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40 Random variables (TO DO)
write chapter

Having properly developed the Lebesgue measure and the integral on it, we can now
proceed to develop random variables.

§40.1 Random variables

With all this set-up, random variables are going to be really quick to define.

Definition 40.1.1. A (real) random variable X on a probability space Ω = (Ω,A , µ)
is a measurable function X : Ω→ R, where R is equipped with the Borel σ-algebra.

In particular, addition of random variables, etc. all makes sense, as we can just add.
Also, we can integrate X over Ω, by previous chapter.

Definition 40.1.2 (First properties of random variables). Given a random variable X,
the expected value of X is defined by the Lebesgue integral

E[X] =
∫

Ω
X(ω) dµ.

Confusingly, the letter µ is often used for expected values.
The kth moment of X is defined as E[Xk], for each positive integer k ≥ 1. The

variance of X is then defined as

Var(X) = E
[
(X − E[X])2

]
.

Question 40.1.3. Show that 1A is a random variable (just check that it is Borel measurable),
and its expected value is µ(A).

An important property of expected value you probably already know:

Theorem 40.1.4 (Linearity of expectation)
If X and Y are random variables on Ω then

E[X + Y ] = E[X] + E[Y ].

Proof. E[X + Y ] =
∫

ΩX(ω) + Y (ω) dµ =
∫

ΩX(ω) dµ+
∫

Ω Y (ω) dµ = E[X] + E[Y ].

Note that X and Y do not have to be “independent” here: a notion we will define shortly.
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§40.2 Distribution functions

§40.3 Examples of random variables

§40.4 Characteristic functions

§40.5 Independent random variables

§40.6 A few harder problems to think about
Problem 40A (Equidistribution). Let X1, X2, . . . be i.i.d. uniform random variables
on [0, 1]. Show that almost surely the Xi are equidistributed, meaning that

lim
N→∞

#{1 ≤ i ≤ N | a ≤ Xi(ω) ≤ b}
N

= b− a ∀0 ≤ a < b ≤ 1

holds for almost all choices of ω.

Problem 40B (Side length of triangle independent from median). Let X1, Y1, X2, Y2,
X3, Y3 be six independent standard Gaussians. Define triangle ABC in the Cartesian
plane by A = (X1, Y1), B = (X2, Y2), C = (X3, Y3). Prove that the length of side BC is
independent from the length of the A-median.



41 Large number laws (TO DO)
write chapter

§41.1 Notions of convergence

§41.1.i Almost sure convergence

Definition 41.1.1. Let X, Xn be random variables on a probability space Ω. We say
Xn converges almost surely to X if

µ
(
ω ∈ Ω : lim

n
Xn(ω) = X(ω)

)
= 1.

This is a very strong notion of convergence: it says in almost every world, the values of
Xn converge to X. In fact, it is almost better for me to give a non-example.

Example 41.1.2 (Non-example of almost sure convergence)
Imagine an immortal skeleton archer is practicing shots, and on the nth shot, he
scores a bulls-eye with probability 1− 1

n (which tends to 1 because the archer improves
over time). Let Xn ∈ {0, 1, . . . , 10} be the score of the nth shot.

Although the skeleton is gradually approaching perfection, there are almost no
worlds in which the archer misses only finitely many shots: that is

µ
(
ω ∈ Ω : lim

n
Xn(ω) = 10

)
= 0.

§41.1.ii Convergence in probability

Therefore, for many purposes we need a weaker notion of convergence.

Definition 41.1.3. Let X, Xn be random variables on a probability space Ω. We say
Xn converges in probability to X if if for every ε > 0 and δ > 0, we have

µ (ω ∈ Ω : |Xn(ω)−X(ω)| < ε) ≥ 1− δ

for n large enough (in terms of ε and δ).

In this sense, our skeleton archer does succeed: for any δ > 0, if n > δ−1 then the
skeleton archer does hit a bulls-eye in a 1− δ fraction of the worlds. In general, you can
think of this as saying that for any δ > 0, the chance of an ε-anomaly event at the nth
stage eventually drops below δ.

Remark 41.1.4 — To mask δ from the definition, this is sometimes written instead
as: for all ε

lim
n→∞

µ (ω ∈ Ω : |Xn(ω)−X(ω)| < ε) = 1.

I suppose it doesn’t make much difference, though I personally don’t like the
asymmetry.
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§41.1.iii Convergence in law

§41.2 Weak law of large numbers
As the name implies, this is a direct corollary of the strong law of large numbers.
Nevertheless, the proof of this law is simpler, and some applications only require the
weak law.write

§41.2.i Application: Weierstrass approximation

§41.3 Strong law of large numbers
§41.3.i Motivation: Biased random walk
Consider a random walk defined as follows:

• Let X0 = 1.

• For each i ≥ 1, define Xi to be Xi−1 − 1 with probability p = 0.6 or Xi−1 + 1 with
probability 1− p = 0.4.

Then we can ask: What’s the expected number of steps until some Xi equals 0?
A naive attempt might be the following.

Let f(i) be the expected number of steps starting to reach 0 starting from
X0 = i.
Then:

• f(0) = 0,
• f(1) = 1 + 0.6f(0) + 0.4f(2),
• f(2) = 1 + 0.6f(1) + 0.4f(3),

•
...

This isn’t getting anywhere because there are infinitely many terms. A better attempt is
the following:

Let the answer be x. If we start from X0 = 2, let i be the first time such that
Xi = 1 and j be the first time after i such that Xj = 0. Then

E[i] = E[j − i] = x.

Therefore,
x = 1 + 0.6 · 0 + 0.4 · (2x)

Solving the equation, we get x = 5.

It gives the correct result — however, the same method gives x = −5 when the probability
of going down is p = 0.4, which is clearly nonsense.

What went wrong? The problem is when p = 0.4, there is a nonzero probability1 that
the sequence never reaches 0, so the expected value is undefined and we’re subtracting
∞ from ∞ in the proof.

In this case, the strong law of large numbers can help us patch this hole, by showing
that in almost every world, the sequence Xi eventually reaches 0.

1Preview: Using martingale theory next chapter, you will be able to prove the probability the sequence
never reaches 0 is exactly 1 − 0.4

0.6 .
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§41.3.ii Statement

Theorem 41.3.1 (Strong law of large numbers)
Let X1, X2, . . . be i.i.d. random variables with mean 0. Define the partial mean

Mn = X1 + · · ·+Xn

n
.

Then, in almost every world, Mn → 0.

In other words, Mn converges almost surely to 0.
The requirement that the mean is 0 is only to simplify the proof, as long as the mean

exists, we can subtract the mean from the random variables and apply the theorem.

Example 41.3.2 (The hypothesis E[Xi] = 0 is important)
Consider an example where Mn → 0 does not hold — this is a minor variation of
the St. Petersburg paradox.

Let the distribution of each Xi be as follows:

Xi =



1 with probability 1
4

−1 with probability 1
4

2 with probability 1
8

−2 with probability 1
8

4 with probability 1
16

−4 with probability 1
16

...

Formally, Xi takes each of the value in {2k,−2k} with probability 2−k−2.
In this case, the mean E[Xi] =

∫
ΩXi(ω) is actually undefined. Furthermore, as

symmetric as the distribution may look, in almost no world will Mn converge to 0.
Intuitively, you can see why:

• Within the first 16 values, on average there’s one Xi with |Xi| = 4, this will
skew M16 by 1

4 .

• Within the first 32 values, on average there’s one Xi with |Xi| = 8, this will
skew M32 by 1

4 .

• Et cetera.

In other words, just like our skeleton archer, there are almost no worlds in which the
Mn got skewed by more than 1

4 only finitely many times.

§41.3.iii Proof for finite-variance case
In practice, most distribution we ever come across has finite variance, it may be better
to give a counterexample.
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Example 41.3.3 (A distribution with finite mean but infinite variance)
Taking Yi = sgn(Xi)

√
|Xi| where Xi is the St. Petersburg paradox example above

suffices. If you do the math, you will see E[Yi] = 0, but E[Y 2
i ] =∞.

We will give a proof when E[X2
i ] is finite first.

First, we define a seemingly unrelated series as follows:

Tn = X1 + X2
2 + X3

3 + · · ·+ Xn

n
.

This step is a bit difficult to motivate. On the positive side, it is easy to show the
following:

Claim 41.3.4. In almost every world, the sequence Tn converges.

That is the same as saying the series

X1 + X2
2 + X3

3 + · · ·

converges.
The key idea is to show that the total variance of the summands are finite. Indeed:

Var [X1] + Var
[
X2
2

]
+ Var

[
X3
3

]
+ · · · = Var[X1] + 1

4 Var[X2] + 1
9 Var[X3] + · · ·

= Var[X1] ·
(

1 + 1
4 + 1

9 + · · ·
)

which is finite.
Why should finite total variance imply almost surely convergence? Intuitively, we

recall:

Theorem 41.3.5 (Chebyshev’s inequality)
Let X be a random variable with mean 0 and variance σ2. Then

Pr[|X| ≥ kσ] ≤ 1
k2 .

Or equivalently we can write it in the following form, which avoid the
√
− implicit in the

definition of σ:
Pr[|X| ≥ a] ≤ 1

a2 Var[X].

So if we look at, say, T1000 and T2000:

Var[T2000 − T1000] =
2000∑
i=1001

Var[Xi]
i2

Because
∑∞
i=1

Var[Xi]
i2 is finite, we expect

∑2000
i=1001

Var[Xi]
i2 to be very small, which means

T2000 should deviate very little from T1000.
To show convergence, we need something stronger, however.



41 Large number laws (TO DO) 427

Theorem 41.3.6 (Kolmogorov’s inequality)
Let X1, . . . , Xn be independent random variables with mean 0. Define Si =
X1 + · · ·+Xi for each 1 ≤ i ≤ n. Then

Pr[|Si| ≥ a for any 1 ≤ i ≤ n] ≤ 1
a2 Var[Sn].

You can see why this theorem is stronger — with Chebyshev’s inequality, we can only
show

Pr[|Sn| ≥ a] ≤ 1
a2 Var[Sn].

So, with the same right hand side, we can also bound the probability of |S1| ≥ a∨ |S2| ≥
a ∨ · · · for free!

Proof. Define Ai be the event that i is the smallest value such that |Si| ≥ a. Then the
left hand side above equals

Pr[|Si| ≥ a for any 1 ≤ i ≤ n] = Pr[A1] + Pr[A2] + · · ·+ Pr[An].

Intuitively, if the events |Si| ≥ a were independent, the best we can do is to use
Chebyshev’s inequality to bound individual probability values:

Pr[|Si| ≥ a] ≤ 1
a2 Var[Si]

However, they’re very much not independent — in fact, they are positively correlated!
For example, we have:

E[Sn | S1 = a] = a

because E[X2 + · · ·+Xn] = 0. So if each Xi is symmetrically distributed, Pr[Sn ≥ a |
S1 = a] ≥ 1

2 , which is much larger than 1
a2 Var[Sn] for large a.

Here is the formal proof. For each 1 ≤ i ≤ n, we have

E[S2
i | Ai] ≥ a2

which is equivalent to
Pr[Ai] ≤

1
a2E[S2

i · 1Ai ]

and

E[S2
n · 1Ai ] = E[(Si + (Sn − Si))2 · 1Ai ]

= E[S2
i · 1Ai ] + E[Si · 1Ai(Sn − Si)] + E[(Sn − Si)2 · 1Ai ]

The middle term E[Si · 1Ai(Sn − Si)] is 0 because Si · 1Ai and Sn − Si = Xi+1 + · · ·+Xn

are independent and E[Xi+1 + · · ·+Xn] = 0, and the last term is ≥ 0.
Combining the inequalities, we get

a2 Pr[Ai] ≤ E[S2
n · 1Ai ].

Summing over all i gives the final result.

Generalizing:
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Corollary 41.3.7
Let X1, . . . be independent random variables with mean 0. Define Si as above. Then

Pr[|Si| ≥ a for any 1 ≤ i] ≤ 1
a2

∑
1≤i

Var[Xi].

Proof. The event
|Si| ≥ a for any 1 ≤ i ≤ n

is a subset of the event
|Si| ≥ a for any 1 ≤ i ≤ n+ 1

therefore we have

Pr[|Si| ≥ a for any 1 ≤ i] = lim
n→∞

Pr[|Si| ≥ a for any 1 ≤ i ≤ n].

Applying Kolmogorov’s inequality on each Pr[|Si| ≥ a for any 1 ≤ i ≤ n], we get the
result.

Now, the idea is to apply this on the tails of the sequence

X1,
X2
2 ,

X3
3 , . . .

By the corollary, we know that for every ε > 0, in almost every world, there exists nε such
that for arbitrary i ≥ nε, |Ti − Tnε | < ε

2 . By triangle inequality, for arbitrary i, j ≥ nε,
then |Ti − Tj | < ε.

By Cauchy’s criterion for convergence, this implies the sequence Tn is convergent in
almost every world.

Finally, here is the relation with the original goal:

Claim 41.3.8 (Relation with the original series). In every world where Tn converges,
then Mn converges to 0.

Proof. Just a bit of algebraic manipulation. We try to write Mn in terms of Tn.
We have

Xn = n · (Tn − Tn−1)

so

Mn = (T1 − T0) + 2(T2 − T1) + · · ·+ n(Tn − Tn−1)
n

= nTn − (T0 + T1 + · · ·+ Tn−1)
n

= Tn −
T0 + T1 + · · ·+ Tn−1

n
.

Now this is easy: given Tn converges, T0+T1+···+Tn−1
n must also converge to the same

value (Cesàro mean), so Mn → 0 as required.

Exercise 41.3.9. The converse is not true: if Mn → 0, Tn does not necessarily converge.
Find a counterexample. (Write Tn in terms of Mn, and see what happens.)
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§41.3.iv The general proof
The basic idea is to truncate the value of each Xi so that each of them has finite variance.write

§41.4 A few harder problems to think about
Problem 41A (Quantifier hell). In the definition of convergence in probability suppose
we allowed δ = 0 (rather than δ > 0). Show that the modified definition is equivalent to
almost sure convergence.

Problem 41B (Almost sure convorgence is not topologizable). Consider the space of all
random variables on Ω = [0, 1]. Prove that it’s impossible to impose a metric on this
space which makes the following statement true:

A sequence X1, X2, . . . , of random variables converges almost surely to X if
and only if Xi converge to X in the metric.
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§42.1 How to make money almost surely
We now take our newfound knowledge of measure theory to a casino.

Here’s the most classical example that shows up: a casino lets us play a game where
we can bet any amount of on a fair coin flip, but with bad odds: we win $n if the coin is
heads, but lose $2n if the coin is tails, for a value of n of our choice. This seems like a
game that no one in their right mind would want to play.

Well, if we have unbounded time and money, we actually can almost surely make a
profit.

Example 42.1.1 (Being even greedier than 18th century France)
In the game above, we start by betting $1.

• If we win, we leave having made $1.

• If we lose, we then bet $10 instead, and
– If we win, then we leave having made $10− $2 = $8, and
– If we lose then we bet $100 instead, and

∗ If we win, we leave having made $1000− $20− $2 = $978, and
∗ If we lose then we bet $1000 instead, and so on. . .

Since the coin will almost surely show heads eventually, we make money whenever
that happens. In fact, the expected amount of time until a coin shows heads is only
2 flips! What could go wrong?

This chapter will show that under sane conditions such as “finite time” or “finite money”,
one cannot actually make money in this way — the optional stopping theorem. This will
give us an excuse to define conditional probabilities, and then talk about martingales
(which generalize the fair casino).

Once we realize that trying to extract money from Las Vegas is a lost cause, we
will stop gambling and then return to solving math problems, by showing some tricky
surprises, where problems that look like they have nothing to do with gambling can be
solved by considering a suitable martingale.

In everything that follows, Ω = (Ω,A , µ) is a probability space.

§42.2 Sub-σ-algebras and filtrations
Prototypical example for this section: σ-algebra generated by a random variable, and coin
flip filtration.

We considered our Ω as a space of worlds, equipped with a σ-algebra A that lets us
integrate over Ω. However, it is a sad fact of life that at any given time, you only know
partial information about the world. For example, at the time of writing, we know that the
world did not end in 2012 (see https://en.wikipedia.org/wiki/2012_phenomenon),
but the fate of humanity in future years remains at slightly uncertain.
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Let’s write this measure-theoretically: we could consider

Ω = A ⊔B
A = {ω for which world ends in 2012}
B = {ω for which world does not end in 2012} .

We will assume that A and B are measurable sets, that is, A,B ∈ A . That means we
could have good fun arguing about what the values of µ(A) and µ(B) should be (“a priori
probability that the world ends in 2012”), but let’s move on to a different silly example.

We will now introduce a new notion that we will need when we define conditional
probabilities later.

Definition 42.2.1. Let Ω = (Ω,A , µ) be a probability space. A sub-σ-algebra F on
Ω is exactly what it sounds like: a σ-algebra F on the set Ω such that each A ∈ F is
measurable (i.e., F ⊆ A ).

The motivation is that F is the σ-algebra of sets which let us ask questions about
some piece of information. For example, in the 2012 example we gave above, we might
take F = {∅, A,B,Ω}, which are the sets we care about if we are thinking only about
2012.

Here are some more serious examples.

Example 42.2.2 (Examples of sub-σ-algebras)
(a) Let X : Ω → {0, 1, 2} be a random variable taking on one of three values. If

we’re interested in X then we could define

A = {ω | X(ω) = 1}
B = {ω | X(ω) = 2}
C = {ω | X(ω) = 3}

then we could write

F = {∅, A, B, C, A ∪B, B ∪ C, C ∪A, Ω} .

This is a sub-σ-algebra on F that lets us ask questions about X like “what is
the probability X ̸= 3”, say.

(b) Now suppose Y : Ω→ [0, 1] is another random variable. If we are interested in
Y , the F that captures our curiosity is

F = {Y pre(B) | B ⊆ [0, 1] is measurable } .

You might notice a trend here which we formalize now:

Definition 42.2.3. Let X : Ω→ R be a random variable. The sub-σ-algebra gener-
ated by X is defined by

σ(X) := {Xpre(B) | B ⊆ R is measurable } .

If X1, . . . is a sequence (finite or infinite) of random variables, the sub-σ-algebra generated
by them is the smallest σ-algebra which contains σ(Xi) for each i.
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Finally, we can put a lot of these together — since we’re talking about time, we learn
more as we grow older, and this can be formalized.

Definition 42.2.4. A filtration on Ω = (Ω,A , µ) is a nested sequence1

F0 ⊆ F1 ⊆ F2 ⊆ . . .

of sub-σ-algebras on Ω.

Example 42.2.5 (Filtration)
Suppose you’re bored in an infinitely long class and start flipping a fair coin to pass
the time. (Accordingly, we could let Ω = {H,T}∞ consist of infinite sequences of
heads H and tails T .) We could let Fn denote the sub-σ-algebra generated by the
values of the first n coin flips. So:

• F0 = {∅,Ω},

• F1 = {∅,first flip H, first flip T ,Ω},

• F2 = {∅,first flips HH, second flip T ,Ω,first flip and second flip differ, . . . }.

• and so on, with Fn being the measurable sets “determined” only by the first
n coin flips.

Exercise 42.2.6. In the previous example, compute the cardinality |Fn| for each integer n.

More importantly,

X is F -measurable if X is determined only by the information given in
F .

Example 42.2.7
In the example above, let X3 be the value of the third coin flip. Then:

• X3 is not F2-measurable. (That is, we don’t know X3 from the knowledge of
the first 2 coin flips.)

• But it is F3-measurable.

Exercise 42.2.8. Check this! (Recall that a function is measurable if it lifts open sets to
measurable sets. So you need to show e.g. Xpre

3 ({H}) /∈ F2.)

So, not only can we formalize partial information about the world, we can also formalize
what it means for something to only depend on that partial information.

1For convenience, we will restrict ourselves to Z≥0-indexed filtrations, though really any index set is
okay.
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§42.3 Conditional expectation
Prototypical example for this section: E(X | X + Y ) for X and Y distributed over [0, 1].

We’ll need the definition of conditional probability to define a martingale, but this
turns out to be surprisingly tricky. Let’s consider the following simple example to see
why.

Example 42.3.1 (Why high-school methods aren’t enough here)
Suppose we have two independent random variables X, Y distributed uniformly over
[0, 1] (so we may as well take Ω = [0, 1]2). We might try to ask the question:

“what is the expected value of X given that X + Y = 0.6”?

Intuitively, we know the answer has to be 0.3. However, if we try to write down a
definition, we quickly run into trouble. Ideally we want to say something like

E[X given X + Y = 0.6] =
∫
S X∫
S 1 where S = {ω ∈ Ω | X(ω) + Y (ω) = 0.6} .

The problem is that S is a set of measure zero, so we quickly run into 0
0 , meaning a

definition of this shape will not work out.

The way that this is typically handled in measure theory is to use the notion of
sub-σ-algebra that we defined.

But first, we should explain what E(X | X+Y ) means first — why are we conditioning
on another random variable instead of an event?

To motivate conditioning on a random variable, consider the following situation.
Suppose that the weather tomorrow depends on the weather today and the random
fluctuations. So we may have statements such as:

Pr(it rains tomorrow | it rains today) = 0.6,
Pr(it rains tomorrow | it doesn’t rain today) = 0.3.

This is the standard conditional probability: Pr(A | B) = Pr(A∧B)
Pr(B) .

Note that “the weather today” is itself a random variable.
Let Z be the weather forecast tonight’s prediction of the probability, suppose it works

as above. Then Z is a random real variable, defined by:

Z : Ω→ R
Z(ω) = Pr(it rains tomorrow | weather today = weather today(ω))

It would only be reasonable to write

Z = Pr(it rains tomorrow | weather today).

We’re conditioning on a random variable, and Pr(· · · | · · · ) is itself a random variable
instead of a single value in R, but that’s perfectly okay.

Similarly, if Ω is finite and every subset of it is measurable, for random real variables
X and Y it would be sensible for us to define random real variable Z = E(X | Y ) by

Z : Ω→ R
Z(ω) = E[X | Y = Y (ω)].
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Example 42.3.2
Let X and Y be the result of rolling two dices. Then:

• E[X | X + Y = 3] = 1.5, as you can easily calculate.

• E(X | X + Y ) is a random variable, which would takes the value 1.5 in any
world whether X + Y = 3.

• More generally, we have in fact

E(X | X + Y ) = X + Y

2 .

Notice how the random variable E(X | X + Y ) depends only on the value of X + Y
— by definition.

Of course, as we explained earlier, this naive attempts will give us division-by-zero
everywhere for the continuous case — so, enters the sub-σ-algebra.

Proposition 42.3.3 (Conditional expectation definition)
Let X : Ω→ R be an absolutely integrable random variable (meaning E[|X|] <∞)
over a probability space Ω, and let F be a sub-σ-algebra on it.

Then there exists a function η : Ω→ R satisfying the following two properties:

• η is F -measurable (that is, measurable as a function (Ω,F , µ)→ R); and

• for any set A ∈ F we have E[η · 1A] = E[X · 1A].

Moreover, this random variable is unique up to almost sureness.

Proof. Omitted, but relevant buzzword used is “Radon-Nikodym derivative”.

Definition 42.3.4. Let η be as in the previous proposition.

• We denote η by E(X | F ) and call it the conditional expectation of X with
respect to F .

• If Y is a random variable then E(X | Y ) denotes E(X | σ(Y )), i.e. the conditional
expectation of X with respect to the σ-algebra generated by Y .

Example 42.3.5
As we can expect, η = X+Y

2 satisfies the condition of E(X | X + Y ) above.
The way to motivate doing all this is the following. We want to be able to say

something like:

E[X | X + Y = 0.6] = lim
ε→0

E[X | 0.6− ε < X + Y < 0.6 + ε]

Unfortunately, this setup does not work in general where F might not be generated
by just one random real variable. Let’s see how the definition above helps us.

• Let A = {ω ∈ Ω | 0.6−ε < X(ω)+Y (ω) < 0.6+ε}, this set certainly belongs to
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the sub-σ-algebra generated by X+Y (because it is (X+Y )pre((0.6−ε, 0.6+ε))).

• Recall that η is F -measurable means η only depends on the information in
F = σ(X + Y ), that is, on X + Y . This makes sense.

• Look at the right hand side:

E[X | 0.6− ε < X + Y < 0.6 + ε] = E[X · 1A].

The law of total expectation says that E[E(X | Y )] = E[X]. So, intuitively, the
second property above simply requires this law to hold over all set A ∈ F .
In our case, we have the following:

E[η | 0.6− ε < X + Y < 0.6 + ε] = E[X | 0.6− ε < X + Y < 0.6 + ε].

More fine print:

Remark 42.3.6 (This notation is terrible) — The notation E(X | F ) is admittedly
confusing, since it is actually an entire function Ω → R, rather than just a real
number like E[X] — though, as you can see, it has its merits. For this reason I
try to be careful to remember to use parentheses rather than square brackets for
conditional expectations; not everyone does this.

Abuse of Notation 42.3.7. In addition, when we write Y = E(X | F ), there is some
abuse of notation happening here since E(X | F ) is defined only up to some reasonable
uniqueness (i.e. up to measure zero changes). So this really means that “Y satisfies the
hypothesis of Proposition 42.3.3”, but this is so pedantic that no one bothers.

For example, in the example above, if we change η to be

η(ω) =
{

0 if X(ω) + Y (ω) = 0.6
X(ω)+Y (ω)

2 otherwise

then E[η · 1A] = E[X · 1A] still holds for every set A, but now it seems to be saying
E[X | X + Y = 0.6] = 0?

Nevertheless, we must agree that we must sacrifice a measure zero set, since otherwise
if we have

T (ω) =
{

1 if Y (ω) > 0.5 or (Y (ω) = 0.5 and X(ω) ∈ Q)
0 otherwise

then it is certainly measurable (i.e. a random variable), E[T | Y = 0.4] = 0 and
E[T | Y = 0.6] = 1, but what is E[T | Y = 0.5]? (You may argue it should be 0, but what
if Q is changed to something more non-measurable? Besides, why should the conditional
expectation change when we only modify T on a probability-zero set anyway?)

properties

§42.4 Supermartingales
Prototypical example for this section: Visiting a casino is a supermartingale, assuming
house odds.

Definition 42.4.1. Let X0, X1, . . . be a sequence of random variables on a probability
space Ω, and let F0 ⊆ F1 ⊆ · · · be a filtration.
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Then (Xn)n≥0 is a supermartingale with respect to (Fn)n≥0 if the following condi-
tions hold:

• Xn is absolutely integrable for every n;

• Xn is measurable with respect to Fn; and

• for each n = 1, 2, . . . the inequality

E(Xn | Fn−1) ≤ Xn−1

holds for all ω ∈ Ω.

In a submartingale the inequality ≤ is replaced with ≥, and in a martingale it is
replaced by =.

what’s the
etymology of
the term? Abuse of Notation 42.4.2 (No one uses that filtration thing anyways). We will always

take Fn to be the σ-algebra generated by the previous variables X0, X1, . . . , Xn−1, and
do so without further comment. Nonetheless, all the results that follow hold in the more
general setting of a supermartingale with respect to some filtration.

We will prove all our theorems for supermartingales; the analogous versions for sub-
martingales can be obtained by replacing ≤ with ≥ everywhere (since Xn is a martingale
iff −Xn is a supermartingale) and for martingales by replacing ≤ with = everywhere
(since Xn is a martingale iff it is both a supermartingale and a submartingale).

Let’s give examples.

Example 42.4.3 (Supermartingales)
(a) Random walks: an ant starts at the position 0 on the number line. Every

minute, it flips a fair coin and either walks one step left or one step right. If Xt

is the position at the tth time, then Xt is a martingale, because

E(Xt | X0, . . . , Xt−1) = (Xt−1 + 1) + (Xt−1 − 1)
2 = Xt−1.

(b) Casino game: Consider a gambler using the strategy described at the beginning
of the chapter. This is a martingale, since every bet the gambler makes has
expected value 0.

(c) Multiplying independent variables: Let X1, X2, . . . , be independent (not
necessarily identically distributed) integrable random variables with mean 1.
Then the sequence Y1, Y2, . . . defined by

Yn := X1X2 · · ·Xn

is a martingale; as E(Yn | Y1, . . . , Yn−1) = E[Yn] · Yn−1 = Yn−1.

(d) Iterated blackjack: Suppose one shows up to a casino and plays infinitely many
games of blackjack. If Xt is their wealth at time t, then Xt is a supermartingale.
This is because each game has negative expected value (house edge).
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Example 42.4.4 (Frivolous/inflamamtory example — real life is a supermartingale)
Let Xt be your happiness on day t of your life. Life has its ups and downs, so it is
not the case that Xt ≤ Xt−1 for every t. For example, you might win the lottery
one day.

However, on any given day, many things can go wrong (e.g. zombie apocalypse),
and by Murphy’s Law this is more likely than things going well. Also, as you get
older, you have an increasing number of responsibilities and your health gradually
begins to deteriorate.

Thus it seems that
E(Xt | X0, . . . , Xt−1) ≤ Xt−1

is a reasonable description of the future — in expectation, each successive day is
slightly worse than the previous one. (In particular, if we set Xt = −∞ on death,
then as long as you have a positive probability of dying, the displayed inequality is
obviously true.)

Before going on, we will state without proof one useful result: if a martingale is
bounded, then it will almost certainly converge.

Theorem 42.4.5 (Doob’s martingale convergence theorem)
Let X0, . . . be a supermartingale on a probability space Ω such that

sup
n∈Z≥0

E [|Xn|] <∞.

Then, there exists a random variable X∞ : Ω→ R such that

Xn
a.s.−−→ X∞.

§42.5 Optional stopping
Prototypical example for this section: Las Vegas.

In the first section we described how to make money almost surely. The key advantage
the gambler had was the ability to quit whenever he wanted (equivalently, an ability to
control the size of the bets; betting $0 forever is the same as quitting.) Let’s formalize a
notion of stopping time.

The idea is we want to define a function τ : Ω→ {0, 1, 2, . . . } ∪ {∞} such that

• τ(ω) specifies the index after which we stop the martingale. Note that the decisions
to stop after time n must be made with only the information available at that time

— i.e., with respect to Fn of the filtration.

• Xτ∧n is the random value representing the value at time n of the stopped martingale,
where if n is after the stopping time, we just take it to be the our currently value
after we leave.
So for example in a world ω where we stopped at time 3, then Xτ∧0(ω) = X0(ω),
Xτ∧1(ω) = X1(ω), Xτ∧2(ω) = X2(ω), Xτ∧3(ω) = X3(ω), but then

X3(ω) = Xτ∧4(ω) = Xτ∧5(ω) = Xτ∧6(ω) = . . .

since we have stopped — the value stops changing.
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• Xτ denotes the eventual value after we stop (or the limit X∞ if we never stop).

Here’s the compiled machine code.

Definition 42.5.1. Let F0 ⊆ F1 ⊆ · · · be a filtration on a probability space Ω.

• A stopping time is a function

τ : Ω→ {0, 1, 2, . . . } ∪ {∞}

with the property that for each integer n, the set

{ω ∈ Ω | τ(ω) = n}

is Fn-measurable (i.e., is in Fn).

• For each n ≥ 0 we define Xτ∧n : Ω→ R by

Xτ∧n(ω) = Xmin{τ(ω),n}(ω)

• Finally, we let the eventual outcome be denoted by

Xτ (ω) =


Xτ(ω)(ω) τ(ω) ̸=∞
limn→∞Xn(ω) τ(ω) =∞ and limn→∞Xn(ω) exists
undefined otherwise.

We require that the “undefined” case occurs only for a set of measure zero (for
example, if Theorem 42.4.5 applies). Otherwise we don’t allow Xτ to be defined.

Proposition 42.5.2 (Stopped supermartingales are still supermartingales)
Let X0, X1, . . . be a supermartingale. Then the sequence

Xτ∧0, Xτ∧1, . . .

is itself a supermartingale.

Proof. We have almost everywhere the inequalities

E (Xτ∧n | Fn−1) = E
(
Xn−1 + 1τ(ω)=n−1(Xn −Xn−1) | Fn−1

)
= E (Xn−1 | Fn−1) + E

(
1τ(ω)=n−1 · (Xn −Xn−1) | Fn−1

)
= Xn−1 + 1τ(ω)=n−1 · E (Xn −Xn−1 | Fn−1) ≤ Xn−1

as functions from Ω→ R.
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Theorem 42.5.3 (Doob’s optional stopping theorem)
Let X0, X1, . . . be a supermartingale on a probability space Ω, with respect to a
filtration F0 ⊆ F1 ⊆ · · · . Let τ be a stopping time with respect to this filtration.
Suppose that any of the following hypotheses are true, for some constant C:

(a) Finite time: τ(ω) ≤ C for almost all ω.

(b) Finite money: for each n ≥ 1, |Xτ∧n(ω)| ≤ C for almost all ω.

(c) Finite bets: we have E[τ ] <∞, and for each n ≥ 1, the conditional expectation

E (|Xn −Xn−1| | Fn)

takes on values at most C for almost all ω ∈ Ω satisfying τ(ω) ≥ n.

Then Xτ is well-defined almost everywhere, and more importantly,

E[Xτ ] ≤ E[X0].

The last equation can be cheekily expressed as “the only winning move is not to play”.

Proof.do later
tonight

Exercise 42.5.4. Conclude that going to Las Vegas with the strategy described in the first
section is a really bad idea. What goes wrong?

While this is useful to make us stop gambling, it doesn’t allow us to compute anything
— we don’t know anything about E[Xτ ] other than it’s ≤ E[X0]. However:

Corollary 42.5.5
With the same hypothesis as above:

• If X0, X1, . . . is a submartingale, then E[Xτ ] ≥ E[X0].

• If it is a martingale, then E[Xτ ] = E[X0].

Proof. If X0, X1, . . . is a submartingale, then Y0, Y1, . . . defined by Yi = −Xi is a
supermartingale, and the hypothesis is still satisfied. Apply the theorem to Yτ we get
the result.

If X0, X1, . . . is a martingale, then it is both a supermartingale and a submartingale,
the result follows immediately.

This finally let us calculate something — if we can compute E[X0] and write the result
as E[Xτ ] for some martingale, then we can solve the problem!

§42.6 Fun applications of optional stopping (TO DO)

We now give three problems which showcase some of the power of the results we have
developed so far.
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§42.6.i The ballot problem
Suppose Alice and Bob are racing in an election; Alice received a votes total while Bob
received b votes total, and a > b. If the votes are chosen in random order, one could ask:
what is the probability that Alice remains strictly ahead of Bob in the election?

path

Missing
figure

Proposition 42.6.1 (Ballot problem)
This occurs with probability a−b

a+b .

We should try to model this as a martingale. A natural way to do it is the random
walk, as in Example 42.4.3:

X0 = 0

Xi = Xi−1 +
{

1 with probability 1
2

−1 otherwise.

Here, each 1 represents Alice getting a vote, and each −1 represents Bob getting a vote.
Then, we need to compute

Pr[Xi > 0 for all 1 ≤ i ≤ a+ b | Xa+b = a− b].

While this is natural, the fact that the probability is conditioned on Xa+b = a − b
makes us unable to apply the optional stopping theorem.

Instead, the following will work: We start with all the votes, and remove them in
random order.

(A0, B0) = (a, b),

(Ai, Bi) =

(Ai−1 − 1, Bi−1) with probability Ai−1
Ai−1+Bi−1

(Ai−1, Bi−1 − 1) otherwise
for 1 ≤ i ≤ a+ b.

Of course, here Ai represents the number of votes Alice has left, and Bi represents the
number of votes Bob has left.

Now we just need to compute

Pr[Ai > Bi for all 0 ≤ i ≤ a+ b− 1].

There’s no longer any conditional expectation!
Next, we need to construct a martingale. We could try to define Xi = Ai −Bi similar

to above, but that will not be a martingale.
Here is the trick: we modify Xi to make it a martingale. (More examples where

a sequence of random variables is modified to create a martingale can be found in
Problem 42A.)
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Example 42.6.2
Suppose a = 2 and b = 1. Then:

(A0, B0) = (2, 1),

(A1, B1) =
{

(1, 1) with probability 2
3

(2, 0) otherwise.

So E[A0 −B0] = 1 while E[A1 −B1] = 2
3 · 0 + 1

3 · 2 = 2
3 , if we define Xi as above of

course it wouldn’t be a martingale.
However, it’s not difficult to find ways to modify it to form a martingale. For

example:

• If we define X1 = A1 −B1 + 1
3 , then E[X1] = 1, so we’re fine.

• Similarly, we can also define X1 = 3
2 · (A1 −B1).

• Or X1 = 9
4 · (A1 −B1)2.

• . . . et cetera. . .

We need to make E[Xi | X0 = x0, X1 = x1, . . . , Xi−1 = xi−1] = xi−1 for every i and
every (x0, x1, . . . , xi−1). (You can try to find out yourself what modification will work
yourself before continue reading.)

Turns out, the following will work:

Xi = Ai −Bi
a+ b− i

for 0 ≤ i ≤ a+ b− 1.

We cannot extend it to i ≥ a+b, but it is fine. (If you’re worried, just define Xi = Xa+b−1
for i ≥ a+ b.)

Exercise 42.6.3. Check that it works. (The math is very similar to the problem about
Pólya’s urn in Problem 42A.)

For the stopping time, there is only one natural way to define it: τ is a+ b− 1 if Alice
remains ahead of Bob i.e. Xi > 0 for every 0 ≤ i ≤ a+ b− 1, otherwise τ is the smallest
i such that Xi = 0.

Then, the optional stopping theorem states:

E[Xτ ] = E[X0].

E[X0] is easy to calculate, it is A0−B0
a+b = a−b

a+b . What is E[Xτ ]?

• If Alice remains ahead of Bob, Xτ = Xa+b−1 = 1.

• Otherwise, Xτ = 0.

Therefore E[Xτ ] is exactly the probability we need to calculate, so we’re done.

Remark 42.6.4 (This is cheating a little) — Note that you can equivalently write

Xi = Ai −Bi
Ai +Bi

.

Which is exactly the form of the answer.
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That is to say, if you already know the form of the answer, martingale theory can
help you to check it. But if you don’t. . .

§42.6.ii ABRACADABRA
To be written.

https://www.jeremykun.com/2014/03/03/martingales-and-the-optional-stopping-theorem/

§42.6.iii USA TST 2018
To be written.

https://aops.com/community/p9513099

§42.7 A few harder problems to think about
Problem 42A (Examples of martingales). We give some more examples of martingales.

(a) (Simple random walk) Let X1, X2, . . . be i.i.d. random variables which equal +1
with probability 1/2, and −1 with probability 1/2. Prove that

Yn = (X1 + · · ·+Xn)2 − n

is a martingale.

(b) (de Moivre’s martingale) Fix real numbers p and q such that p, q > 0 and p+q = 1.
Let X1, X2, . . . be i.i.d. random variables which equal +1 with probability p, and
−1 with probability q. Show that

Yn =
(
qp−1

)X1+X2+···+Xn

is a martingale.

(c) (Pólya’s urn) An urn contains one red and one blue marble initially. Every minute,
a marble is randomly removed from the urn, and two more marbles of the same color
are added to the urn. Thus after n minutes, the urn will have n+ 2 marbles.
Let rn denote the fraction of marbles which are red. Show that rn is a martingale.

Problem 42B. A deck has 52 cards; of them 26 are red and 26 are black. The cards are
drawn and revealed one at a time. At any point, if there is at least one card remaining
in the deck, you may stop the dealer; you win if (and only if) the next card in the deck is
red. If all cards are dealt, then you lose. Across all possible strategies, determine the
maximal probability of winning.

Problem 42C (Wald’s identity). Let µ be a real number. Let X1, X2, . . . be independent
random variables on a probability space Ω with mean µ. Finally let τ : Ω→ {1, 2, . . . } be
a stopping time such that E[τ ] <∞, and the event τ = n depends only on X1, . . . , Xn.

Prove that
E[X1 +X2 + · · ·+Xτ ] = µE[τ ].

Problem 42D (Unbiased drunkard’s walk). An ant starts at 0 on a number line, and
walks left or right one unit with probability 1/2. It stops once it reaches either −17 or
+8.

(a) Find the probability it reaches +8 before −17.

https://www.jeremykun.com/2014/03/03/martingales-and-the-optional-stopping-theorem/
https://aops.com/community/p9513099
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(b) Find the expected value of the amount of time it takes to reach either endpoint.

Problem 42E (Biased drunkard’s walk). Let 0 < p < 1 be a real number. An ant starts
at 0 on a number line, and walks left or right one unit with probability p. It stops once
it reaches either −17 or +8. Find the probability it reaches +8 first.

Problem 42F. The number 1 is written on a blackboard. Every minute, if the number a
is written on the board, it’s erased and replaced by a real number in the interval [0, 2.01a]
selected uniformly at random. What is the probability that the resulting sequence of
numbers approaches 0?
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