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35 Measure spaces

Here is an outline of where we are going next. Our goal over the next few chapters is
to develop the machinery to state (and in some cases prove) the law of large numbers
and the central limit theorem. For these purposes, the scant amount of work we did in
Calculus 101 is going to be awfully insufficient: integration over R (or even Rn) is just
not going to cut it.

This chapter will develop the theory of “measure spaces”, which you can think of as
“spaces equipped with a notion of size”. We will then be able to integrate over these with
the so-called Lebesgue integral (which in some senses is almost strictly better than the
Riemann one).

§35.1 Letter connotations
There are a lot of “types” of objects moving forward, so here are the letter connotations
we’ll use throughout the next several chapters. This makes it easier to tell what the
“type” of each object is just by which letter is used.

• Measure spaces denoted by Ω, their elements denoted by ω.

• Algebras and σ-algebras denoted by script A , B, . . . . Sets in them denoted by
early capital Roman A, B, C, D, E, . . . .

• Measures (i.e. functions assigning sets to reals) denoted usually by µ or ρ.

• Random variables (functions sending worlds to reals) denoted usually by late capital
Roman X, Y , Z, . . . .

• Functions from R→ R by Roman letters like f and g for pdf’s and F and G for
cdf’s.

• Real numbers denoted by lower Roman letters like x, y, z.

§35.2 Motivating measure spaces via random variables
To motivate why we want to construct measure spaces, I want to talk about a (real)
random variable, which you might think of as

• the result of a coin flip,

• the high temperature in Boston on Saturday,

• the possibility of rain on your 18.725 date next weekend.

Why does this need a long theory to develop well? For a simple coin flip one intuitively
just thinks “50% heads, 50% tails” and is done with it. The situation is a little trickier
with temperature since it is continuous rather than discrete, but if all you care about is
that one temperature, calculus seems like it might be enough to deal with this.

But it gets more slippery once the variables start to “talk to” each other: the high
temperature tells you a little bit about whether it will rain, because e.g. if the temperature
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is very high it’s quite likely to be sunny. Suddenly we find ourselves wishing we could
talk about conditional probability, but this is a whole can of worms — the relations
between these sorts of things can get very complicated very quickly.

The big idea to getting a formalism for this is that:

Our measure spaces Ω will be thought of as a space of entire worlds, with
each ω ∈ Ω representing a world. Random variables are functions from
worlds to R.

This way, the space of “worlds” takes care of all the messy interdependence.
Then, we can assign “measures” to sets of worlds: for example, to be a fair coin means

that if you are only interested in that one coin flip, the “fraction” of worlds in which that
coin showed heads should be 1

2 . This is in some ways backwards from what you were
told in high-school: officially, we start with the space of worlds, rather than starting with
the probabilities.

It will soon be clear that there is no way we can assign a well-defined measure to every
single one of the 2Ω subsets. Fortunately, in practice, we won’t need to, and the notion
of a σ-algebra will capture the idea of “enough measur-able sets for us to get by”.

Remark 35.2.1 (Random seeds) — Another analogy if you do some programming:
each ω ∈ Ω is a random seed, and everything is determined from there.

§35.3 Motivating measure spaces geometrically

So, we have a set Ω of possible points (which in the context of the previous discussion
can be thought of as the set of worlds), and we want to assign a measure (think volume)
to subsets of points in Ω. We will now describe some of the obstacles that we will face, in
order to motivate how measure spaces are defined (as the previous section only motivated
why we want such things).

If you try to do this naïvely, you basically immediately run into set-theoretic issues.
A good example to think about why this might happen is if Ω = R2 with the measure
corresponding to area. You can define the area of a triangle as in high school, and you
can then try and define the area of a circle, maybe by approximating it with polygons.
But what area would you assign to the subset Q2, for example? (It turns out “zero” is
actually a working answer.) Or, a unit disk is composed of infinitely many points; each
of the points better have measure zero, but why does their union have measure π then?
Blah blah blah.

We’ll say more about this later, but you might have already heard of the Banach-
Tarski paradox which essentially shows there is no good way that you can assign a
measure to every single subset of R3 and still satisfy basic sanity checks. There are just
too many possible subsets of Euclidean space.

However, the good news is that most of these sets are not ones that we will ever care
about, and it’s enough to define measures for certain “sufficiently nice sets”. The adjective
we will use is measurable, and it will turn out that this will be way, way more than good
enough for any practical purposes.

We will generally use A, B, . . . for measurable sets and denote the entire family of
measurable sets by curly A .
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§35.4 σ-algebras and measurable spaces
Here’s the machine code.

Definition 35.4.1. A measurable space consists of a space Ω of points, and a σ-
algebra A of subsets of Ω (the “measurable sets” of Ω). The set A is required to satisfy
the following axioms:

• A contains ∅ and Ω.

• A should be closed under complements and countable unions/intersections. (Hint
on nomenclature: σ usually indicates some sort of “countably finite” condition.)

(Complaint: this terminology is phonetically confusing, because it can be confused
with “measure space” later. The way to think about is that “measurable spaces have a
σ-algebra, so we could try to put a measure on it, but we haven’t, yet.”)

Though this definition is how we actually think about it in a few select cases, for the
most part, and we will usually instantiate A in practice in a different way:

Definition 35.4.2. Let Ω be a set, and consider some family of subsets F of Ω. Then
the σ-algebra generated by F is the smallest σ-algebra A which contains F .

As is commonplace in math, when we see “generated”, this means we sort of let the
definition “take care of itself”. So, if Ω = R, maybe I want A to contain all open sets.
Well, then the definition means it should contain all complements too, so it contains
all the closed sets. Then it has to contain all the half-open intervals too, and then. . . .
Rather than try to reason out what exactly the final shape A looks like (which basically
turns out to be impossible), we just give up and say “A is all the sets you can get if you
start with the open sets and apply repeatedly union/complement operations”. Or even
more bluntly: “start with open sets, shake vigorously”.1

I’ve gone on too long with no examples.

Example 35.4.3 (Examples of measurable spaces)
The first two examples actually say what A is; the third example (most important)
will use generation.

(a) If Ω is any set, then the power set A = 2Ω is obviously a σ-algebra. This will
be used if Ω is countably finite, but it won’t be very helpful if Ω is huge.

(b) If Ω is an uncountable set, then we can declare A to be all subsets of Ω which
are either countable, or which have countable complement. (You should check
this satisfies the definitions.) This is a very “coarse” algebra.

(c) If Ω is a topological space, the Borel σ-algebra is defined as the σ-algebra
generated by all the open sets of Ω. We denote it by B(Ω), and call the space
a Borel space. As warned earlier, it is basically impossible to describe what
it looks like, and instead you should think of it as saying “we can measure the
open sets”.

1As will be mentioned later in Section 36.4, an explicit construction using transfinite induction is possible.
That construction is also useful for, for example, proving |B(R)| = |R|.
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Question 35.4.4. Show that the closed sets are in B(Ω) for any topological space Ω. Show
that [0, 1) is also in B(R).

§35.5 Measure spaces
Definition 35.5.1. Measurable spaces (Ω,A ) are then equipped with a function µ : A →
[0,+∞] called the measure, which is required to satisfy the following axioms:

• µ(∅) = 0

• Countable additivity: If A1, A2, . . . are disjoint sets in A , then

µ

(⊔
n

An

)
=
∑
n

µ(An).

The triple (Ω,A , µ) is called a measure space. It’s called a probability space if
µ(Ω) = 1.

Exercise 35.5.2 (Weaker equivalent definitions). I chose to give axioms for A and µ that
capture how people think of them in practice, which means there is some redundancy: for
example, being closed under complements and unions is enough to get intersections, by de
Morgan’s law. Here are more minimal definitions, which are useful if you are trying to prove
something satisfies them to reduce the amount of work you have to do:

(a) The axioms on A can be weakened to (i) ∅ ∈ A and (ii) A is closed under complements
and countable unions.

(b) The axioms on µ can be weakened to (i) µ(∅) = 0, (ii) µ(A ⊔B) = µ(A) + µ(B), and
(iii) for A1 ⊇ A2 ⊇ · · · , we have µ (

⋂
n An) = limn µ(An).

Remark 35.5.3 — Here are some immediate remarks on these definitions.

• If A ⊆ B are measurable, then µ(A) ≤ µ(B) since µ(B) = µ(A) + µ(B −A).

• In particular, in a probability space all measures are in [0, 1]. On the other
hand, for general measure spaces we’ll allow +∞ as a possible measure (hence
the choice of [0,+∞] as codomain for µ).

• We want to allow at least countable unions / additivity because with finite
unions it’s too hard to make progress: it’s too hard to estimate the area of
a circle without being able to talk about limits of countably infinitely many
triangles.

We don’t want to allow uncountable unions and additivity, because uncountable sums
basically never work out. In particular, there is a nice elementary exercise as follows:

Exercise 35.5.4 (Tricky). Let S be an uncountable set of positive real numbers. Show that
some finite subset T ⊆ S has sum greater than 102019. Colloquially, “uncountably many
positive reals cannot have finite sum”.

So countable sums are as far as we’ll let the infinite sums go. This is the reason why we
considered σ-algebras in the first place.
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Example 35.5.5 (Measures)
We now discuss measures on each of the spaces in our previous examples.

(a) If A = 2Ω (or for that matter any A ) we may declare µ(A) = |A| for each A ∈ A
(even if |A| =∞). This is called the counting measure, simply counting the
number of elements.
This is useful if Ω is countably infinite, and optimal if Ω is finite (and nonempty).
In the latter case, we will often normalize by µ(A) = |A|

|Ω| so that Ω becomes a
probability space.

(b) Suppose Ω was uncountable and we took A to be the countable sets and their
complements. Then

µ(A) =
{

0 A is countable
1 Ω \A is countable

is a measure. (Check this.)

(c) Elephant in the room: defining a measure on B(Ω) is hard even for Ω = R, and
is done in the next chapter. So you will have to hold your breath. Right now, all
you know is that by declaring my intent to define a measure B(Ω), I am hoping
that at least every open set will have a volume.

§35.6 A hint of Banach-Tarski
I will now try to convince you that B(Ω) is a necessary concession, and for general
topological spaces like Ω = Rn, there is no hope of assigning a measure to 2Ω. (In the
literature, this example is called a Vitali set.)

Example 35.6.1 (A geometric example why A = 2Ω is unsuitable)
Let Ω denote the unit circle in R2 and A = 2Ω. We will show that any measure µ
on Ω with µ(Ω) = 1 will have undesirable properties.

Let ∼ denote an equivalence relation on Ω defined as follows: two points are
equivalent if they differ by a rotation around the origin by a rational multiple of π.
We may pick a representative from each equivalence class, letting X denote the set
of representatives. Then

Ω =
⊔
q∈Q

0≤q<2

(X rotated by qπ radians) .

Since we’ve only rotated X, each of the rotations should have the same measure m.
But µ(Ω) = 1, and there is no value we can assign that measure: if m = 0 we get
µ(Ω) = 0 and m > 0 we get µ(Ω) =∞.

Remark 35.6.2 (Choice) — Experts may recognize that picking a representative
(i.e. creating set X) technically requires the Axiom of Choice. That is why, when
people talk about Banach-Tarski issues, the Axiom of Choice almost always gets
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honorable mention as well.
Stay tuned to actually see a construction for B(Rn) in the next chapter.

§35.7 Measurable functions
Prototypical example for this section: For S ⊆ Ω, 1S : Ω→ R is a measurable function if
and only if S is a measurable set.

In the past, when we had topological spaces, we considered continuous functions. The
analog here is:
Definition 35.7.1. Let (X,A ) and (Y,B) be measurable spaces (or measure spaces).
A function f : X → Y is measurable if for any open set S ⊆ Y (i.e. S ∈ B) we have
fpre(S) is measurable (i.e. fpre(S) ∈ A ).

Apart from the obvious symmetry with the definition of continuous function, as we will
see in Section 37.2, this definition is such that for a nonnegative function f : Ω→ R≥0,∫

Ω f dµ exists if and only if f is measurable.

Remark 35.7.2 — By symmetry, you might have guessed that a function f : X → Y
is measurable if for any measurable S ⊆ Y , we have fpre(S) ⊆ X is measurable.

Nevertheless, this definition doesn’t work the way we expect — even continuous
function can fail this definition.

Example 35.7.3 (Continuous function with non-measurable preimage of measurable
set)
Let f : [0, 1]→ [0, 1] be the Devil’s Staircase (or Cantor function). This function is
continuous, and has the property that, let C ⊆ [0, 1] be the Cantor set, then |C| = 0,
yet f img(C) = [0, 1] with measure 1.

Let g : [0, 1]→ [0, 2] be defined by g(x) = f(x) + x. Then,

• For each open interval (a, b) that is removed from the Cantor set C, then
|gimg((a, b))| = |(a, b)|.

• gimg(C) has measure 1.

Note that g is bijective, let h : [0, 2] → [0, 1], h = g−1. Then h is continuous,
however:

• hpre(C) = gimg(C) has measure 1, so it has some non-measurable subset,

• C has measure 0, so every subset of C is (Lebesgue) measurable,

• thus, hpre(D) is non-measurable for some measurable subset D ⊆ C.

In practice, most functions you encounter will be continuous anyways, and in that case
we are fine.

Proposition 35.7.4 (Continuous implies Borel measurable)
Suppose X and Y are topological spaces and we pick the Borel measures on both.
A function f : X → Y which is continuous as a map of topological spaces is also
measurable.
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Proof. Follows from the fact that pre-images of open sets are open, thus Borel measurable.

§35.8 On the word “almost”
In later chapters we will begin seeing the phrase “almost everywhere” and “almost surely”
start to come up, and it seems prudent to take the time to talk about it now.

Definition 35.8.1. We say that property P occurs almost everywhere or almost
surely if the set

{ω ∈ Ω | P does not hold for ω}

has measure zero.

For example, if we say “f = g almost everywhere” for some functions f and g defined
on a measure space Ω, then we mean that f(ω) = g(ω) for all ω ∈ Ω other than a
measure-zero set.

There, that’s the definition. The main thing to now update your instincts on is that

In measure theory, we basically only care about things up to almost-
everywhere.

Here are some examples:

• If f = g almost everywhere, then measure theory will basically not tell these
functions apart. For example,

∫
Ω f dω =

∫
Ω g dω will hold for two functions

agreeing almost everywhere.

• As another example, if we prove “there exists a unique function f such that
so-and-so”, the uniqueness is usually going to be up to measure-zero sets.

You can think of this sort of like group isomorphism, where two groups are considered
“basically the same” when they are isomorphic, except this one might take a little while
to get used to.2

§35.9 A few harder problems to think about
Problem 35A†. Let (Ω,A , µ) be a probability space. Show that the intersection of
countably many sets of measure 1 also has measure 1.

Problem 35B (On countable σ-algebras). Let A be a σ-algebra on a set Ω. Suppose
that A has countable cardinality. Prove that |A | is finite and equals a power of 2.

2In fact, some people will even define functions on measure spaces as equivalence classes of maps,
modded out by agreement outside a measure zero set.





36 Constructing the Borel and
Lebesgue measure

It’s very difficult to define in one breath a measure on the Borel space B(Rn). It is
easier if we define a weaker notion first. There are two such weaker notions that we will
define:

• A pre-measure: satisfies the axioms of a measure, but defined on fewer sets than a
measure: they’ll be defined on an “algebra” rather than the full-fledged “σ-algebra”.

• An outer measure: defined on 2Ω but satisfies weaker axioms.

It will turn out that pre-measures yield outer measures, and outer measures yield
measures.

§36.1 Pre-measures

Prototypical example for this section: Let Ω = R2. Then we take A0 generated by
rectangles, with µ0 the usual area.

The way to define a pre-measure is to weaken the σ-algebra to an algebra.

Definition 36.1.1. Let Ω be a set. We define notions of an algebra, which is the same
as σ-algebra except with “countable” replaced by finite everywhere.

That is: an algebra A0 on Ω is a nonempty subset of 2Ω, which is closed under
complement and finite union. The smallest algebra containing a subset F ⊆ 2Ω is the
algebra generated by F .

In practice, we will basically always use generation for algebras.

Example 36.1.2
When Ω = Rn, we can let L0 be the algebra generated by [a1, b1]× · · · × [an, bn]. A
typical element might look like:

Unsurprisingly, since we have finitely many rectangles and their complements involved,
in this case we actually can unambiguously assign an area, and will do so soon.

Definition 36.1.3. A pre-measure µ0 on a algebra A0 is a function µ0 : A0 → [0,+∞]
which satisfies the axioms

• µ0(∅) = 0, and
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• Countable additivity: if A1, A2, . . . are disjoint sets in A0 and moreover the
disjoint union

⊔
Ai is contained in A0 (not guaranteed by algebra axioms!), then

µ0

(⊔
n

An

)
=
∑
n

µ0(An).

Example 36.1.4 (The pre-measure on Rn)
Let Ω = R2. Then, let L0 be the algebra generated by rectangles [a1, a2]× [b1, b2].
We then let

µ0 ([a1, a2]× [b1, b2]) = (a2 − a1)(b2 − b1)

the area of the rectangle. As elements of L0 are simply finite unions of rectangles
and their complements (picture drawn earlier), it’s not difficult to extend this to a
pre-measure λ0 which behaves as you expect — although we won’t do this.

Since we are sweeping something under the rug that turns out to be conceptually
important, I’ll go ahead and blue-box it.

Proposition 36.1.5 (Geometry sanity check that we won’t prove)
For Ω = Rn and L0 the algebra generated by rectangular prisms, one can define a
pre-measure λ0 on L0.

From this point forwards, we will basically do almost no geometry1 whatsoever in defining
the measure B(Rn), and only use set theory to extend our measure. So, Proposition 36.1.5
is the only sentry which checks to make sure that our “initial definition” is sane.

To put the point another way, suppose an insane scientist2 tried to define a notion
of area in which every rectangle had area 1. Intuitively, this shouldn’t be possible: every
rectangle can be dissected into two halves and we ought to have 1 + 1 ̸= 1. However, the
only thing that would stop them is that they couldn’t extend their pre-measure on the
algebra L0. If they somehow got past that barrier and got a pre-measure, nothing in the
rest of the section would prevent them from getting an entire bona fide measure with
this property. Thus, in our construction of the Lebesgue measure, most of the geometric
work is captured in the (omitted) proof of Proposition 36.1.5.

§36.2 Outer measures
Prototypical example for this section: Keep taking Ω = R2; see the picture to follow.

The other way to weaken a measure is to relax the countable additivity, and this yields
the following:

Definition 36.2.1. An outer measure µ∗ on a set Ω is a function µ∗ : 2Ω → [0,+∞]
satisfying the following axioms:

• µ∗(∅) = 0;
1White lie. Technically, we will use one more fact: that open sets of Rn can be covered by countably

infinitely many rectangles, as in Exercise 36.5.1. This step doesn’t involve any area assignments,
though.

2Because “mad scientists” are overrated.
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• if E ⊆ F and E,F ∈ 2Ω then µ∗(E) ≤ µ∗(F );

• for any subsets E1, E2, . . . of Ω we have

µ∗
(⋃
n

En

)
≤
∑
n

µ∗(En).

(I don’t really like the word “outer measure”, since I think it is a bit of a misnomer: I
would rather call it “fake measure”, since it’s not a measure either.)

The reason for the name “outer measure” is that you almost always obtain outer
measures by approximating them from “outside” sets. Officially, the result is often stated
as follows (as Problem 36A†).

For a set Ω, let E be any subset of 2Ω and let ρ : E → [0,+∞] be any function.
Then

µ∗(E) = inf
{ ∞∑
n=1

ρ(En) | En ∈ E , E ⊆
∞⋃
n=1

En

}
is an outer measure.

However, I think the above theorem is basically always wrong to use in practice,
because it is way too general. As I warned with the insane scientist, we really do want
some sort of sanity conditions on ρ: otherwise, if we apply the above result as stated,
there is no guarantee that µ∗ will be compatible with ρ in any way.

So, I think it is really better to apply the theorem to pre-measures µ0 for which one
does have some sort of guarantee that the resulting µ∗ is compatible with µ0. In practice,
this is always how we will want to construct our outer measures.

Theorem 36.2.2 (Constructing outer measures from pre-measures)
Let µ0 be a pre-measure on an algebra A0 on a set Ω.

(a) The map µ∗ : 2Ω → [0,+∞] defined by

µ∗(E) = inf
{ ∞∑
n=1

µ0(An) | An ∈ A0, E ⊆
∞⋃
n=1

An

}

is an outer measure.

(b) Moreover, this measure agrees with µ0 on sets in A0.

Intuitively, what is going on is that µ∗(A) is the infimum of coverings of A by countable
unions of elements in A0. Part (b) is the first half of the compatibility condition I
promised; the other half appears later as Proposition 36.3.2.

Proof of Theorem 36.2.2. As alluded to already, part (a) is a special case of Problem 36A†

(and proving it in this generality is actually easier, because you won’t be distracted by
unnecessary properties).

We now check (b), that µ∗(A) = µ0(A) for A ∈ A0. One bound is quick:

Question 36.2.3. Show that µ∗(A) ≤ µ0(A).
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For the reverse, suppose that A ⊆
⋃
nAn. Then, define the sets

B1 = A ∩A1

B2 = (A ∩A2) \B1

B3 = (A ∩A3) \ (B1 ∪B2)
...

and so on. Then the Bn are disjoint elements of A0 with Bn ⊂ An, and we have rigged
the definition so that

⊔
nBn = A. Thus by definition of pre-measure,

µ0(A) =
∑
n

µ0(Bn) ≤
∑
n

µ0(An)

as desired.

Example 36.2.4
Let Ω = R2 and λ0 the pre-measure from before. Then λ∗(A) is, intuitively, the
infimum of coverings of the set A by rectangles. Here is a picture you might use to
imagine the situation with A being the unit disk.

circles covered by rectangles

Missing
figure

§36.3 Carathéodory extension for outer measures
We will now take any outer measure and turn it into a proper measure. To do this, we
first need to specify the σ-algebra on which we will define the measure.

Definition 36.3.1. Let µ∗ be an outer measure. We say a set A is Carathéodory
measurable with respect to µ∗, or just µ∗-measurable, if the following condition
holds: for any set E ∈ 2Ω,

µ∗(E) = µ∗(E ∩A) + µ∗(E \A).

This definition is hard to motivate, but turns out to be the right one. One way to
motivate is this: it turns out that in Rn, it will be equivalent to a reasonable geometric
condition (which I will state in Proposition 36.4.3), but since that geometric definition
requires information about Rn itself, this is the “right” generalization for general measure
spaces.

Since our goal was to extend our A0, we had better make sure this definition lets us
measure the initial sets that we started with!

Proposition 36.3.2 (Carathéodory measurability is compatible with the initial A0)
Suppose µ∗ was obtained from a pre-measure µ0 on an algebra A0, as in Theo-
rem 36.2.2. Then every set in A0 is µ∗-measurable.
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This is the second half of the compatibility condition that we get if we make sure our initial
µ0 at least satisfies the pre-measure axioms. (The first half was (b) of Theorem 36.2.2.)

Proof. Let A ∈ A0 and E ∈ 2Ω; we wish to prove µ∗(E) = µ∗(E ∩A) + µ∗(E \A). The
definition of outer measure already requires µ∗(E) ≤ µ∗(E ∩A) + µ∗(E \A) and so it’s
enough to prove the reverse inequality.

By definition of infimum, for any ε > 0, there is a covering E ⊂
⋃
nAn with µ∗(E)+ε ≥∑

n µ0(An). But∑
n

µ0(An) =
∑
n

(µ0(An ∩A) + µ0(An \A)) ≥ µ∗(E ∩A) + µ∗(E \A)

with the first equality being the definition of pre-measure on A0, the second just being
by definition of µ∗ (since An ∩A certainly covers E ∩A, for example). Thus µ∗(E) + ε ≥
µ∗(E ∩A) + µ∗(E \A). Since the inequality holds for any ε > 0, we’re done.

To add extra icing onto the cake, here is one more niceness condition which our
constructed measure will happen to satisfy.

Definition 36.3.3. A null set of a measure space (Ω,A , µ) is a set A ∈ A with
µ(A) = 0. A measure space (Ω,A , µ) is complete if whenever A is a null set, then all
subsets of A are in A as well (and hence null sets).

This is a nice property to have, for obvious reasons. Visually, if I have a bunch of
dust which I already assigned weight zero, and I blow away some of the dust, then the
remainder should still have an assigned weight — zero. The extension theorem will give
us σ-algebras with this property.

Theorem 36.3.4 (Carathéodory extension theorem for outer measures)
If µ∗ is an outer measure, and A cm is the set of µ∗-measurable sets with respect
to µ∗, then A cm is a σ-algebra on Ω, and the restriction µcm of µ∗ to A cm gives a
complete measure space.

(Phonetic remark: you can think of the superscript cm as standing for either “Carathéodory
measurable” or “complete”. Both are helpful for remembering what this represents. This
notation is not standard but the pun was too good to resist.)

Thus, if we compose Theorem 36.2.2 with Theorem 36.3.4, we find that every pre-
measure µ0 on an algebra A0 naturally gives a σ-algebra A cm with a complete measure
µcm, and our two compatibility results (namely (b) of Theorem 36.2.2, together with
Proposition 36.3.2) means that A cm ⊃ A0 and µcm agrees with µ.

Here is a table showing the process, where going down each row of the table corresponds
to restriction process.

Construct order Notes
2Ω µ∗ Step 2 µ∗ is outer measure obtained from µ0

A cm µcm Step 3 A cm defined as µ∗-measurable sets,
(A cm, µcm) is complete.

A0 µ0 Step 1 µ0 is a pre-measure
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§36.4 Defining the Lebesgue measure
This lets us finally define the Lebesgue measure on Rn. We wrap everything together at
once now.

Definition 36.4.1. We create a measure on Rn by the following procedure.

• Start with the algebra L0 generated by rectangular prisms, and define a pre-measure
λ0 on this L0 (this was glossed over in the example).

• By Theorem 36.2.2, this gives the Lebesgue outer measure λ∗ on 2Rn , which is
compatible on all the rectangular prisms.

• By Carathéodory (Theorem 36.3.4), this restricts to a complete measure λ on the
σ-algebra L(Rn) of λ∗-measurable sets (which as promised contains all rectangular
prisms).3

The resulting complete measure, denoted λ, is called the Lebesgue measure.
The algebra L(Rn) we obtained will be called the Lebesgue σ-algebra; sets in it are

said to be Lebesgue measurable.

Here is the same table from before, with the values filled in for the special case Ω = Rn,
which gives us the Lebesgue algebra.

Construct order Notes
2Rn

λ∗ Step 2 λ∗ is Lebesgue outer measure

L(Rn) λ Step 3 Lebesgue σ-algebra (complete)

L0 λ0 Step 1 Define pre-measure on rectangles
Of course, now that we’ve gotten all the way here, if we actually want to compute any

measures, we can mostly gleefully forget about how we actually constructed the measure
and just use the properties. The hard part was to showing that there is a way to assign
measures consistently; actually figuring out what that measure’s value is given that it
exists is often much easier. Here is an example.

Example 36.4.2 (The Cantor set has measure zero)
The standard middle-thirds Cantor set is the subset [0, 1] obtained as follows: we
first delete the open interval (1/3, 2/3). This leaves two intervals [0, 1/3] and [2/3, 1]
from which we delete the middle thirds again from both, i.e. deleting (1/9, 2/9) and
(7/9, 8/9). We repeat this procedure indefinitely and let C denote the result. An
illustration is shown below.

Image from [1207]

It is a classic fact that C is uncountable (it consists of ternary expansions omitting
the digit 1). But it is measurable (it is an intersection of closed sets!) and we contend
it has measure zero. Indeed, at the nth step, the result has measure (2/3)n leftover.

3If I wanted to be consistent with the previous theorems, I might prefer to write Lcm and λcm for
emphasis. It seems no one does this, though, so I won’t.
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So µ(C) ≤ (2/3)n for every n, forcing µ(C) = 0.

This is fantastic, but there is one elephant in the room: how are the Lebesgue σ-algebra
and the Borel σ-algebra related? To answer this question briefly, I will state two results
(but another answer is given in the next section). The first is a geometric interpretation
of the strange Carathéodory measurable hypothesis.

Proposition 36.4.3 (A geometric interpretation of Lebesgue measurability)
A set A ⊆ Rn is Lebesgue measurable if and only if for every ε > 0, there is an open
set U ⊃ A such that

λ∗(U \A) < ε

where λ∗ is the Lebesgue outer measure.

I want to say that this was Lebesgue’s original formulation of “measurable”, but I’m not
sure about that. In any case, we won’t need to use this, but it’s good to see that our
definition of Lebesgue measurable has a down-to-earth geometric interpretation.

Question 36.4.4. Deduce that every open set is Lebesgue measurable. Conclude that the
Lebesgue σ-algebra contains the Borel σ-algebra. (A different proof is given later on.)

However, the containment is proper: there are more Lebesgue measurable sets than
Borel ones. Indeed, it can actually be proven using transfinite induction (though we
won’t) that |B(R)| = |R|.4 Using this, one obtains:

Exercise 36.4.5. Show the Borel σ-algebra is not complete. (Hint: consider the Cantor
set. You won’t be able to write down an example of a non-measurable set, but you can use
cardinality arguments.) Thus the Lebesgue σ-algebra strictly contains the Borel one.

Nonetheless, there is a great way to describe the Lebesgue σ-algebra, using the idea of
completeness.

Definition 36.4.6. Let (Ω,A , µ) be a measure space. The completion (Ω,A , µ) is
defined as follows: we let

A = {A ∪N | A ∈ A , N subset of null set} .

and µ(A ∪N) = µ(A). One can check this is well-defined, and in fact µ is the unique
extension of µ from A to A .

This looks more complicated than it is. Intuitively, all we are doing is “completing”
the measure by telling µ to regard any subset of a null set as having measure zero, too.

Then, the saving grace:

Theorem 36.4.7 (Lebesgue is completion of Borel)
For Rn, the Lebesgue measure is the completion of the Borel measure.

Proof. This actually follows from results in the next section, namely Exercise 36.5.1 and
part (c) of Carathéodory for pre-measures (Theorem 36.5.5).

4See https://math.stackexchange.com/a/70891 for a sketch.

https://math.stackexchange.com/a/70891
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§36.5 A fourth row: Carathéodory for pre-measures

Prototypical example for this section: The fourth row for the Lebesgue measure is B(Rn).

In many cases, A cm is actually bigger than our original goal, and instead we only need
to extend µ0 on A0 to µ on A , where A is the σ-algebra generated by A0. Indeed, our
original goal was to get B(Rn), and in fact:

Exercise 36.5.1. Show that B(Rn) is the σ-algebra generated by the L0 we defined earlier.

Fortunately, this restriction is trivial to do.

Question 36.5.2. Show that A cm ⊃ A , so we can just restrict µcm to A .

We will in a moment add this as the fourth row in our table.
However, if this is the end goal, than a somewhat different Carathéodory theorem can

be stated because often one more niceness condition holds:

Definition 36.5.3. A pre-measure or measure µ on Ω is σ-finite if Ω can be written as
a countable union Ω =

⋃
nAn with µ(An) <∞ for each n.

Question 36.5.4. Show that the pre-measure λ0 we had, as well as the Borel measure
B(Rn), are both σ-finite.

Actually, for us, σ-finite is basically always going to be true, so you can more or less just
take it for granted.

Theorem 36.5.5 (Carathéodory extension theorem for pre-measures)
Let µ0 be a pre-measure on an algebra A0 of Ω, and let A denote the σ-algebra
generated by A0. Let A cm, µcm be as in Theorem 36.3.4. Then:

(a) The restriction of µcm to A gives a measure µ extending µ0.

(b) If µ0 was σ-finite, then µ is the unique extension of µ0 to A .

(c) If µ0 was σ-finite, then µcm is the completion of µ, hence the unique extension
of µ0 to A cm.

Here is the updated table, with comments if µ0 was indeed σ-finite.

Construct order Notes
2Ω µ∗ Step 2 µ∗ is outer measure obtained from µ0

A cm µcm Step 3 (A cm, µcm) is completion (A , µ),
A cm defined as µ∗-measurable sets

A µ Step 4 A defined as σ-alg. generated by A0

A0 µ0 Step 1 µ0 is a pre-measure

And here is the table for Ω = Rn, with Borel and Lebesgue in it.
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Construct order Notes
2Rn

λ∗ Step 2 λ∗ is Lebesgue outer measure

L(Rn) λ Step 3 Lebesgue σ-algebra, completion of Borel one

B(Rn) µ Step 4 Borel σ-algebra, generated by L0

L0 λ0 Step 1 Define pre-measure on rectangles

Going down one row of the table corresponds to restriction, while each of µ0 → µ→ µcm

is a unique extension when µ0 is σ-finite.

Proof of Theorem 36.5.5. For (a): this is just Theorem 36.2.2 and Theorem 36.3.4 put
together, combined with the observation that A ∗ ⊃ A0 and hence A ∗ ⊃ A . Parts (b)
and (c) are more technical, and omitted.

§36.6 From now on, we assume the Borel measure
explain why

§36.7 A few harder problems to think about
Problem 36A† (Constructing outer measures from arbitrary ρ). For a set Ω, let E be
any subset of 2Ω and let ρ : E → [0,+∞] be any function. Prove that

µ∗(E) = inf
{ ∞∑
n=1

ρ(En) | En ∈ E , E ⊆
∞⋃
n=1

En

}

is an outer measure.

Problem 36B (The insane scientist). Let Ω = R2, and let E be the set of (non-degenerate)
rectangles. Let ρ(E) = 1 for every rectangle E ∈ E . Ignoring my advice, the insane
scientist uses ρ to construct an outer measure µ∗, as in Problem 36A†.

(a) Find µ∗(S) for each subset S of R2.

(b) Which sets are µ∗-measurable?

You should find that no rectangle is µ∗-measurable, unsurprisingly foiling the scientist.

Problem 36C. A function f : R→ R is continuous. Must f be measurable with respect
to the Lebesgue measure on R?
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On any measure space (Ω,A , µ) we can then, for a function f : Ω→ [0,∞] define an
integral ∫

Ω
f dµ.

This integral may be +∞ (even if f is finite). As the details of the construction won’t
matter for us later on, we will state the relevant definitions, skip all the proofs, and also
state all the properties that we actually care about. Consequently, this chapter will be
quite short.

§37.1 The definition
The construction is done in four steps.

Definition 37.1.1. If A is a measurable set of Ω, then the indicator function 1A : Ω→
R is defined by

1A(ω) =
{

1 ω ∈ A
0 ω /∈ A.

Step 1 (Indicator functions) — For an indicator function, we require∫
Ω

1A dµ := µ(A)

(which may be infinite).

We extend this linearly now for nonnegative functions which are sums of indicators: these
functions are called simple functions.

Step 2 (Simple functions) — Let A1, . . . , An be a finite collection of measurable
sets. Let c1, . . . , cn be either nonnegative real numbers or +∞. Then we define∫

Ω

(
n∑
i=1

ci1Ai

)
dµ :=

n∑
i=1

ciµ(Ai).

If ci =∞ and µ(Ai) = 0, we treat ciµ(Ai) = 0.

One can check the resulting sum does not depend on the representation of the simple
function as

∑
ci1Ai . In particular, it is compatible with the previous step.

Conveniently, this is already enough to define the integral for f : Ω→ [0,+∞]. Note
that [0,+∞] can be thought of as a topological space where we add new open sets (a,+∞]
for each real number a to our usual basis of open intervals. Thus we can equip it with
the Borel sigma-algebra.1

1We could also try to define a measure on it, but we will not: it is a good enough for us that it is a
measurable space.

399
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Step 3 (Nonnegative functions) — For each measurable function f : Ω→ [0,+∞],
let ∫

Ω
f dµ := sup

0≤s≤f

(∫
Ω
s dµ

)
where the supremum is taken over all simple s such that 0 ≤ s ≤ f . As before, this
integral may be +∞.

That is,

We define the integral
∫

Ω f dµ by approximating it from below with simple
functions, for which we know how to integrate.

One can check this is compatible with the previous definitions. At this point, we
introduce an important term.

Definition 37.1.2. A measurable (nonnegative) function f : Ω→ [0,+∞] is absolutely
integrable or just integrable if

∫
Ω f dµ <∞.

Warning: I find “integrable” to be really confusing terminology. Indeed, every mea-
surable function from Ω to [0,+∞] can be assigned a Lebesgue integral, it’s just that
this integral may be +∞. So the definition is far more stringent than the name suggests.
Even constant functions can fail to be integrable:

Example 37.1.3 (We really should call it “finitely integrable”)
The constant function 1 is not integrable on R, since

∫
R 1 dµ = µ(R) = +∞.

For this reason, I will usually prefer the term “absolutely integrable”. (If it were up to
me, I would call it “finitely integrable”, and usually do so privately.)

Remark 37.1.4 (Why don’t we approximate the integral from above?) — For bounded
functions on measure spaces with |Ω| <∞, we can equivalently define∫

Ω
f dµ := inf

0≤f≤s

(∫
Ω
s dµ

)
where the infimum is taken over all simple s such that f ≤ s. However, if the
functions are unbounded or |Ω| =∞, the situation is not that simple:

• The function f(x) = x−2 defined over Ω = (1,∞) is absolutely integrable, yet
for all simple s such that f ≤ s we have

∫
Ω s dµ =∞.

• The function f(x) = x−0.5 defined over Ω = (0, 1) is absolutely integrable, yet
there’s no simple s such that f ≤ s and s is finite almost everywhere.

Finally, this lets us integrate general functions.

Definition 37.1.5. In general, a measurable function f : Ω→ [−∞,∞] is absolutely
integrable or just integrable if |f | is.

Since we’ll be using the first word, this is easy to remember: “absolutely integrable”
requires taking absolute values.
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Step 4 (Absolutely integrable functions) — If f : Ω → [−∞,∞] is absolutely inte-
grable, then we define

f+(x) = max {f(x), 0}
f−(x) = min {f(x), 0}

and set ∫
Ω
f dµ =

∫
Ω
|f+| dµ−

∫
Ω
|f−| dµ

which in particular is finite.

That said, calling it “finitely integrable” here would also make it as easy to remem-
ber:

Exercise 37.1.6. Show that
∫

Ω |f |dµ <∞ if and only if
∫

Ω |f
+|dµ <∞ and

∫
Ω |f

−|dµ <∞.

You may already start to see that we really like nonnegative functions: with the
theory of measures, it is possible to integrate them, and it’s even okay to throw in +∞’s
everywhere. But once we start dealing with functions that can be either positive or
negative, we have to start adding finiteness restrictions — actually essentially what we’re
doing is splitting the function into its positive and negative part, requiring both are finite,
and then integrating.

To finish this section, we state for completeness some results that you probably could
have guessed were true. Fix Ω = (Ω,A , µ), and let f and g be measurable real-valued
functions such that f(x) = g(x) almost everywhere.

• (Almost-everywhere preservation) The function f is absolutely integrable if and
only if g is, and if so, their Lebesgue integrals match.

• (Additivity) If f and g are absolutely integrable then∫
Ω
f + g dµ =

∫
Ω
f dµ+

∫
Ω
g dµ.

The “absolutely integrable” hypothesis can be dropped if f and g are nonnegative.

• (Scaling) If f is absolutely integrable and c ∈ R then cf is absolutely integrable and∫
Ω
cf dµ = c

∫
Ω
f dµ.

The “absolutely integrable” hypothesis can be dropped if f is nonnegative and
c > 0.

• (Monotoncity) If f and g are absolutely integrable and f ≤ g, then∫
Ω
f dµ ≤

∫
Ω
g dµ.

The “absolutely integrable” hypothesis can be dropped if f and g are nonnegative.

There are more famous results like monotone/dominated convergence that are also true,
but we won’t state them here as we won’t really have a use for them in the context of
probability. (They appear later on in a bonus chapter.)
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§37.2 An equivalent definition
The Lebesgue integral can also be defined as follows — which should be more intuitive
on the various choices of the definitions we made in the steps.

In this definition,

The integral
∫

Ω f dµ is just the volume of the region under the graph of f .

Let us define it:

Step 1 (The region under the graph) — For a nonnegative function f : Ω→ R, define
the region under the function f , R(f), to be {(x, y) ∈ Ω× R, 0 ≤ y ≤ f(x)}.

Remark 37.2.1 — It should be clear why we only define this for nonnegative
function initially — for general function f , the only way we could sensibly define
the region would be something like the following:

R+(f) = {(x, y) ∈ Ω× R, f(x) ≥ 0, 0 ≤ y ≤ f(x)},
R−(f) = {(x, y) ∈ Ω× R, f(x) ≤ 0, 0 ≥ y ≥ f(x)}.

Nevertheless, notice that R+(f) is simply the region under the function f+(x) =
max{f(x), 0}, and R−(f) has the same measure as the region under the function
f−(x) = min{f(x), 0}, so defining

∫
Ω f dµ for nonnegative functions first would

actually simplify the definition.

Step 2 (Making Ω× R into a measure space) — We define a pre-measure on Ω× R
the obvious way: if X ⊆ Ω and Y ⊆ R are measurable subsets respectively, then
assign |X × Y | = |X| × |Y |.

The pre-measure can be extended to a measure, as we have done in the previous
chapter.

Step 3 (Nonnegative functions) — For each function f : Ω→ [0,+∞], let∫
Ω
f dµ := |R(f)|.

The integral is well-defined whenever R(f) is measurable.

As promised in Section 35.7, the definition of measurable function satisfies:

A nonnegative function f is measurable if and only if we can “measure”
the region below the graph of f .

The last step is exactly the same as in the previous section.

Step 4 (Absolutely integrable functions) — If f : Ω → [−∞,∞] is absolutely inte-
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grable, then we define ∫
Ω
f dµ =

∫
Ω
|f+| dµ−

∫
Ω
|f−| dµ.

§37.3 Relation to Riemann integrals (or: actually computing
Lebesgue integrals)

For closed intervals, this actually just works out of the box.

Theorem 37.3.1 (Lebesgue integral generalizes Riemann integral)
Let f : [a, b] → R be a Riemann integrable function (where [a, b] is equipped with
the Borel measure). Then f is also Lebesgue integrable and the integrals agree:∫ b

a
f(x) dx =

∫
[a,b]

f dµ.

Note that a Riemann integrable function must be bounded, which means if you try to
construct a function f : [0, 1]→ R in the same vein as Problem 37B† by

f(x) =
{ sin(1/x)

x x > 0
0 x = 0

the function f will in fact not be Riemann integrable! Although of course, the improper
Riemann integral limε→0+

∫ 1
ε f(x) dx exists.

Thus in practice, we do all theory with Lebesgue integrals (they’re nicer), but when
we actually need to compute

∫
[1,4] x

2 dµ we just revert back to our usual antics with the
Fundamental Theorem of Calculus.

Example 37.3.2 (Integrating x2 over [1, 4])
Reprising our old example:∫

[1,4]
x2 dµ =

∫ 4

1
x2 dx = 1

3 · 4
3 − 1

3 · 1
3 = 21.

This even works for improper integrals, if the functions are nonnegative. The statement
is a bit cumbersome to write down, but here it is.

Theorem 37.3.3 (Improper integrals are nice Lebesgue ones)
Let f ≥ 0 be a nonnegative continuous function defined on (a, b) ⊆ R, possibly
allowing a = −∞ or b =∞. Then∫

(a,b)
f dµ = lim

a′→a+

b′→b−

∫ b′

a′
f(x) dx

where we allow both sides to be +∞ if f is not absolutely integrable.
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The right-hand side makes sense since [a′, b′] ⊊ (a, b) is a compact interval on which f is
continuous. This means that improper Riemann integrals of nonnegative functions can
just be regarded as Lebesgue ones over the corresponding open intervals.

It’s probably better to just look at an example though.

Example 37.3.4 (Integrating 1/
√
x on (0, 1))

For example, you might be familiar with improper integrals like∫ 1

0

1√
x
dx := lim

ε→0+

∫ 1

ε

1√
x
dx = lim

ε→0+

(
2
√

1− 2
√
ε
)

= 2.

(Note this appeared before as Problem 30C⋆.) In the Riemann integration situation,
we needed the limit as ε → 0+ since otherwise 1√

x
is not defined as a function

[0, 1]→ R. However, it is a measurable nonnegative function (0, 1)→ [0,+∞], and
hence ∫

(0,1)

1√
x
dµ = 2.

If f is not nonnegative, then all bets are off. Indeed Problem 37B† is the famous
counterexample.

§37.4 A few harder problems to think about
Problem 37A⋆ (The indicator of the rationals). Take the indicator function 1Q : R→
{0, 1} ⊆ R for the rational numbers.

(a) Prove that 1Q is not Riemann integrable.

(b) Show that
∫
R 1Q exists and determine its value — the one you expect!

Problem 37B† (An improper Riemann integral with sign changes). Define f : (1,∞)→ R
by f(x) = sin(x)

x . Show that f is not absolutely integrable, but that the improper Riemann
integral ∫ ∞

1
f(x) dx := lim

b→∞

∫ b

1
f(x) dx

nonetheless exists.
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integrals

§38.1 Motivating limit interchange

Prototypical example for this section: 1Q is good!

One of the issues with the Riemann integral is that it behaves badly with respect to
convergence of functions, and the Lebesgue integral deals with this. This is therefore
often given as a poster child on why the Lebesgue integral has better behaviors than the
Riemann one.

We technically have already seen this: consider the indicator function 1Q, which is not
Riemann integrable by Problem 37A⋆. But we can readily compute its Lebesgue integral
over [0, 1], as ∫

[0,1]
1Q dµ = µ ([0, 1] ∩Q) = 0

since it is countable.
This could be thought of as a failure of existence for the Riemann integral.

Example 38.1.1 (1Q is a limit of finitely supported functions)
We can define the sequence of functions g1, g2, . . . by

gn(x) =
{

1 (n!)x is an integer
0 else.

Then each gn is piecewise continuous and hence Riemann integrable on [0, 1] (with
integral zero), but limn→∞ gn = 1Q is not.

The limit here is defined in the following sense:

Definition 38.1.2. Let f and f1, f2, . . . : Ω→ R be a sequence of functions. Suppose
that for each ω ∈ Ω, the sequence

f1(ω), f2(ω), f3(ω), , . . .

converges to f(ω). Then we say f1, f2, . . . converges pointwise to the limit f , written
limn→∞ fn = f .

We can define lim infn→∞ fn and lim supn→∞ fn similarly.

By “the Lebesgue integral has better behavior”, we means the following:

Proposition 38.1.3
If f1, f2, . . . : Ω→ R are measurable functions, then lim infn→∞ fn and lim supn→∞ fn
are measurable.

405



406 Napkin, by Evan Chen (v1.6.20241027)

When fn are all nonnegative, this means
∫

Ω lim infn→∞ fndµ and
∫

Ω lim supn→∞ fndµ
exists. (If they can be negative, the behavior is not that nice. Problem 37B† gives an
example.)

Unfortunately, even if the integral exists, we can’t always exchange pointwise limit
with Lebesgue integral.

Why would we want to? For instance, if we face this problem:

Compute limk→∞
∫∞

1
1
ke

−x2
dx.

While the integral
∫
e−x2

dx is not computable by elementary means, we would like to
say the limit is simply 0 (why wouldn’t it be?)

Unfortunately, pointwise convergence is actually a fairly weak notion of convergence.

Example 38.1.4
In all of these examples, we cannot interchange the limit and the integral without
changing the result.

• The sequence fk(x) = sin(x)
x · 1(1,k) converges pointwise to f(x) = sin(x)

x · 1(1,∞)
as k →∞, and the limit limk→∞

∫
fk(x) dx exists, but f is not integrable.

• Similarly, fk(x) = sin(1/x)
x ·1(1/k,∞) converges pointwise to f(x) = sin(1/x)

x ·1(0,∞)
as k → ∞, the limit limk→∞

∫
fk(x) dx exists and is finite, but f is not

integrable.

• The sequence fk(x) = 1(0,k)
k converges pointwise to f(x) = 0 as k → ∞, for

every k then
∫
fk(x) dx = 1, but

∫
f(x) dx = 0.

Note that, in this case, the convergence is actually uniform!

• We don’t even need k in the denominator — the sequence fk(x) = 1(0,k) also
converges pointwise to f(x) = 0, but this time, for every k then

∫
fk(x) dx =∞!

• The sequence fk(x) = k · 1(0,1/k) converges pointwise to f(x) = 0 as k → ∞.
But similar to above,

∫
fk(x) dx = 1 for every k, but

∫
f(x) dx = 0.

The last example is similar in behavior to an example known as the Witch’s hat.a

ahttps://www.geogebra.org/m/dv7ctmed has an animation.

As such, the convergence theorems stated below is an attempt to classify all the possible
anomalies, and to show that in “usual” cases, interchanging limit and integral just works.

As mentioned earlier, we choose to use the Lebesgue integral instead of the Riemann
integral, because in such cases, the Lebesgue integral will usually just exist.

§38.2 Overview
The three big-name results for exchanging pointwise limits with Lebesgue integrals is:

• Fatou’s lemma: the most general statement possible, for any nonnegative measurable
functions.

• Monotone convergence: “increasing limits” just work.

• Dominated convergence (actually Fatou-Lebesgue): limits that are not too big
(bounded by some absolutely integrable function) just work.

https://www.geogebra.org/m/dv7ctmed
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§38.3 Fatou’s lemma

In all the above examples, we see that:

• The failure of the interchange of limit and integral is caused by the functions in
the sequence have too much room to “wiggle around”, and

• as such, the integrals
∫
fk(x)dx are all greater than the integral of the limit

∫
f(x)dx.

Of course, by negating all the functions fk(x) we can get limk→∞
∫
fk(x)dx <

∫
f(x)dx.

But, as it turns out, for nonnegative functions, this sort of behavior is the only behavior
possible. In other words,

For nonnegative functions, if limit of integral is not equal to integral of
limit, the former one is always larger.

Lemma 38.3.1 (Fatou’s lemma, preliminary version)
Let f1, f2, . . . : Ω → [0,+∞] be a sequence of nonnegative measurable functions,
converging pointwise to f . Then f is nonnegative, measurable, and∫

Ω
f dµ ≤ lim

n→∞

(∫
Ω
fn dµ

)
.

Here we allow either side to be +∞.

As it turns out, this lemma can significantly be generalized as follows. If you compare
the two statements, you can see the two lim operators are changed to lim inf — when
the sequence actually converges, lim inf and lim equals.

Lemma 38.3.2 (Fatou’s lemma)
Let f1, f2, . . . : Ω → [0,+∞] be a sequence of nonnegative measurable functions.
Then lim infn→∞ fn : Ω→ [0,+∞] is measurable and∫

Ω

(
lim inf
n→∞

fn
)
dµ ≤ lim inf

n→∞

(∫
Ω
fn dµ

)
.

Here we allow either side to be +∞.

Notice that there are no extra hypothesis on fn other than nonnegative: which makes
this quite surprisingly versatile if you ever are trying to prove some general result.

§38.4 Everything else

The big surprise is how quickly all the “big-name” theorem follows from Fatou’s lemma.
Here is the so-called “monotone convergence theorem”.
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Corollary 38.4.1 (Monotone convergence theorem)
Let f and f1, f2, . . . : Ω→ [0,+∞] be a sequence of nonnegative measurable functions
such that limn fn = f and fn(ω) ≤ f(ω) for each n. Then f is measurable and

lim
n→∞

(∫
Ω
fn dµ

)
=
∫

Ω
f dµ.

Here we allow either side to be +∞.

Proof. We have ∫
Ω
f dµ =

∫
Ω

(
lim inf
n→∞

fn
)
dµ

≤ lim inf
n→∞

∫
Ω
fn dµ

≤ lim sup
n→∞

∫
Ω
fn dµ

≤
∫

Ω
f dµ

where the first ≤ is by Fatou lemma, and the second by the fact that
∫

Ω fn ≤
∫

Ω f for
every n. This implies all the inequalities are equalities and we are done.

You can see how short the proof is — proving lim supn→∞
∫

Ω fn dµ ≤
∫

Ω f dµ is the easy
half, and the difficult half is automatically taken care of by Fatou’s lemma.

Remark 38.4.2 (The monotone convergence theorem does not require monotonicity!)
— In the literature it is much more common to see the hypothesis f1(ω) ≤ f2(ω) ≤
· · · ≤ f(ω) rather than just fn(ω) ≤ f(ω) for all n, which is where the theorem gets
its name. However as we have shown this hypothesis is superfluous! This is pointed
out in https://mathoverflow.net/a/296540/70654, as a response to a question
entitled “Do you know of any very important theorems that remain unknown?”.

Example 38.4.3 (Monotone convergence gives 1Q)
This already implies Example 38.1.1. Letting gn be the indicator function for 1

n!Z as
described in that example, we have gn ≤ 1Q and limn→∞ gn(x) = 1Q(x), for each
individual x. So since

∫
[0,1] gn dµ = 0 for each n, this gives

∫
[0,1] 1Q = 0 as we already

knew.

The most famous result, though is the following.

Corollary 38.4.4 (Fatou–Lebesgue theorem)
Let f and f1, f2, . . . : Ω→ R be a sequence of measurable functions. Assume that
g : Ω→ R is an absolutely integrable function for which |fn(ω)| ≤ |g(ω)| for all ω ∈ Ω.
Then the inequality∫

Ω

(
lim inf
n→∞

fn
)
dµ ≤ lim inf

n→∞

(∫
Ω
fn dµ

)
≤ lim sup

n→∞

(∫
Ω
fn dµ

)
≤
∫

Ω

(
lim sup
n→∞

fn

)
dµ.

https://mathoverflow.net/a/296540/70654


38 Swapping order with Lebesgue integrals 409

Proof. There are three inequalities:

• The first inequality follows by Fatou on g + fn which is nonnegative.

• The second inequality is just lim inf ≤ lim sup. (This makes the theorem statement
easy to remember!)

• The third inequality follows by Fatou on g − fn which is nonnegative.

Exercise 38.4.5. Where is the fact that g is absolutely integrable used in this proof?

Corollary 38.4.6 (Dominated convergence theorem)
Let f1, f2, . . . : Ω → R be a sequence of measurable functions such that f =
limn→∞ fn exists. Assume that g : Ω → R is an absolutely integrable function
for which |fn(ω)| ≤ |g(ω)| for all ω ∈ Ω. Then∫

Ω
f dµ = lim

n→∞

(∫
Ω
fn dµ

)
.

In other words,

If there’s only finite “space” for the functions fk to “wiggle around”, then
no anomaly can happen.

Proof. If f(ω) = limn→∞ fn(ω), then f(ω) = lim infn→∞ fn(ω) = lim supn→∞ fn(ω). So
all the inequalities in the Fatou-Lebesgue theorem become equalities, since the leftmost
and rightmost sides are equal.

Note this gives yet another way to verify Example 38.1.1. In general, the dominated
convergence theorem is a favorite cliché for undergraduate exams, because it is easy to
create questions for it. Here is one example showing how they all look.

Example 38.4.7 (The usual Lebesgue dominated convergence examples)
Suppose one wishes to compute

lim
n→∞

(∫
(0,1)

n sin(n−1x)√
x

)
dx

then one starts by observing that the inner term is bounded by the absolutely
integrable function x−1/2. Therefore it equals∫

(0,1)
lim
n→∞

(
n sin(n−1x)√

x

)
dx =

∫
(0,1)

x√
x
dx

=
∫

(0,1)

√
x dx = 2

3 .

We can also say something else about the behavior of the anomalies — that is, when
|Ω| <∞, the anomaly only happens in a set of small measure.
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Theorem 38.4.8 (Egorov’s theorem)
Let f1, f2, . . . : Ω→ R be a sequence of measurable functions, on a measure space
Ω with |Ω| < ∞, such that f = limn→∞ fn exists and is finite almost everywhere.
Then, for any ε > 0, we can find a subset U ⊆ Ω, such that the remainder has small
measure:

|Ω ∖ U | < ε,

and the convergence is uniform on U : the sequence

f1|U , f2|U , . . .

converges to fU uniformly.

This is because of the following theorem.

Theorem 38.4.9 (Uniform convergence theorem)
Let f1, f2, . . . : Ω→ R be a sequence of integrable functions, on a measure space Ω
with |Ω| <∞, such that limn→∞ fn = f , and the convergence is uniform. Then f is
integrable and,

lim
n→∞

(∫
Ω
fn dµ

)
=
∫

Ω
f dµ.

In other words,

The fact that
∫
f dµ ̸= lim

∫
fk dµ is only caused by

∫
Ω\U f dµ ̸= lim

∫
Ω\U f dµ.

Example 38.4.10 (Removing a set of small measure will allow interchanging the
integral and the limit)
We take a few examples from Example 38.1.4, and see what happens if we remove a
set of small measure here.

• Consider the sequence fk(x) = k ·1(0,1/k). If, for any ε > 0, we delete a segment
(0, ε) from the domain of fk, then we will have that fk converges uniformly to
f as k →∞, and that limk→∞

∫
fk(x) dx =

∫
f(x) dx = 0.

• Similarly, the sequence fk(x) = sin(1/x)
x · 1(1/k,1) converges pointwise to f(x) =

sin(1/x)
x · 1(0,1), and if we delete a segment (0, ε), then everything checks out.

Remark 38.4.11 — Just because we only need to delete a set of small measure,
doesn’t mean the set is concentrated in a small interval. The reader is invited to
construct a sequence fk : [0, 1]→ R+ that converges pointwise to f , but in order to
make the convergence uniform, a dense subset of [0, 1] need to be removed. (Hint:
take any discontinuous everywhere nonnegative function f , and set fk = min(k, f).)

§38.5 Fubini and Tonelli
TO BE
WRITTEN
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§38.6 A few harder problems to think about
problems





39 Bonus: A hint of Pontryagin duality

In this short chapter we will give statements about how to generalize our Fourier
analysis (a bonus chapter Chapter 14) to a much wider class of groups G.

§39.1 LCA groups

Prototypical example for this section: T, R.

Earlier we played with R, which is nice because in addition to being a topological
space, it is also an abelian group under addition. These sorts of objects which are both
groups and spaces have a name.

Definition 39.1.1. A group G is a topological group is a Hausdorff1 topological space
equipped also with a group operation (G, ·), such that both maps

G×G→ G by (x, y) 7→ xy

G→ G by x 7→ x−1

are continuous.

For our Fourier analysis, we need some additional conditions.

Definition 39.1.2. A locally compact abelian (LCA) group G is one for which
the group operation is abelian, and moreover the topology is locally compact: for every
point p of G, there exists a compact subset K of G such that K ∋ p, and K contains
some open neighborhood of p.

Our previous examples all fall into this category:

Example 39.1.3 (Examples of locally compact abelian groups)
• Any finite group Z with the discrete topology is LCA.

• The circle group T is LCA and also in fact compact.

• The real numbers R are an example of an LCA group which is not compact.

These conditions turn out to be enough for us to define a measure on the space G.
The relevant theorem, which we will just quote:

1Some authors omit the Hausdorff condition.

413
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Theorem 39.1.4 (Haar measure)
Let G be a locally compact abelian group. We regard it as a measurable space using
its Borel σ-algebra B(G). There exists a measure µ : B(G) → [0,∞], called the
Haar measure, satisfying the following properties:

• µ(gS) = µ(S) for every g ∈ G and measurable S. That means that µ is
“translation-invariant” under translation by G.

• µ(K) is finite for any compact set K.

• if S is measurable, then µ(S) = inf {µ(U) | U ⊇ S open}.

• if U is open, then µ(U) = sup {µ(S) | S ⊇ U measurable}.

Moreover, it is unique up to scaling by a positive constant.

Remark 39.1.5 — Note that if G is compact, then µ(G) is finite (and positive). For
this reason the Haar measure on a LCA group G is usually normalized so µ(G) = 1.

For this chapter, we will only use the first two properties at all, and the other two are
just mentioned for completeness. Note that this actually generalizes the chapter where
we constructed a measure on B(Rn), since Rn is an LCA group!

So, in short: if we have an LCA group, we have a measure µ on it.

§39.2 The Pontryagin dual
Now the key definition is:

Definition 39.2.1. Let G be an LCA group. Then its Pontryagin dual is the abelian
group

Ĝ := {continuous group homomorphisms ξ : G→ T} .

The maps ξ are called characters. It can be itself made into an LCA group.2

Example 39.2.2 (Examples of Pontryagin duals)
• Ẑ ∼= T, since group homomorphisms Z→ T are determined by the image of 1.

• T̂ ∼= Z. The characters are given by θ 7→ nθ for n ∈ Z.

• R̂ ∼= R. This is because a nonzero continuous homomorphism R → S1 is
determined by the fiber above 1 ∈ S1. (Algebraic topologists might see
covering projections here.)

• Ẑ/nZ ∼= Z/nZ, characters ξ being determined by the image ξ(1) ∈ T.

• Ĝ×H ∼= Ĝ× Ĥ.

2If you must know the topology, it is the compact-open topology: for any compact set K ⊆ G and
open set U ⊆ T, we declare the set of all ξ with ξimg(K) ⊆ U to be open, and then take the smallest
topology containing all such sets. We won’t use this at all.
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Exercise 39.2.3 (Ẑ ∼= Z, for those who read Section 18.1). If Z is a finite abelian group,
show that Ẑ ∼= Z, using the results of the previous example. You may now recognize that the
bilinear form · : Z × Z → T is exactly a choice of isomorphism Z → Ẑ. It is not “canonical”.

True to its name as the dual, and in analogy with (V ∨)∨ ∼= V for vector spaces V , we
have:

Theorem 39.2.4 (Pontryagin duality theorem)
For any LCA group G, there is an isomorphism

G ∼= ̂̂
G by x 7→ (ξ 7→ ξ(x)) .

The compact case is especially nice.

Proposition 39.2.5 (G compact ⇐⇒ Ĝ discrete)
Let G be an LCA group. Then G is compact if and only if Ĝ is discrete.

Proof. Problem 39B.

§39.3 The orthonormal basis in the compact case
Let G be a compact LCA group, and work with its Haar measure. We may now let L2(G)
be the space of square-integrable functions to C, i.e.

L2(G) =
{
f : G→ C such that

∫
G
|f |2 <∞

}
.

Thus we can equip it with the inner form

⟨f, g⟩ =
∫
G
f · g.

In that case, we get all the results we wanted before:

Theorem 39.3.1 (Characters of Ĝ form an orthonormal basis)
Assume G is LCA and compact (so Ĝ is discrete). Then the characters

(eξ)ξ∈Ĝ by eξ(x) = e(ξ(x)) = exp(2πiξ(x))

form an orthonormal basis of L2(G). Thus for each f ∈ L2(G) we have

f =
∑
ξ∈Ĝ

f̂(ξ)eξ

where
f̂(ξ) = ⟨f, eξ⟩ =

∫
G
f(x) exp(−2πiξ(x)) dµ.

The sum
∑
ξ∈Ĝ makes sense since Ĝ is discrete. In particular,
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• Letting G = Z for a finite group G gives “Fourier transform on finite groups”.

• The special case G = Z/nZ has its own Wikipedia page: the “discrete-time Fourier
transform”.

• Letting G = T gives the “Fourier series” earlier.

§39.4 The Fourier transform of the non-compact case
If G is LCA but not compact, then Theorem 39.3.1 becomes false. On the other hand,
it’s still possible to define Ĝ. We can then try to write the Fourier coefficients anyways:
let

f̂(ξ) =
∫
G
f · eξ dµ

for ξ ∈ Ĝ and f : G → C. The results are less fun in this case, but we still have, for
example:

Theorem 39.4.1 (Fourier inversion formula in the non-compact case)
Let µ be a Haar measure on G. Then there exists a unique Haar measure ν on Ĝ
(called the dual measure) such that: whenever f ∈ L1(G) and f̂ ∈ L1(Ĝ), we have

f(x) =
∫
Ĝ
f̂(ξ)ξ(x) dν

for almost all x ∈ G (with respect to µ). If f is continuous, this holds for all x.

So while we don’t have the niceness of a full inner product from before, we can still in
some situations at least write f as integral in sort of the same way as before.

In particular, they have special names for a few special G:

• If G = R, then Ĝ = R, yielding the “(continuous) Fourier transform”.

• If G = Z, then Ĝ = T, yielding the “discrete time Fourier transform”.

§39.5 Summary
We summarize our various flavors of Fourier analysis from the previous sections in the
following table. In the first part G is compact, in the second half G is not.

Name Domain G Dual Ĝ Characters
Binary Fourier analysis {±1}n S ⊆ {1, . . . , n}

∏
s∈S xs

Fourier transform on finite groups Z ξ ∈ Ẑ ∼= Z e(iξ · x)
Discrete Fourier transform Z/nZ ξ ∈ Z/nZ e(ξx/n)
Fourier series T ∼= [−π, π] n ∈ Z exp(inx)
Continuous Fourier transform R ξ ∈ R e(ξx)
Discrete time Fourier transform Z ξ ∈ T ∼= [−π, π] exp(iξn)

You might notice that the various names are awful. This is part of the reason I
got confused as a high school student: every type of Fourier series above has its own
Wikipedia article. If it were up to me, we would just use the term “G-Fourier transform”,
and that would make everyone’s lives a lot easier.

https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Definition
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
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§39.6 A few harder problems to think about
Problem 39A. If G is compact, so Ĝ is discrete, describe the dual measure ν.

Problem 39B. Show that an LCA group G is compact if and only if Ĝ is discrete. (You
will need the compact-open topology for this.)
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