (How to evaluate a differential form at a point). For linear functions
ξ1, . . . , ξk ∈ V ∨ and vectors v1, . . . , vk ∈ V , set

(ξ1 ∧ · · · ∧ ξk)(v1, . . . , vk) := det

ξ1(v1) . . . ξ1(vk)
... . . . ...

ξk(v1) . . . ξk(vk)

 .
You can check that this is well-defined under e.g. v ∧ w = −w ∧ v and so on.

Example 44.3.4 (Evaluation of a differential form)
Set V = R3. Suppose that at some point p, the 2-form α returns

αp = 2e∨
1 ∧ e∨

2 + e∨
1 ∧ e∨

3 .

Let v1 = 3e1 + e2 + 4e3 and v2 = 8e1 + 9e2 + 5e3. Then

αp(v1, v2) = 2 det
[
3 8
1 9

]
+ det

[
3 8
4 5

]
= 21.

What does this definition mean? One way to say it is that

If I walk to a point p ∈ U , a k-form α will take in k vectors v1, . . . , vk and
spit out a number, which is to be interpreted as a (signed) volume.

Picture:

U

p

v1

v2

αp(v1, v2) ∈ R

In other words, at every point p, we get a function αp. Then I can feed in k vectors to
αp and get a number, which I interpret as a signed volume of the parallelepiped spanned
by the {vi}’s in some way (e.g. the flux of a force field). That’s why αp as a “function”
is contrived to lie in the wedge product: this ensures that the notion of “volume” makes
sense, so that for example, the equality αp(v1, v2) = −αp(v2, v1) holds.

This is what makes differential forms so fit for integration.

§44.4 Exterior derivatives
Prototypical example for this section: Possibly (dx1)p = e∨

1 .



464 Napkin, by Evan Chen (v1.6.20250629)

We now define the exterior derivative3 df that we gave pictures of at the beginning of
the chapter. It turns out that the exterior derivative is easy to compute given explicit
coordinates to work with.

Firstly, we define the exterior derivative of a function f : U → R, as

df := Df =
∑
i

∂f

∂ei
e∨
i

In particular, suppose V = Rn and f(x1, . . . , xn) = x1 (i.e. f = e∨
1 ). Then:

Question 44.4.1. Show that for any p ∈ U ,

(d(e∨
1 ))p = e∨

1 .

Abuse of Notation 44.4.2. Unfortunately, someone somewhere decided it would be
a good idea to use “x1” to denote e∨

1 (because obviously4 x1 means “the function that
takes (x1, . . . , xn) ∈ Rn to x1”) and then decided that

dx1 := d(e∨
1 ).

This notation is so entrenched that I have no choice but to grudgingly accept it. Note
that it’s not even right, since technically it’s (dx1)p = e∨

1 ; dx1 is a 1-form.

Remark 44.4.3 — This is the reason why we use the notation df
dx in calculus now:

given, say, f : R→ R by f(x) = x2, it is indeed true that

df = 2x · e∨
1 = 2x · dx

and so by (more) abuse of notation we write df/dx = 2x.

More generally, we can define the exterior derivative in terms of our basis e1, . . . , en
as follows:

Definition 44.4.4. If α =
∑
I fIdeI then we define the exterior derivative as

dα :=
∑
I

dfI ∧ deI =
∑
I

∑
j

∂fI
∂ej

dej ∧ deI .

It turns out this doesn’t depend on the choice of basis; we’ll mention a basis-free
definition at the end of this section.

Example 44.4.5 (Computing some exterior derivatives)
Let V = R3 with standard basis e1, e2, e3. Let f(x, y, z) = x4 + y3 + 2xz. Then
we compute

df = Df = (4x3 + 2z) dx+ 3y2 dy + 2x dz.

3The name “exterior derivative” comes from the wedge product ∧ being alternatively called the exterior
product.

4Sarcasm.
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Next, we can evaluate d(df) as prescribed: it is

d2f = (12x2 dx+ 2dz) ∧ dx+ (6y dy) ∧ dy + 2(dx ∧ dz)
= 12x2(dx ∧ dx) + 2(dz ∧ dx) + 6y(dy ∧ dy) + 2(dx ∧ dz)
= 2(dz ∧ dx) + 2(dx ∧ dz)
= 0.

So surprisingly, d2f is the zero map. Here, we have exploited Abuse of Nota-
tion 44.4.2 for the first time, in writing dx, dy, dz.

And in fact, this is always true in general:

Theorem 44.4.6 (Exterior derivative vanishes)
Let α be any k-form. Then d2(α) = 0. Even more succinctly,

d2 = 0.

The proof is left as Problem 44B.

Exercise 44.4.7. Compare the statement d2 = 0 to the geometric picture of a 2-form given
at the beginning of this chapter. Why does this intuitively make sense?

Here are some other properties of d:

• As we just saw, d2 = 0.

• For a k-form α and ℓ-form β, one can show that

d(α ∧ β) = dα ∧ β + (−1)k(α ∧ dβ).

• If f : U → R is smooth, then df = Df .

In fact, one can show that df as defined above is the unique map sending k-forms to
(k + 1)-forms with these properties. So, one way to define df is to take as axioms the
bulleted properties above and then declare d to be the unique solution to this functional
equation. In any case, this tells us that our definition of d does not depend on the basis
chosen.

Recall that df measures the change in boundary. In that sense, d2 = 0 is saying
something like “the boundary of the boundary is empty”. We’ll make this precise when
we see Stokes’ theorem in the next chapter.

§44.5 Digression: ∧k(V ∨) versus (∧k(V ))∨

Earlier on, we remarked that
∧k(V ∨) ∼= (

∧k(V ))∨ canonically, but we use the former for
convenience.

The former notation is indeed more convenient (wedge product of two differential form
is natural), but it’s not clear why Definition 44.3.3 is defined in such a way.

If we used (
∧k(V ))∨ instead, it’s trivial to evaluate a differential form: For f ∈ (

∧k(V ))∨

and vectors v1, . . . , vk ∈ V , then

f(v1, . . . , vk) := f(v1 ∧ · · · ∧ vk).
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This is because f naturally takes in an element of
∧k(V ) and returns a real number.

But now, it is not clear how we can take f ∈ (
∧1(V ))∨ and g ∈ (

∧1(V )), and return
something like f ∧ g ∈ (

∧2(V ))∨: The natural choice (v ∧ w 7→ f(v)g(w)) isn’t even
well-defined!5

To figure out what to do, we have to take a step back and consider the tensor product.
For a vector space V , define T k(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times

.

We have the following diagram:

T k(V ∨) (T k(V ))∨

∧k(V ∨) (
∧k(V ))∨

⊃ϕ

q⊃ι ⊃q∨

What is going on?
First, there is a natural map T k(V ∨)→ (T k(V ))∨ given by

ϕ(ξ1 ⊗ · · · ⊗ ξk) = v1 ⊗ · · · ⊗ vk 7→ ξ1(v1)ξ2(v2) · · · ξk(vk)

and extends to all of T k(V ∨) by linearity the obvious way.
Unlike the situation with the wedge product above, this map is indeed well-defined.
With some manual work, we can check ϕ is injective. Because both T k(V ∨) and

(T k(V ))∨ has dimension (dimV )k, ϕ is bijective.
Next, note that

∧k(V ) is just “T k(V ) but with more relations imposed”, there is a
natural quotient map q : T k(V ) ↠

∧k(V ). So, the tensors are divided into equivalence
classes.

Example 44.5.1
If V = R2, then T 2(V ) would have elements such as e1 ⊗ e1, e1 ⊗ e2 or −e2 ⊗ e1.
Mapping these elements to

∧2(V ), we get e1 ∧ e1 = 0, and e1 ∧ e2 = −e2 ∧ e1, i.e.
e1 ⊗ e2 and −e2 ⊗ e1 belongs to the same equivalence class.

The map q induces a dual map q∨ : (
∧k(V ))∨ → (T k(V ))∨.

Question 44.5.2. Convince yourself that a function f ∈ (T k(V ))∨ belongs to im q∨ if and
only if f assigns the same value for every element in each equivalence class, as defined
above.

Thus, we get an isomorphism q ◦ ϕ−1 ◦ q∨ : (
∧k(V ))∨ →

∧k(V ∨).6
To check this is indeed an isomorphism, we will construct its inverse map. As defined

above, each equivalence class in T k(V ∨) (fiber of g ∈
∧k(V ∨)) has multiple elements, but

we can find a canonical element by the following:

Definition 44.5.3. For vector space V , and element f = f1 ⊗ f2 ⊗ · · · ⊗ fk ∈ T k(V ), we
define the alternation of f as follows:

Alt f = 1
k!
∑
σ∈Sk

sgn(σ) · (fσ(1) ⊗ fσ(2) ⊗ · · · ⊗ fσ(k))

and extend it to all of T k(V ).
5You can try it with f = e∨

1 and g = e∨
2 , evaluate it at e1 ∧ e2 and −e2 ∧ e1, which we know is equal.

6We’re using q for both the map T k(V ) →
∧k(V ) and T k(V ∨) →

∧k(V ∨), by abuse of notation.
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Here, Sk is the permutation group. Notice the similarity with the definition of the
determinant.

Example 44.5.4
As above, V = R2. Then we get:

Alt(e1 ⊗ e2) = e1 ⊗ e2 − e2 ⊗ e1
2 .

Notice that if we swap the first and second component of e1 ⊗ e2, we get e2 ⊗ e1
which has little to do with the original tensor. However, if we swap the first and
second component of e1⊗e2−e2⊗e1

2 , we get e2⊗e1−e1⊗e2
2 , which is exactly the negation

of the original tensor!

We see that Alt f is a desirable representative of the equivalence class of f because:

• Alt(Alt f) = Alt f ;

• q(f) = q(Alt f) where q is the quotient map T k(V ) ↠
∧k(V );

• Alt f is an alternating tensor — that is, if we swap two adjacent components of
Alt f for each pure tensor, then the whole tensor gets negated.

Thus it makes sense for us to define ι :
∧k(V ∨) ↪→ T k(V ∨) that takes each element to

the alternating tensor in T k(V ∨).

Example 44.5.5
With the same example as above, V = R2, then we get

ι(e1 ∧ e2) = Alt(e1 ⊗ e2) = e2 ⊗ e1 − e1 ⊗ e2
2 .

Finally,

Exercise 44.5.6. Show that im(ϕ ◦ ι) = im q∨, and that ι∨ ◦ ϕ ◦ ι and q ◦ ϕ−1 ◦ q∨ are
inverses of each other.

It is common notation that we want to define the wedge product such that e∨
1 ∧ e∨

2
takes in e1 ∧ e2 (that is, the square formed by e1 and e2), and returns 1. However, if we
define the wedge product naturally by the method above, we get

ι(e∨
1 ∧ e∨

2 ) = e∨
1 ⊗ e∨

2 − e∨
2 ⊗ e∨

1
2

which means
ϕ(ι(e∨

1 ∧ e∨
2 ))(e1, e2) = 1 · 1− 0 · 0

2 = 1
2 .

So, a corrective factor k! is needed.
To see how “difficult” the wedge product will be if we use the second notation, let

V = R3, α = dx ∧ dy ∈
∧2(V ∨), and β = dz ∈

∧1(V ∨).
Then, we know:

• α(e1 ∧ e2) = 1.
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• β(e3) = 1.

• We should have (α ∧ β)(e1 ∧ e2 ∧ e3) = 1.
The last point is obvious if we let the wedge product be the map ∧ :

∧2(V ∨)×
∧1(V ∨)→∧3(V ∨).

However, if we’re given α and β as elements of (
∧2(V ))∨ and (

∧1(V ))∨ respectively
(that is, we can only evaluate α at v ∧ w for v, w ∈ V ; and we can only evaluate β at v
for v ∈ V ), then it would be much more difficult to write down what α ∧ β should be. In
fact,

(α ∧ β)(v1 ∧ v2 ∧ v3) = α(v1 ∧ v2)β(v3)− α(v1 ∧ v3)β(v2) + α(v2 ∧ v3)β(v1).

You can see that this is a variant of the alternation operator (or the evaluation operation),
where we compute a weighted average in order to force α ∧ β to be alternating.

§44.6 Tangential remark: Arc length ds is not a 1-form
As mentioned in a remark earlier, the arc length ds is not a 1-form.7

We said earlier that differential form is something you can integrate. You can certainly
integrate ds, but it’s not considered a 1-form!

While we can easily check against the definition that ds is not linear (Problem 45E), it
still raises the question that why we would want to define differential form to exclude ds.
What’s going on here?

In fact, the true story is that the objects that are integrable over a smooth curve are
1-densities. We will define this later.

For simplicity, we work over R2 in this section. Given a (smooth) 1-density ω that can
be integrated over a smooth curve c, we would like the integral

∫
c ω to have the following

properties:
• It is additive: if c is the concatenation of two curves c1 and c2, then

∫
c ω =∫

c1
ω +

∫
c2
ω.

• Because everything is smooth, we would expect that if c is a tiny line segment,
then in fact

∫
c1
ω ≈

∫
c2
ω if we divide c into two segments c1 and c2 of equal length.

Thus, it’s natural to require
∫
c ω to be “approximately linear” when the length of c

is small enough.
In symbols: for ε > 0, let cε be the initial segment of the curve c with length ε,
then

lim
ε→0+

∫
cε
ω

ε
= h

for some finite constant h.
We certainly can formalize a 1-density ω to be simply a function that takes smooth

curves c and returns the value
∫
c ω satisfying the two conditions above, but this definition

is clunky.
A better way to do it is to observe that, if we know

∫
c ω for tiny curves c, then we can

integrate ω over any smooth curves c by chopping it up into tiny curves. But this isn’t
completely formal — of course, as the length of a curve tends to 0, the integral

∫
c ω also

tends to 0 — so instead, we consider the limit above:

lim
ε→0+

∫
cε
ω

ε
.

7https://mathoverflow.net/q/90455 has a discussion on this.

https://mathoverflow.net/q/90455
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Question 44.6.1. Convince yourself that, given two curves c : [0, 1]→ R2 and c2 : [0, 1]→
R2 that starts at the same point c(0) = c2(0) = p, and moves in the same direction
c′(0) = c′

2(0) = v, then basic smoothness condition of
∫

c
ω would guarantee that the limit

above is the same.

Thus,

We can define a 1-density ω to be a function that takes in a point p and
the initial direction v ∈ R2, which is understood as a tangent vector of
R2 at p, and returns the limit.

Formally:

Definition 44.6.2 (1-density). A 1-density ω is a function R2 × R2 → R.

We write ωp(v) ∈ R.
Since only the direction matters, it makes sense to make ω satisfy ωp(λv) = λωp(v) for

λ ≥ 0. In particular, ωp(0) = 0.
Then, ds is the differential form dsp(v) = ∥v∥. While we have not rigorously defined

how to integrate over a curve (we will do this next chapter), you can intuitively see how
it works.

With this definition, a 1-form is just a 1-density that is in addition linear in the second
argument — ωp(v + w) = ωp(v) + ωp(w).

So, what is the special properties that differential forms enjoys? For one, if ω is a
differential form, we have:

Let c : [0, 1]→ R2 be a smooth curve, then for any sequence of smooth curves
ck that converges uniformly to c, then

∫
ck
ω converges to

∫
c ω.

You can easily imagine how this can fail for ds — a sequence of piecewise smooth
curves that consist of only horizontal and vertical lines can approximate a circle, but the
arc length of these jagged curves can never converge to the circumference of the circle.8

§44.7 Closed and exact forms

Let α be a k-form.

Definition 44.7.1. We say α is closed if dα = 0.

Definition 44.7.2. We say α is exact if for some (k− 1)-form β, dβ = α. If k = 0, α is
exact only when α = 0.

Question 44.7.3. Show that exact forms are closed.

A natural question arises: are there closed forms which are not exact? Surprisingly,
the answer to this question is tied to topology. Here is one important example.

8In fact, using the same argument, you can also prove that, conversely, any smooth density that satisfies
the latter property must in fact be linear!



470 Napkin, by Evan Chen (v1.6.20250629)

Example 44.7.4 (The angle form)
Let U = R2 \ {0}, and let θ(p) be the angle formed by the x-axis and the line from
the origin to p.
The 1-form α : U → (R2)∨ defined by

α = −y dx+ x dy

x2 + y2

is called the angle form: given p ∈ U it measures the change in angle θ(p) along a
tangent vector. So intuitively, “α = dθ”. Indeed, one can check directly that the
angle form is closed.
However, α is not exact: there is no global smooth function θ : U → R having α as
a derivative. This reflects the fact that one can actually perform a full 2π rotation
around the origin, i.e. θ only makes sense mod 2π. Thus existence of the angle form
α reflects the possibility of “winding” around the origin.

So the key idea is that the failure of a closed form to be exact corresponds quite well
with “holes” in the space: the same information that homotopy and homology groups are
trying to capture. To draw another analogy, in complex analysis Cauchy-Goursat only
works when U is simply connected. The “hole” in U is being detected by the existence of
a form α. The so-called de Rham cohomology will make this relation explicit.

§44.8 A few harder problems to think about
Problem 44A. Show directly that the angle form

α = −y dx+ x dy

x2 + y2

is closed.

Problem 44B. Establish Theorem 44.4.6, which states that d2 = 0.



45 Integrating differential forms

We now show how to integrate differential forms over cells, and state Stokes’ theorem
in this context. In this chapter, all vector spaces are finite-dimensional and real.

§45.1 Motivation: line integrals

Given a function g : [a, b]→ R, we know by the fundamental theorem of calculus that∫
[a,b]

g(t) dt = f(b)− f(a)

where f is a function such that g = df/dt. Equivalently, for f : [a, b]→ R,∫
[a,b]

g dt =
∫

[a,b]
df = f(b)− f(a)

where df is the exterior derivative we defined earlier.
Cool, so we can integrate over [a, b]. Now suppose more generally, we have U an open

subset of our real vector space V and a 1-form α : U → V ∨. We consider a parametrized
curve, which is a smooth function c : [a, b]→ U . Picture:

[a, b]

t
c

U

c

p = c(t)

α

αp(v) ∈ R

c∗α

We want to define an
∫
c α such that:

The integral
∫
c α should add up all the α along the curve c.

Our differential form α first takes in a point p to get αp ∈ V ∨. Then, it eats a tangent
vector v ∈ V to the curve c to finally give a real number αp(v) ∈ R. We would like to
“add all these numbers up”, using only the notion of an integral over [a, b].

Exercise 45.1.1. Try to guess what the definition of the integral should be. (By type-
checking, there’s only one reasonable answer.)

471
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So, the definition we give is ∫
c
α :=

∫
[a,b]

αc(t)
(
c′(t)

)
dt.

Here, c′(t) is shorthand for (Dc)t(1). It represents the tangent vector to the curve c at
the point p = c(t), at time t. (Here we are taking advantage of the fact that [a, b] is
one-dimensional.)

Now that definition was a pain to write, so we will define a differential 1-form c∗α on
[a, b] to swallow that entire thing: specifically, in this case we define c∗α to be

(c∗α)t (ε) = αc(t) · (Dc)t(ε)

(here ε is some displacement in time). Thus, we can more succinctly write∫
c
α :=

∫
[a,b]

c∗α.

This is a special case of a pullback: roughly, if ϕ : U → U ′ (where U ⊆ V , U ′ ⊆ V ′), we
can change any differential k-form α on U ′ to a k-form on U . In particular, if U = [a, b],1
we can resort to our old definition of an integral. Let’s now do this in full generality.

§45.2 Pullbacks
Let V and V ′ be finite dimensional real vector spaces (possibly different dimensions) and
suppose U and U ′ are open subsets of each; next, consider a k-form α on U ′.

Given a map ϕ : U → U ′ we now want to define a pullback in much the same way as
before. Picture:

U

p

U ′

q = φ(p)
φ

α

αq(. . . ) ∈ R

φ∗α

Well, there’s a total of about one thing we can do. Specifically: α accepts a point in U ′

and k tangent vectors in V ′, and returns a real number. We want ϕ∗α to accept a point
in p ∈ U and k tangent vectors v1, . . . , vk in V , and feed the corresponding information
to α.

1OK, so [a, b] isn’t actually open, sorry. I ought to write (a− ε, b+ ε), or something.
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Clearly we give the point q = ϕ(p). As for the tangent vectors, since we are interested
in volume, we take the derivative of ϕ at p, (Dϕ)p, which will scale each of our vectors vi
into some vector in the target V ′. To cut a long story short:

Definition 45.2.1. Given ϕ : U → U ′ and α a k-form, we define the pullback

(ϕ∗α)p(v1, . . . , vk) := αϕ(p) ((Dϕ)p(v1), . . . , (Dϕ)p(vk)) .

There is a more concrete way to define the pullback using bases. Suppose w1, . . . , wn
is a basis of V ′ and e1, . . . , em is a basis of V . Thus, by the projection principle
(Theorem 43.2.1) the map ϕ : V → V ′ can be thought of as

ϕ(v) = ϕ1(v)w1 + · · ·+ ϕn(v)wn

where each ϕi takes in a v ∈ V and returns a real number. We know also that α can be
written concretely as

α =
∑

I⊆{1,...,n}
fJ dwJ .

Then, we define
ϕ∗α =

∑
I⊆{1,...,n}

(fI ◦ ϕ)(Dϕi1 ∧ · · · ∧Dϕik).

A diligent reader can check these definitions are equivalent.

Example 45.2.2 (Computation of a pullback)
Let V = R2 with basis e1 and e2, and suppose ϕ : V → V ′ is given by sending

ϕ(ae1 + be2) = (a2 + b2)w1 + log(a2 + 1)w2 + b3w3

where w1, w2, w3 is a basis for V ′. Consider the form αq = f(q)w∨
1 ∧ w∨

3 , where
f : V ′ → R. Then

(ϕ∗α)p = f(ϕ(p)) · (2ae∨
1 + 2be∨

2 ) ∧ (3b2e∨
2 ) = f(ϕ(p)) · 6ab2 · e∨

1 ∧ e∨
2 .

It turns out that the pullback basically behaves nicely as possible, e.g.

• ϕ∗(cα+ β) = cϕ∗α+ ϕ∗β (linearity)

• ϕ∗(α ∧ β) = (ϕ∗α) ∧ (ϕ∗β)

• ϕ∗
1(ϕ∗

2(α)) = (ϕ2 ◦ ϕ1)∗(α) (naturality)

but I won’t take the time to check these here (one can verify them all by expanding with
a basis).

§45.3 Cells
Prototypical example for this section: A disk in R2 can be thought of as the cell [0, R]×
[0, 2π]→ R2 by (r, θ) 7→ (r cos θ)e1 + (r sin θ)e2.

Now that we have the notion of a pullback, we can define the notion of an integral for
more general spaces. Specifically, to generalize the notion of integrals we had before:

Definition 45.3.1. A k-cell is a smooth function c : [a1, b1]× [a2, b2]× . . . [ak, bk]→ V .
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Example 45.3.2 (Examples of cells)
Let V = R2 for convenience.

(a) A 0-cell consists of a single point.

(b) As we saw, a 1-cell is an arbitrary curve.

(c) A 2-cell corresponds to a 2-dimensional surface. For example, the map c : [0, R]×
[0, 2π]→ V by

c : (r, θ) 7→ (r cos θ, r sin θ)

can be thought of as a disk of radius R.

So we can now give the definition.

Definition 45.3.3 (How to integrate differential k-forms). Take a differential k-form α
and a k-cell c : [0, 1]k → V . Define the integral

∫
c α using the pullback∫

c
α :=

∫
[0,1]k

c∗α.

Since c∗α is a k-form on the k-dimensional unit box, it can be written as f(x1, . . . , xn) dx1∧
· · · ∧ dxn, So the above integral could also be written as∫ 1

0
· · ·
∫ 1

0
f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn.

Example 45.3.4 (Area of a circle)
Consider V = R2 and let c : (r, θ) 7→ (r cos θ)e1 + (r sin θ)e2 on [0, R] × [0, 2π] as
before. Take the 2-form α which gives αp = e∨

1 ∧ e∨
2 at every point p. Then

c∗α = (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ)
= r(cos2 θ + sin2 θ)(dr ∧ dθ)
= r dr ∧ dθ

Thus, ∫
c
α =

∫ R

0

∫ 2π

0
r dr ∧ dθ = πR2

which is the area of a circle.

Here’s some geometric intuition for what’s happening. Given a k-cell in V , a differential
k-form α accepts a point p and some tangent vectors v1, . . . , vk and spits out a number
αp(v1, . . . , vk), which as before we view as a signed hypervolume. Then the integral adds
up all these infinitesimals across the entire cell. In particular, if V = Rk and we take the
form α : p 7→ e∨

1 ∧ · · · ∧ e∨
k , then what these α’s give is the kth hypervolume of the cell.

For this reason, this α is called the volume form on Rk.
You’ll notice I’m starting to play loose with the term “cell”: while the cell c : [0, R]×

[0, 2π]→ R2 is supposed to be a function I have been telling you to think of it as a unit
disk (i.e. in terms of its image). In the same vein, a curve [0, 1]→ V should be thought
of as a curve in space, rather than a function on time.
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This error turns out to be benign. Let α be a k-form on U and c : [a1, b1] × · · · ×
[ak, bk] → U a k-cell. Suppose ϕ : [a′

1, b
′
1] × . . . [a′

k, b
′
k] → [a1, b1] × · · · × [ak, bk]; it is a

reparametrization if ϕ is bijective and (Dϕ)p is always invertible (think “change of
variables”); thus

c ◦ ϕ : [a′
1, b

′
1]× · · · × [a′

k, b
′
k]→ U

is a k-cell as well. Then it is said to preserve orientation if det(Dϕ)p > 0 for all p and
reverse orientation if det(Dϕ)p < 0 for all p.

Exercise 45.3.5. Why is it that exactly one of these cases must occur?

Theorem 45.3.6 (Changing variables doesn’t affect integrals)
Let c be a k-cell, α a k-form, and ϕ a reparametrization. Then

∫
c◦ϕ

α =
{∫

c α ϕ preserves orientation
−
∫
c α ϕ reverses orientation.

Proof. Use naturality of the pullback to reduce it to the corresponding theorem in normal
calculus.

So for example, if we had parametrized the unit circle as [0, 1] × [0, 1] → R2 by
(r, t) 7→ R cos(2πt)e1 + R sin(2πt)e2, we would have arrived at the same result. So we
really can think of a k-cell just in terms of the points it specifies.

§45.4 Boundaries
Prototypical example for this section: The boundary of [a, b] is {b} − {a}. The boundary
of a square goes around its edge counterclockwise.

First, I introduce a technical term that lets us consider multiple cells at once.
Definition 45.4.1. A k-chain U is a formal linear combination of k-cells over U , i.e. a
sum of the form

c = a1c1 + · · ·+ amcm

where each ai ∈ R and ci is a k-cell. We define
∫
c α =

∑
i ai

∫
ci.

In particular, a 0-chain consists of several points, each with a given weight.
Now, how do we define the boundary? For a 1-cell [a, b]→ U , as I hinted earlier we

want the answer to be the 0-chain {c(b)} − {c(a)}. Here’s how we do it in general.
Definition 45.4.2. Suppose c : [0, 1]k → U is a k-cell. Then the boundary of c, denoted
∂c : [0, 1]k−1 → U , is the (k − 1)-chain defined as follows. For each i = 1, . . . , k define
(k − 1)-chains by

cstart
i : (t1, . . . , tk−1) 7→ c(t1, . . . , ti−1, 0, ti, . . . , tk−1)
cstop
i : (t1, . . . , tk−1) 7→ c(t1, . . . , ti−1, 1, ti, . . . , tk−1).

Then

∂c :=
k∑
i=1

(−1)i+1
(
cstop
i − cstart

i

)
.

Finally, the boundary of a chain is the sum of the boundaries of each cell (with the
appropriate weights). That is, ∂(

∑
aici) =

∑
ai∂ci.
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Question 45.4.3. Satisfy yourself that one can extend this definition to a k-cell c defined
on c : [a1, b1]× · · · × [ak, bk]→ V (rather than from [0, 1]k → V ).

Example 45.4.4 (Examples of boundaries)
Consider the 2-cell c : [0, 1]2 → R2 shown below.

[0, 1]2
c

p1
p2

p3
p4

c

Here p1, p2, p3, p4 are the images of (0, 0), (0, 1), (1, 1), (1, 0), respectively. Formally,
∂c is given by

∂c = (t 7→ c(1, t))− (t 7→ c(0, t))− (t 7→ c(t, 1)) + (t 7→ c(t, 0)).

I apologize for the eyesore notation caused by inline functions. Let’s make amends
and just write

∂c = [p2, p3]− [p1, p4]− [p4, p3] + [p1, p2]

where each “interval” represents the 1-cell shown by the reddish arrows on the right,
after accounting for the minus signs. We can take the boundary of this as well, and
obtain an empty chain as

∂(∂c) =
4∑
i=1
{pi+1} − {pi} = 0.

Example 45.4.5 (Boundary of a unit disk)
Consider the unit disk given by

c : [0, 1]× [0, 1]→ R2 by (r, θ) 7→ r cos(2πθ)e1 + r sin(2πθ)e2.

The four parts of the boundary are shown in the picture below:

r

θ

[0, 1]2
c

Note that two of the arrows more or less cancel each other out when they are
integrated. Moreover, we interestingly have a degenerate 1-cell at the center of the
circle; it is a constant function [0, 1]→ R2 which always gives the origin.

Obligatory theorem, analogous to d2 = 0 and left as a problem.



45 Integrating differential forms 477

Theorem 45.4.6 (The boundary of the boundary is empty)
∂2 = 0, in the sense that for any k-chain c we have ∂2(c) = 0.

§45.5 Stokes’ theorem
Prototypical example for this section:

∫
[a,b] dg = g(b)− g(a).

We now have all the ingredients to state Stokes’ theorem for cells.

Theorem 45.5.1 (Stokes’ theorem for cells)
Take U ⊆ V as usual, let c : [0, 1]k → U be a k-cell and let α : U →

∧k−1(V ∨) be a
(k − 1)-form. Then ∫

c
dα =

∫
∂c
α.

In particular, if dα = 0 then the left-hand side vanishes.

For example, if c is the interval [a, b] then ∂c = {b} − {a}, and thus we obtain the
fundamental theorem of calculus.

§45.6 Back to Earth: A comparison to what you learned in
vector calculus

Now that we’ve done everything abstractly, let’s compare what we’ve learned to what
you might see in R3 if you’re doing a vector calculus course at a typical university.

In Figure 45.1 I’ve copied a picture I drew in fall 2024 for the 18.02 class at MIT,
which is the multivariable calculus class that a lot of first-year students take. For each
0 ≤ d ≤ n ≤ 3 (besides d = n = 0), it shows what kind of integral showed up in the class
if you were doing a d-dimensional integral of a function whose domain was Rn. Note that
every integral in this picture is real-valued.

I’ve deliberately used the notation that was actually used at MIT, which I’ll refer to as
18.02 notation, because it’s similar to what you will see on Wikipedia and other places
too. The goal of this section is to provide a translation system from 18.02 notation to
Napkin notation. (Throughout the whole section, Rn is thought of as a normed vector
space, so the identification e1 7→ e∨

1 and so on is canonical.)
There is a lot going in Figure 45.1, so let’s break it down piece by piece.

0-forms. A 0-form is the same as just a function, so the column of 0-D integrals should
be easy to understand: it’s just evaluation at point, or a sum of points.

n-forms. The case n = d is also easy: we know it’s possible to integrate an n-form in
Rn and get a number. That is:

• A normal integral
∫ b
a dx is the integral across a 1-cell [a, b] across the 1-form f · e∨

1 .

• An area integral
∫ b1
a1

∫ b2
a2
f(x, y) dx dy corresponds to integrating the 1-form f ·e∨

1 ∧e∨
2 .

• A volume integral
∫ b1
a1

∫ b2
a2

∫ b3
a3
f(x, y) dxdy corresponds to integrating the 1-form

f · e∨
1 ∧ e∨

2 ∧ e∨
3 .

So this takes care of the green-labeled things on the diagonal.
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An 18.02 chart.

f : R1 → R

f : R2 → R

f : R3 → R

F : R2 → R2

F : R3 → R3

0-D integral

f(x0)

Eval f at point

f(x0, y0)

Eval f at point

f(x0, y0, z0)

Eval f at point

1-D integral

b∫
a
f(x) dx

1-var integral

t1∫
t0

f(r(t))|r′(t)|dt

Line integral

t1∫
t0

f(r(t))|r′(t)|dt

Line integral

2-D integral

b1∫
a1

b2∫
a2

f(x, y) dxdy

Area integral

u1∫
u0

v1∫
v0

f(r(u, v))| ∂r
∂u

× ∂r
∂v

|du dv

Surface integral

3-D integral

b1∫
a1

b2∫
a2

b3∫
a3

f(x, y, z) dxdy dz

Volume integral

t1∫
t0

F(r(t)) · r′(t) dt Work

t1∫
t0

F(r(t)) · r′(t) dt

Work

u1∫
u0

v1∫
v0

F(r(u, v)) ·
(

∂r
∂u

× ∂r
∂v

)
du dv

Flux

df
dx

∇f (grad) ∂g
∂x − ∂f

∂y (2d scalar curl)

∇f (grad)

∇× F (curl)

∇ · F (div)

Figure 45.1: Throwback to first year of college? High-resolution version at https://web.
evanchen.cc/textbooks/poster-stokes.pdf.

We can’t interpret the remaining three green pictures! The tricky part is the situations
where 0 < d < n < 3. There are three such things, the two line integrals when d = 1 and
n ∈ {2, 3} and the surface integral when d = 2 and n = 3.

In fact, these are not covered by our theory of differential forms! Indeed, even in the
special case where f = 1 is a constant function, the line integrals are actually arc length,
and as we mentioned in Section 44.6, that integral cannot be viewed as the integral of
any differential form. Similarly, surface area isn’t a differential form either.

1-forms and 2-forms. However, the three purplish integrals (over vector fields) can be
viewed in our framework.

• Consider d = 1 and n = 3, i.e. the 3-D line integral. We have as input a vector-
valued function F : R3 → R3. By projection principle (Theorem 43.2.1), it’s the
same as the data of

F(p) = F1(p)e1 + F2(p)e2 + F3(p)e3

for three functions Fi : R3 → R for i = 1, 2, 3.
To convert the 18.02 notation F(p) into Napkin notation, we identify F with the

https://web.evanchen.cc/textbooks/poster-stokes.pdf
https://web.evanchen.cc/textbooks/poster-stokes.pdf
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differential form
αp = F1(p)e∨

1 + F2(p)e∨
2 + F3(p)e∨

3 .

Meanwhile, the path r(t) parametrized by time t ∈ [t0, t1] matches the concept of a
1-form c : [t0, t1]→ R3. The “work” in the integral is written as

F(r(t)) · r′(t)

but that dot product is exactly the pullback c∗α.

• The case d = 1 and n = 2 is exactly the same, with 3 replaced by 2.

• The weirdest case is the flux integral, for d = 2 and n = 3. The parametrization
r(u, v) is fine, and it corresponds to a 2-cell c. But F(p) seems to have the wrong
type.
But let’s again write

F(p) = F1(p)e1 + F2(p)e2 + F3(p)e3.

There is a fairly weird hack used to convert this into Napkin notation: the form
desired is

αp = F1(p)e∨
2 ∧ e∨

3 + F2(p)e∨
3 ∧ e∨

1 + F3(p)e∨
1 ∧ e∨

2 .

Yes, that’s really the identification! For this definition to be possible, we had to
exploit the fact that (

3
1

)
=
(

3
2

)
.

That is the three-dimensional space
∧2(R3) happens to have the same number of

basis elements as
∧1(R3) ∼= R3, so the

⋆ :
2∧

(R3)→ R3

e1 ∧ e2 7→ e3

e2 ∧ e3 7→ e1

e3 ∧ e1 7→ e2

is really an isomorphism, because it maps basis elements to basis elements. We
denote this map by ⋆, because it turns out this map generalizes to the so-called
Hodge star operator in higher dimensions.
This is where I talk about cross products, which I’ve deliberately avoided until now.
The cross product is a weird operation that takes two vectors in R3 and outputs a
vector in R3. Specifically, if v = xe1 + ye2 + ze3 and w = x′e1 + y′e2 + z′e3, the
definition of cross products taught in school is

v×w := (yz′ − y′z)e1 + (zx′ − xz′)e2 + (xy′ − x′y)e3.

Where does this come from? The answer is that ⋆(v ∨w):

v ∧w = (xe1 + ye2 + ze3)× (x′e1 + y′e2 + z′e3)
= (xy′ − x′y)e1 ∧ e2 + (yz′ − y′z)e2 ∧ e3 + (zx′ − xz′)e3 ∧ e1

⋆(v ∧w) 7→ (xy′ − x′y)e3 + (yz′ − y′z)e1 + (zx′ − xz′)e2.

With that out of the way, the weird dot-cross product

F(r(u, v)) · (ru × rv) dudv

is now rigged to correspond to the pullback c∗α. So using this Hodge star, we find
that flux is actually the integration of a 2-form.
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Exterior derivatives Every red arrow in Figure 45.1 corresponds to the exterior derivative
of the corresponding form. That is:

• The “grad” operation takes a 0-form f and outputs a vector field corresponding to
the 1-form df .

• The “curl” operation takes a 1-form α and outputs a vector field corresponding to
the 2-form dα. When n = 3, this checks out because the space of 1-forms is

(3
1
)

dimensional, and the space of 2-forms is
(3

2
)
, and thankfully

(3
1
)

= 3 =
(3

2
)
.

The weird notation ∇× F can be checked to correspond to the exterior derivative.
On the 18.02 side, if we have

F = F1e1 + F2e2 + F3e3

then the 18.02 definition of curl is that

curl(F) := ∇× F :=
(
∂F3
∂y
− ∂F2

∂z

)
e1 +

(
∂F1
∂z
− ∂F3

∂x

)
e2 +

(
∂F2
∂x
− ∂F1

∂y

)
e3

The reason for the nonsensical ∇× notation is that if you really abuse notation
you can almost think of this as the cross product of a vector ∇ =

〈
∂
∂x ,

∂
∂y ,

∂
∂z

〉
and

the vector F = ⟨F1, F2, F3⟩.
Now to convert F into Napkin notation, remember we identified F with the
differential form

α = F1e∨
1 + F2e∨

2 + F3e∨
3 .

If we follow our formula for exterior derivative in Definition 44.4.4, we get

dα = dF1 ∧ e∨
1 + dF2 ∧ e∨

2 + dF3 ∧ e∨
3

=
(
∂F1
∂x

e∨
1 + ∂F1

∂y
e∨

2 + ∂F1
∂z

e∨
3

)
∧ e∨

1

+
(
∂F2
∂x

e∨
1 + ∂F2

∂y
e∨

2 + ∂F2
∂z

e∨
3

)
∧ e∨

2

+
(
∂F3
∂x

e∨
1 + ∂F3

∂y
e∨

2 + ∂F3
∂z

e∨
3

)
∧ e∨

3

=
(
∂F3
∂y
− ∂F2

∂z

)
e∨

2 ∧ e∨
3 +

(
∂F1
∂z
− ∂F3

∂x

)
e∨

3 ∧ e∨
1 +

(
∂F2
∂x
− ∂F1

∂y

)
e∨

1 ∧ e∨
2 .

Taking the Hodge star and then dropping all the ∨’s gives the same thing as ∇×F,
so this completes the correspondence between the 18.02 notation and the Napkin
notation.

• In 18.02 terminology, the divergence div is defined by

div(F) := ∇ · F := ∂F1
∂x

+ ∂F2
∂y

+ ∂F3
∂z

which is a scalar-valued function for input points p ∈ R3. We let you do this one in
Problem 45C.
The reason for the nonsensical ∇· notation is that if you really abuse notation you
can almost think of this as the dot product of a vector ∇ =

〈
∂
∂x ,

∂
∂y ,

∂
∂z

〉
and the

vector F = ⟨F1, F2, F3⟩.
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Double derivative We know that d2 = 0, which in Figure 45.1 means composing two
arrows gives zero. You’ll see this in 18.02 as

• The curl of a gradient is zero.

• The flux of a curl is zero.

but really they’re the same theorem.

Stokes’ theorem Each red arrow also gives an instance of Stokes’ theorem for cells. So
Stokes’ theorem even for cells is really great, because we get six 18.02 theorems as special
cases!

• The three arrows from 0-D integrals to 1-D integrals are all called “Fundamental
Theorem of Calculus”. Some authors will say “Fundamental Theorem of Calculus
for line integrals” instead for n > 1.

• For n = 2, the other red arrow is called “Green’s theorem”; we let you work it out
as Problem 45A†.

• For n = 3, the arrow from work to flux is confusingly also called “Stokes’ theorem”;
it says the flux of a 2-D surface equals the work on the 1-D boundary.

• The rightmost red arrow for n = 3 is called the “divergence theorem”; it says the
divergence of a 3-D volume equals the flux of the 2-D boundary surface.

§45.7 A few harder problems to think about
Problem 45A† (Green’s theorem). Let f, g : R2 → R be smooth functions and c a 2-cell.
Prove that ∫

c

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy =

∫
∂c

(f dx+ g dy).

Problem 45B. Show that ∂2 = 0.

Problem 45C. Finish the correspondence of the 18.02 notation with Napkin notation.
That is, let F : R3 → R3 be a vector field, and let α be the 2-form corresponding to it in
Napkin version. Show that the scalar-valued function defined by

div(F) := ∇ · F := ∂F1
∂x

+ ∂F2
∂y

+ ∂F3
∂z

coincides with evaluation at the 3-form dα.

Problem 45D (Pullback and d commute). Let U and U ′ be open sets of vector spaces V
and V ′ and let ϕ : U → U ′ be a smooth map between them. Prove that for any differential
form α on U ′ we have

ϕ∗(dα) = d(ϕ∗α).

Problem 45E (Arc length isn’t a form). Show that there does not exist a 1-form α on
R2 such that for a curve c : [0, 1]→ R2, the integral

∫
c α gives the arc length of c.

Problem 45F. An exact k-form α is one satisfying α = dβ for some β. Prove that∫
C1
α =

∫
C2
α

where C1 and C2 are any concentric circles in the plane and α is some exact 1-form.
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Last chapter, we stated Stokes’ theorem for cells. It turns out there is a much larger
class of spaces, the so-called smooth manifolds, for which this makes sense.

Unfortunately, the definition of a smooth manifold is complete garbage, and so by the
time I am done defining differential forms and orientations, I will be too lazy to actually
define what the integral on it is, and just wave my hands and state Stokes’ theorem.

§46.1 Topological manifolds
Prototypical example for this section: S2: “the Earth looks flat”.

Long ago, people thought the Earth was flat, i.e. homeomorphic to a plane, and in
particular they thought that π2(Earth) = 0. But in fact, as most of us know, the Earth
is actually a sphere, which is not contractible and in particular π2(Earth) ∼= Z. This
observation underlies the definition of a manifold:

An n-manifold is a space which locally looks like Rn.

Actually there are two ways to think about a topological manifold M :

• “Locally”: at every point p ∈M , some open neighborhood of p looks like an open
set of Rn. For example, to someone standing on the surface of the Earth, the Earth
looks much like R2.

• “Globally”: there exists an open cover of M by open sets {Ui}i (possibly infinite)
such that each Ui is homeomorphic to some open subset of Rn. For example, from
outer space, the Earth can be covered by two hemispherical pancakes.

Question 46.1.1. Check that these are equivalent.

While the first one is the best motivation for examples, the second one is easier to use
formally.

Definition 46.1.2. A topological n-manifold M is a Hausdorff space with an open
cover {Ui} of sets homeomorphic to subsets of Rn, say by homeomorphisms

ϕi : Ui
∼=−→ Ei ⊆ Rn

where each Ei is an open subset of Rn. Each ϕi : Ui → Ei is called a chart, and together
they form a so-called atlas.

Remark 46.1.3 — Here “E” stands for “Euclidean”. I think this notation is not
standard; usually people just write ϕi(Ui) instead.

Remark 46.1.4 — This definition is nice because it doesn’t depend on embeddings:
a manifold is an intrinsic space M , rather than a subset of RN for some N . Analogy:

483
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an abstract group G is an intrinsic object rather than a subgroup of Sn.

Example 46.1.5 (An atlas on S1)
Here is a picture of an atlas for S1, with two open sets.

S1

U2U1

E1

φ1

E2

φ2

Question 46.1.6. Where do you think the words “chart” and “atlas” come from?

Example 46.1.7 (Some examples of topological manifolds)
(a) As discussed at length, the sphere S2 is a 2-manifold: every point in the sphere

has a small open neighborhood that looks like D2. One can cover the Earth
with just two hemispheres, and each hemisphere is homeomorphic to a disk.

(b) The circle S1 is a 1-manifold; every point has an open neighborhood that looks
like an open interval.

(c) The torus, Klein bottle, RP2 are all 2-manifolds.

(d) Rn is trivially a manifold, as are its open sets.

All these spaces are compact except Rn.
A non-example of a manifold is Dn, because it has a boundary; points on the
boundary do not have open neighborhoods that look Euclidean.

§46.2 Smooth manifolds

Prototypical example for this section: All the topological manifolds.

Let M be a topological n-manifold with atlas {Ui
ϕi−→ Ei}.

Definition 46.2.1. For any i, j such that Ui ∩ Uj ̸= ∅, the transition map ϕij is the
composed map

ϕij : Ei ∩ ϕimg
i (Ui ∩ Uj)

ϕ−1
i−−→ Ui ∩ Uj

ϕj−→ Ej ∩ ϕimg
j (Ui ∩ Uj).

Sorry for the dense notation, let me explain. The intersection with the image ϕimg
i (Ui∩

Uj) and the image ϕimg
j (Ui ∩Uj) is a notational annoyance to make the map well-defined

and a homeomorphism. The transition map is just the natural way to go from Ei → Ej ,
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restricted to overlaps. Picture below, where the intersections are just the green portions
of each E1 and E2:

S1

U2U1

E1

φ1

E2

φ2

φ12

We want to add enough structure so that we can use differential forms.

Definition 46.2.2. We say M is a smooth manifold if all its transition maps are
smooth.

This definition makes sense, because we know what it means for a map between two
open sets of Rn to be differentiable.

With smooth manifolds we can try to port over definitions that we built for Rn onto
our manifolds. So in general, all definitions involving smooth manifolds will reduce to
something on each of the coordinate charts, with a compatibility condition.

As an example, here is the definition of a “smooth map”:

Definition 46.2.3. (a) Let M be a smooth manifold. A continuous function f : M → R
is called smooth if the composition

Ei
ϕ−1

i−−→ Ui ↪→M
f−→ R

is smooth as a function Ei → R.

(b) Let M and N be smooth with atlases {UMi
ϕi−→ EMi }i and {UNj

ϕj−→ ENj }j . A map
f : M → N is smooth if for every i and j, the composed map

Ei
ϕ−1

i−−→ Ui ↪→M
f−→ N ↠ Uj

ϕj−→ Ej

is smooth, as a function Ei → Ej .

§46.3 Regular value theorem

Prototypical example for this section: x2 + y2 = 1 is a circle!

Despite all that I’ve written about general manifolds, it would be sort of mean if I left
you here because I have not really told you how to actually construct manifolds in practice,
even though we know the circle x2 + y2 = 1 is a great example of a one-dimensional
manifold embedded in R2.
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Theorem 46.3.1 (Regular value theorem)
Let V be an n-dimensional real normed vector space, let U ⊆ V be open and let
f1, . . . , fm : U → R be smooth functions. Let M be the set of points p ∈ U such
that f1(p) = · · · = fm(p) = 0.
Assume M is nonempty and that the map

V → Rm by v 7→ ((Df1)p(v), . . . , (Dfm)p(v))

has rank m, for every point p ∈M . Then M is a manifold of dimension n−m.

For a proof, see [Sj05, Theorem 6.3].
One very common special case is to take m = 1 above.

Corollary 46.3.2 (Level hypersurfaces)
Let V be a finite-dimensional real normed vector space, let U ⊆ V be open and
let f : U → R be smooth. Let M be the set of points p ∈ U such that f(p) = 0. If
M ̸= ∅ and (Df)p is not the zero map for any p ∈ M , then M is a manifold of
dimension dimV − 1.

Example 46.3.3 (The circle x2 + y2 − c = 0)
Let f(x, y) = x2 + y2 − c, f : R2 → R, where c is a positive real number. Note that

Df = 2x · dx+ 2y · dy

which in particular is nonzero as long as (x, y) ̸= (0, 0), i.e. as long as c ≠ 0. Thus:

• When c > 0, the resulting curve — a circle with radius
√
c — is a one-

dimensional manifold, as we knew.

• When c = 0, the result fails. Indeed, M is a single point, which is actually a
zero-dimensional manifold!

We won’t give further examples since I’m only mentioning this in passing in order to
increase your capacity to write real concrete examples. (But [Sj05, Chapter 6.2] has some
more examples, beautifully illustrated.)

§46.4 Differential forms on manifolds
We already know what a differential form is on an open set U ⊆ Rn. So, we naturally
try to port over the definition of differentiable form on each subset, plus a compatibility
condition.

Let M be a smooth manifold with atlas {Ui
ϕi−→ Ei}i.

Definition 46.4.1. A differential k-form α on a smooth manifold M is a collection
{αi}i of differential k-forms on each Ei, such that for any j and i we have that

αj = ϕ∗
ij(αi).

In English: we specify a differential form on each chart, which is compatible under
pullbacks of the transition maps.
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§46.5 Orientations

Prototypical example for this section: Left versus right, clockwise vs. counterclockwise.

This still isn’t enough to integrate on manifolds. We need one more definition: that of
an orientation.

The main issue is the observation from standard calculus that∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

Consider then a space M which is homeomorphic to an interval. If we have a 1-form
α, how do we integrate it over M? Since M is just a topological space (rather than a
subset of R), there is no default “left” or “right” that we can pick. As another example,
if M = S1 is a circle, there is no default “clockwise” or “counterclockwise” unless we
decide to embed M into R2.

To work around this we have to actually have to make additional assumptions about
our manifold.

Definition 46.5.1. A smooth n-manifold is orientable if there exists a differential
n-form ω on M such that for every p ∈M ,

ωp ̸= 0.

Recall here that ωp is an element of
∧n(V ∨). In that case we say ω is a volume form

of M .
How do we picture this definition? If we recall that an differential form is supposed to

take tangent vectors of M and return real numbers. To this end, we can think of each
point p ∈M as having a tangent plane Tp(M) which is n-dimensional. Now since the
volume form ω is n-dimensional, it takes an entire basis of the Tp(M) and gives a real
number. So a manifold is orientable if there exists a consistent choice of sign for the basis
of tangent vectors at every point of the manifold.

For “embedded manifolds”, this just amounts to being able to pick a nonzero field of
normal vectors to each point p ∈M . For example, S1 is orientable in this way.

S1

Similarly, one can orient a sphere S2 by having a field of vectors pointing away (or
towards) the center. This is all non-rigorous, because I haven’t defined the tangent plane
Tp(M); since M is in general an intrinsic object one has to be quite roundabout to define
Tp(M) (although I do so in an optional section later). In any event, the point is that
guesses about the orientability of spaces are likely to be correct.
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Example 46.5.2 (Orientable surfaces)
(a) Spheres Sn, planes, and the torus S1 × S1 are orientable.

(b) The Möbius strip and Klein bottle are not orientable: they are “one-sided”.

(c) CPn is orientable for any n.

(d) RPn is orientable only for odd n.

§46.6 Stokes’ theorem for manifolds

Stokes’ theorem in the general case is based on the idea of a manifold with boundary
M , which I won’t define, other than to say its boundary ∂M is an n − 1 dimensional
manifold, and that it is oriented if M is oriented. An example is M = D2, which has
boundary ∂M = S1.

Next,

Definition 46.6.1. The support of a differential form α on M is the closure of the set

{p ∈M | αp ̸= 0} .

If this support is compact as a topological space, we say α is compactly supported.

Remark 46.6.2 — For example, volume forms are supported on all of M .

Now, one can define integration on oriented manifolds, but I won’t define this because
the definition is truly awful. Then Stokes’ theorem says

Theorem 46.6.3 (Stokes’ theorem for manifolds)
Let M be a smooth oriented n-manifold with boundary and let α be a compactly
supported (n− 1)-form. Then ∫

M
dα =

∫
∂M

α.

All the omitted details are developed in full in [Sj05].

§46.7 (Optional) The tangent and cotangent space

Prototypical example for this section: Draw a line tangent to a circle, or a plane tangent
to a sphere.

Let M be a smooth manifold and p ∈ M a point. I omitted the definition of Tp(M)
earlier, but want to actually define it now.

As I said, geometrically we know what this should look like for our usual examples.
For example, if M = S1 is a circle embedded in R2, then the tangent vector at a point p
should just look like a vector running off tangent to the circle. Similarly, given a sphere
M = S2, the tangent space at a point p along the sphere would look like plane tangent
to M at p.
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S1

Tp(M)

~v ∈ Tp(M)

p

However, one of the points of all this manifold stuff is that we really want to see the
manifold as an intrinsic object, in its own right, rather than as embedded in Rn.1 So, we
would like our notion of a tangent vector to not refer to an ambient space, but only to
intrinsic properties of the manifold M in question.

§46.7.i Tangent space

To motivate this construction, let us start with an embedded case for which we know the
answer already: a sphere.

Suppose f : S2 → R is a function on a sphere, and take a point p. Near the point p, f
looks like a function on some open neighborhood of the origin. Thus we can think of
taking a directional derivative along a vector v⃗ in the imagined tangent plane (i.e. some
partial derivative). For a fixed v⃗ this partial derivative is a linear map

Dv⃗ : C∞(M)→ R.

It turns out this goes the other way: if you know what Dv⃗ does to every smooth
function, then you can recover v. This is the trick we use in order to create the tangent
space. Rather than trying to specify a vector v⃗ directly (which we can’t do because we
don’t have an ambient space),

The vectors are partial-derivative-like maps.

More formally, we have the following.

Definition 46.7.1. A derivation D at p is a linear map D : C∞(M)→ R (i.e. assigning
a real number to every smooth f) satisfying the following Leibniz rule: for any f , g we
have the equality

D(fg) = f(p) ·D(g) + g(p) ·D(f) ∈ R.

This is just a “product rule”. Then the tangent space is easy to define:

Definition 46.7.2. A tangent vector is just a derivation at p, and the tangent space
Tp(M) is simply the set of all these tangent vectors.

In this way we have constructed the tangent space.
1This can be thought of as analogous to the way that we think of a group as an abstract object in its

own right, even though Cayley’s Theorem tells us that any group is a subgroup of the permutation
group.

Note this wasn’t always the case! During the 19th century, a group was literally defined as a subset
of GL(n) or of Sn. In fact Sylow developed his theorems without the word “group”. Only much later
did the abstract definition of a group was given, an abstract set G which was independent of any
embedding into Sn, and an object in its own right.
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§46.7.ii The cotangent space

In fact, one can show that the product rule for D is equivalent to the following three
conditions:

1. D is linear, meaning D(af + bg) = aD(f) + bD(g).

2. D(1M ) = 0, where 1M is the constant function on M .

3. D(fg) = 0 whenever f(p) = g(p) = 0. Intuitively, this means that if a function
h = fg vanishes to second order at p, then its derivative along D should be zero.

This suggests a third equivalent definition: suppose we define

mp := {f ∈ C∞M | f(p) = 0}

to be the set of functions which vanish at p (this is called the maximal ideal at p). In
that case,

m2
p =

{∑
i

fi · gi | fi(p) = gi(p) = 0
}

is the set of functions vanishing to second order at p. Thus, a tangent vector is really
just a linear map

mp/m
2
p → R.

In other words, the tangent space is actually the dual space of mp/m
2
p; for this reason,

the space mp/m
2
p is defined as the cotangent space (the dual of the tangent space).

This definition is even more abstract than the one with derivations above, but has some
nice properties:

• it is coordinate-free, and

• it’s defined only in terms of the smooth functions M → R, which will be really
helpful later on in algebraic geometry when we have varieties or schemes and can
repeat this definition.

§46.7.iii Sanity check

With all these equivalent definitions, the last thing I should do is check that this definition
of tangent space actually gives a vector space of dimension n. To do this it suffices to
show verify this for open subsets of Rn, which will imply the result for general manifolds
M (which are locally open subsets of Rn). Using some real analysis, one can prove the
following result:

Theorem 46.7.3
Suppose M ⊂ Rn is open and 0 ∈M . Then

m0 = {smooth functions f | f(0) = 0}
m2

0 = {smooth functions f | f(0) = 0, (∇f)0 = 0}.

In other words m2
0 is the set of functions which vanish at 0 and such that all first

derivatives of f vanish at zero.



46 A bit of manifolds 491

Thus, it follows that there is an isomorphism

m0/m
2
0
∼= Rn by f 7→

[
∂f

∂x1
(0), . . . , ∂f

∂xn
(0)
]

and so the cotangent space, hence tangent space, indeed has dimension n.

§46.8 A few harder problems to think about
Problem 46A. Show that a differential 0-form on a smooth manifold M is the same
thing as a smooth function M → R.

some appli-
cations of
regular value
theorem here
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