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31 Holomorphic functions

Throughout this chapter, we denote by U an open subset of the complex plane, and by
Ω an open subset which is also simply connected. The main references for this chapter
were [Ya12; Ba10].

§31.1 The nicest functions on earth

In high school you were told how to differentiate and integrate real-valued functions. In
this chapter on complex analysis, we’ll extend it to differentiation and integration of
complex-valued functions.

Big deal, you say. Calculus was boring enough. Why do I care about complex calculus?
Perhaps it’s easiest to motivate things if I compare real analysis to complex analysis.

In real analysis, your input lives inside the real line R. This line is not terribly discerning –
you can construct a lot of unfortunate functions. Here are some examples.

Example 31.1.1 (Optional: evil real functions)
You can skim over these very quickly: they’re only here to make a point.

(a) The Devil’s Staircase (or Cantor function) is a continuous function H : [0, 1]→
[0, 1] which has derivative zero “almost everywhere”, yet H(0) = 0 and H(1) = 1.

(b) The Weierstraß function

x 7→
∞∑
n=0

(1
2

)n
cos (2015nπx)

is continuous everywhere but differentiable nowhere.

(c) The function

x 7→
{
x100 x ≥ 0
−x100 x < 0

has the first 99 derivatives but not the 100th one.

(d) If a function has all derivatives (we call these smooth functions), then it has a
Taylor series. But for real functions that Taylor series might still be wrong. The
function

x 7→
{
e−1/x x > 0
0 x ≤ 0

has derivatives at every point. But if you expand the Taylor series at x = 0, you
get 0 + 0x+ 0x2 + · · · , which is wrong for any x > 0 (even x = 0.0001).

Let’s even put aside the pathology. If I tell you the value of a real smooth function on
the interval [−1, 1], that still doesn’t tell you anything about the function as a whole.
It could be literally anything, because it’s somehow possible to “fuse together” smooth
functions.

345
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Figure 31.1: The Weierstraß Function (image from [Ee]).

So what about complex functions? If you consider them as functions R2 → R2, you
now have the interesting property that you can integrate along things that are not line
segments: you can write integrals across curves in the plane. But C has something more:
it is a field, so you can multiply and divide two complex numbers.

So we restrict our attention to differentiable functions called holomorphic functions. It
turns out that the multiplication on C makes all the difference. The primary theme in
what follows is that holomorphic functions are really, really nice, and that knowing tiny
amounts of data about the function can determine all its values.

The two main highlights of this chapter, from which all other results are more or less
corollaries:

• Contour integrals of loops are always zero.

• A holomorphic function is essentially given by its Taylor series; in particular, single-
differentiable implies infinitely differentiable. Thus, holomorphic functions behave
quite like polynomials.

Some of the resulting corollaries:

• It’ll turn out that knowing the values of a holomorphic function on the boundary
of the unit circle will tell you the values in its interior.

• Knowing the values of the function at 1, 1
2 , 1

3 , . . . are enough to determine the
whole function!

• Bounded holomorphic functions C→ C must be constant.

• And more. . .

As [Pu02] writes: “Complex analysis is the good twin and real analysis is the evil one:
beautiful formulas and elegant theorems seem to blossom spontaneously in the complex
domain, while toil and pathology rule the reals”.
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§31.2 Complex differentiation
Prototypical example for this section: Polynomials are holomorphic; z is not.

Let f : U → C be a complex function. Then for some z0 ∈ U , we define the derivative
at z0 to be

lim
h→0

f(z0 + h)− f(z0)
h

.

Note that this limit may not exist; when it does we say f is differentiable at z0.
What do I mean by a “complex” limit h→ 0? It’s what you might expect: for every

ε > 0 there should be a δ > 0 such that

0 < |h| < δ =⇒
∣∣∣∣f(z0 + h)− f(z0)

h
− L

∣∣∣∣ < ε.

If you like topology, you are encouraged to think of this in terms of open neighborhoods
in the complex plane. (This is why we require U to be open: it makes it possible to take
δ-neighborhoods in it.)

But note that having a complex derivative is actually much stronger than a real
function having a derivative. In the real line, h can only approach zero from below and
above, and for the limit to exist we need the “left limit” to equal the “right limit”. But
the complex numbers form a plane: h can approach zero from many directions, and we
need all the limits to be equal.

Example 31.2.1 (Important: conjugation is not holomorphic)
Let f(z) = z be complex conjugation, f : C→ C. This function, despite its simple
nature, is not holomorphic! Indeed, at z = 0 we have,

f(h)− f(0)
h

= h

h
.

This does not have a limit as h → 0, because depending on “which direction” we
approach zero from we have different values.

Im

Re0
11

i

−1

f(z) = z

f(0 + h)− f(0)

h

If a function f : U → C is complex differentiable at all the points in its domain it is
called holomorphic. In the special case of a holomorphic function with domain U = C,
we call the function entire.1

1Sorry, I know the word “holomorphic” sounds so much cooler. I’ll try to do things more generally for
that sole reason.
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Example 31.2.2 (Examples of holomorphic functions)
In all the examples below, the derivative of the function is the same as in their real
analogues (e.g. the derivative of ez is ez).

(a) Any polynomial z 7→ zn + cn−1z
n−1 + · · ·+ c0 is holomorphic.

(b) The complex exponential exp: x+ yi 7→ ex(cos y + i sin y) can be shown to be
holomorphic.

(c) sin and cos are holomorphic when extended to the complex plane by cos z =
eiz+e−iz

2 and sin z = eiz−e−iz

2i .

(d) As usual, the sum, product, chain rules and so on apply, and hence sums, prod-
ucts, nonzero quotients, and compositions of holomorphic functions
are also holomorphic.

You are welcome to try and prove these results, but I won’t bother to do so.

§31.3 Contour integrals
Prototypical example for this section:

∮
γ z

m dz around the unit circle.

In the real line we knew how to integrate a function across a line segment [a, b]:
essentially, we’d “follow along” the line segment adding up the values of f we see to get
some area. Unlike in the real line, in the complex plane we have the power to integrate
over arbitrary paths: for example, we might compute an integral around a unit circle. A
contour integral lets us formalize this.

First of all, if f : R→ C and f(t) = u(t) + iv(t) for u, v ∈ R, we can define an integral∫ b
a by just adding the real and imaginary parts:

∫ b

a
f(t) dt =

(∫ b

a
u(t) dt

)
+ i

(∫ b

a
v(t) dt

)
.

Now let α : [a, b]→ C be a path, thought of as a complex differentiable2 function. Such a
path is called a contour, and we define its contour integral by∮

α
f(z) dz =

∫ b

a
f(α(t)) · α′(t) dt.

You can almost think of this as a u-substitution (which is where the α′ comes from).
In particular, it turns out this integral does not depend on how α is “parametrized”: a
circle given by

[0, 2π]→ C : t 7→ eit

and another circle given by
[0, 1]→ C : t 7→ e2πit

and yet another circle given by

[0, 1]→ C : t 7→ e2πit5

2This isn’t entirely correct here: you want the path α to be continuous and mostly differentiable, but
you allow a finite number of points to have “sharp bends”; in other words, you can consider paths
which are combinations of n smooth pieces. But for this we also require that α has “bounded length”.
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will all give the same contour integral, because the paths they represent have the same
geometric description: “run around the unit circle once”.

In what follows I try to use α for general contours and γ in the special case of loops.
Let’s see an example of a contour integral.

Theorem 31.3.1
Take γ : [0, 2π]→ C to be the unit circle specified by

t 7→ eit.

Then for any integer m, we have

∮
γ
zm dz =

{
2πi m = −1
0 otherwise

Proof. The derivative of eit is ieit. So, by definition the answer is the value of∫ 2π

0
(eit)m · (ieit) dt =

∫ 2π

0
i(eit)1+m dt

= i

∫ 2π

0
cos[(1 +m)t] + i sin[(1 +m)t] dt

= −
∫ 2π

0
sin[(1 +m)t] dt+ i

∫ 2π

0
cos[(1 +m)t] dt.

This is now an elementary calculus question. One can see that this equals 2πi if m = −1
and otherwise the integrals vanish.

Let me try to explain why this intuitively ought to be true for m = 0. In that case we
have

∮
γ 1 dz. So as the integral walks around the unit circle, it “sums up” all the tangent

vectors at every point (that’s the direction it’s walking in), multiplied by 1. And given
the nice symmetry of the circle, it should come as no surprise that everything cancels
out. The theorem says that even if we multiply by zm for m ̸= −1, we get the same
cancellation.

Definition 31.3.2. Given α : [0, 1] → C, we denote by α the “backwards” contour
α(t) = α(1− t).
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Question 31.3.3. What’s the relation between
∮

α
f dz and

∮
α
f dz? Prove it.

This might seem a little boring. Things will get really cool really soon, I promise.

§31.4 Cauchy-Goursat theorem
Prototypical example for this section:

∮
γ z

m dz = 0 for m ≥ 0. But if m < 0, Cauchy’s
theorem does not apply.

Let Ω ⊆ C be simply connected (for example, Ω = C), and consider two paths α, β
with the same start and end points.

Ω
α

β

What’s the relation between
∮
α f(z) dz and

∮
β f(z) dz? You might expect there to be

some relation between them, considering that the space Ω is simply connected. But you
probably wouldn’t expect there to be much of a relation.

As a concrete example, let Ψ: C → C be the function z 7→ z − Re[z] (for example,
Ψ(2015 + 3i) = 3i). Let’s consider two paths from −1 to 1. Thus β is walking along the
real axis, and α which follows an upper semicircle.

−1 1

α

β

Obviously
∮
β Ψ(z) dz = 0. But heaven knows what

∮
α Ψ(z) dz is supposed to equal.

We can compute it now just out of non-laziness. If you like, you are welcome to compute
it yourself (it’s a little annoying but not hard). If I myself didn’t mess up, it is∮

α
Ψ(z) dz = −

∮
α

Ψ(z) dz = −
∫ π

0
(i sin(t)) · ieit dt = 1

2πi

which in particular is not zero.
But somehow Ψ is not a really natural function. It’s not respecting any of the nice,

multiplicative structure of C since it just rudely lops off the real part of its inputs. More
precisely,
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Question 31.4.1. Show that Ψ(z) = z − Re[z] is not holomorphic. (Hint: z is not
holomorphic.)

Now here’s a miracle: for holomorphic functions, the two integrals are always equal.
Equivalently, (by considering α followed by β) contour integrals of loops are always zero.
This is the celebrated Cauchy-Goursat theorem (also called the Cauchy integral theorem,
but later we’ll have a “Cauchy Integral Formula” so blah).

Theorem 31.4.2 (Cauchy-Goursat theorem)
Let γ be a loop, and f : Ω→ C a holomorphic function where Ω is open in C and
simply connected. Then ∮

γ
f(z) dz = 0.

Remark 31.4.3 (Sanity check) — This might look surprising considering that we
saw

∮
γ z

−1 dz = 2πi earlier. The subtlety is that z−1 is not even defined at z = 0.
On the other hand, the function C \ {0} → C by z 7→ 1

z is holomorphic! The defect
now is that Ω = C \ {0} is not simply connected. So the theorem passes our sanity
checks, albeit barely.

The typical proof of Cauchy’s Theorem assumes additionally that the partial derivatives
of f are continuous and then applies the so-called Green’s theorem. But it was Goursat
who successfully proved the fully general theorem we’ve stated above, which assumed
only that f was holomorphic.

Anyways, the theorem implies that
∮
γ z

m dz = 0 when m ≥ 0. So much for all our
hard work earlier. But so far we’ve only played with circles. This theorem holds for any
contour which is a loop. So what else can we do?

§31.5 Cauchy’s integral theorem
We now present a stunning application of Cauchy-Goursat, a “representation theorem”:
essentially, it says that values of f inside a disk are determined by just the values on the
boundary! In fact, we even write down the exact formula. As [Ya12] says, “any time a
certain type of function satisfies some sort of representation theorem, it is likely that
many more deep theorems will follow.” Let’s pull back the curtain:

Theorem 31.5.1 (Cauchy’s integral formula)
Let γ : [0, 2π]→ C be a circle in the plane given by t 7→ Reit, which bounds a disk D.
Suppose f : U → C is holomorphic such that U contains the circle and its interior.
Then for any point a in the interior of D, we have

f(a) = 1
2πi

∮
γ

f(z)
z − a

dz.

Note that we don’t require U to be simply connected, but the reason is pretty silly: we’re
only going to ever integrate f over D, which is an open disk, and hence the disk is simply
connected anyways.
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The presence of 2πi, which you saw earlier in the form
∮

circle z
−1 dz, is no accident. In

fact, that’s the central result we’re going to use to prove the result.

Remark 31.5.2 — With the introduction of meromorphic functions next chapter,
we will see how to intuitively derive this formula in Remark 32.3.5.

Proof. There are several proofs out there, but I want to give the one that really draws
out the power of Cauchy’s theorem. Here’s the picture we have: there’s a point a sitting
inside a circle γ, and we want to get our hands on the value f(a).

γ

a

We’re going to do a trick: construct a keyhole contour Γδ,ε which has an outer circle γ,
plus an inner circle γε, which is a circle centered at a with radius ε, running clockwise
(so that γε runs counterclockwise). The “width” of the corridor is δ. See picture:

γ

a

γε

Hence Γδ,ε consists of four smooth curves.

Question 31.5.3. Draw a simply connected open set Ω which contains the entire Γδ,ε but
does not contain the point a.

The function f(z)
z−a manages to be holomorphic on all of Ω. Thus Cauchy’s theorem applies

and tells us that
0 =

∮
Γδ,ε

f(z)
z − a

dz.

As we let δ → 0, the two walls of the keyhole will cancel each other (because f is
continuous, and the walls run in opposite directions). So taking the limit as δ → 0, we
are left with just γ and γε, which (taking again orientation into account) gives∮

γ

f(z)
z − a

dz = −
∮
γε

f(z)
z − a

dz =
∮
γε

f(z)
z − a

dz.

Thus we’ve managed to replace γ with a much smaller circle γε centered around
a, and the rest is algebra.

To compute the last quantity, write∮
γε

f(z)
z − a

dz =
∮
γε

f(z)− f(a)
z − a

dz + f(a) ·
∮
γε

1
z − a

dz

=
∮
γε

f(z)− f(a)
z − a

dz + 2πif(a).
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where we’ve used Theorem 31.3.1. Thus, all we have to do is show that∮
γε

f(z)− f(a)
z − a

dz = 0.

For this we can basically use the weakest bound possible, the so-called ML lemma
which I’ll cite without proof: it says “bound the function everywhere by its maxi-
mum”.

Lemma 31.5.4 (ML estimation lemma)
Let f be a holomorphic function and α a path. Suppose M = maxz on α |f(z)|, and
let L be the length of α. Then ∣∣∣∣∮

α
f(z) dz

∣∣∣∣ ≤ML.

(This is straightforward to prove if you know the definition of length: L =
∫ b
a |α′(t)| dt,

where α : [a, b]→ C.)
Anyways, as ε→ 0, the quantity f(z)−f(a)

z−a approaches f ′(a), and so for small enough ε
(i.e. z close to a) there’s some upper bound M . Yet the length of γε is the circumference
2πε. So the ML lemma says that∣∣∣∣∮

γε

f(z)− f(a)
z − a

∣∣∣∣ ≤ 2πε ·M → 0

as desired.

§31.6 Holomorphic functions are analytic
Prototypical example for this section: Imagine a formal series

∑
k ckx

k!

In the setup of the previous problem, we have a circle γ : [0, 2π]→ C and a holomorphic
function f : U → C which contains the disk D. We can write

f(a) = 1
2πi

∮
γ

f(z)
z − a

dz

= 1
2πi

∮
γ

f(z)/z
1− a

z

dz

= 1
2πi

∮
γ
f(z)/z ·

∑
k≥0

(
a

z

)k
dz

You can prove (using the so-called Weierstrass M-test) that the summation order can be
switched:

f(a) = 1
2πi

∑
k≥0

∮
γ

f(z)
z
·
(
a

z

)k
dz

= 1
2πi

∑
k≥0

∮
γ
ak · f(z)

zk+1 dz

=
∑
k≥0

( 1
2πi

∮
γ

f(z)
zk+1 dz

)
ak.
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Letting ck = 1
2πi
∮
γ
f(z)
zk+1 dz, and noting this is independent of a, this is

f(a) =
∑
k≥0

cka
k

and that’s the miracle: holomorphic functions are given by a Taylor series! This is one
of the biggest results in complex analysis. Moreover, if one is willing to believe that we
can take the derivative k times, we obtain

ck = f (k)(0)
k!

and this gives us f (k)(0) = k! · ck.
Naturally, we can do this with any circle (not just one centered at zero). So let’s state

the full result below, with arbitrary center p.

Theorem 31.6.1 (Cauchy’s differentiation formula)
Let f : U → C be a holomorphic function and let D be a disk centered at point p
bounded by a circle γ. Suppose D is contained inside U . Then f is given everywhere
in D by a Taylor series

f(z) = c0 + c1(z − p) + c2(z − p)2 + · · ·

where
ck = fk(p)

k! = 1
2πi

∮
γ

f(w − p)
(w − p)k+1 dw

In particular,
f (k)(p) = k!ck = k!

2πi

∮
γ

f(w − p)
(w − p)k+1 dw.

Most importantly,

Over any disk, a holomorphic function is given exactly by a Taylor series.

This establishes a result we stated at the beginning of the chapter: that a function being
complex differentiable once means it is not only infinitely differentiable, but in fact equal
to its Taylor series.

Remark 31.6.2 — If you’re willing to assume this, you can see why Cauchy-Goursat
theorem should be true: assuming

f(z) = c0 + c1z + c2z
2 + · · ·

then, with γ the unit circle,∮
γ
f(z) dz =

∮
γ
c0 + c1z + c2z

2 + . . . dz

=
(∮

γ
c0 dz

)
+
(∮

γ
c1z dz

)
+
(∮

γ
c2z

2 dz

)
+ · · ·

We have already proven that each
∮
γ z

m dz = 0, so the sum ought to be 0 as well.
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Of course the argument is not completely rigorous, it exchanges the integration
and the infinite sum without justification.

Remark 31.6.3 — You can see where the term f(w−p)
(w−p)k+1 comes from in Remark 32.3.5.

It is very intuitive that even if you forget it, you can derive it yourself as well!

I should maybe emphasize a small subtlety of the result: the Taylor series centered at
p is only valid in a disk centered at p which lies entirely in the domain U . If U = C this
is no issue, since you can make the disk big enough to accommodate any point you want.
It’s more subtle in the case that U is, for example, a square; you can’t cover the entire
square with a disk centered at some point without going outside the square. However,
since U is open we can at any rate at least find some open neighborhood for which the
Taylor series is correct – in stark contrast to the real case. Indeed, as you’ll see in the
problems, the existence of a Taylor series is incredibly powerful.

§31.7 Optional: Proof that holomorphic functions are analytic
It is recommended to read the next chapter first to understand the origin of the term
f(w−p)

(w−p)k+1 in Cauchy’s differentiation formula above.
Each step of the proof is quite intuitive, if not a bit long. The outline is:

• We pretend that the function f is analytic. (Yes, this is not circular reasoning!)

• We use Cauchy’s differentiation formula to write down a power series:3

c0 + c1z + c2z
2 + · · ·

• We prove that the power series coincide with f using Cauchy-Goursat theorem.

• Note that the statement “f is analytic” literally means “for every k ≥ 0, then f (k)

is differentiable”. So, we write down a power series for f (k), and show that it is
differentiable. (We already did this for the real case in Proposition 29.4.5.)

§31.7.i Proof of Cauchy-Goursat theorem
Suppose f is holomorphic i.e. differentiable. We wish to prove

∮
γ f dz = 0.

How may we attack this problem? Looking at the conclusion, we may want to stare at
some function where

∮
γ f dz ̸= 0.

We readily got an example from the previous chapter: f(z) = 1
z .

Question 31.7.1. What part of the hypothesis does not hold?

In any case, you see the problem is it’s because f has a singularity at 0 (even though
we haven’t formally defined what a singularity is yet). So, we try to prove the contrapos-
itive:

Theorem 31.7.2
Suppose

∮
γ f dz ̸= 0. Then something weird happens to f somewhere inside γ.

3Assume 0 ∈ U .
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(For arbitrary loops, it gets a bit more difficult, however. What does “inside γ” mean?)
Phrasing like this, it isn’t that difficult. You may want to look at f(z) = 1

z a bit and
try to figure out how the proof follows before continue reading.

For simplicity, I will prove the statement for γ being a rectangle, leaving the case e.g.
γ is a circle to the reader. The case of fully general γ will be handled later on.

As you may figured out, for f(z) = 1
z−w , you can try to locate where the singularity w

is by “binary search”: compute
∮
γ f dz, if it is 2πi, we know w is inside γ. We’re going

to do just that.
What should we search for? Let’s see:

Exercise 31.7.3. Suppose
∮

γ
f dz ̸= 0. Must there be a point where f blows up to infinity,

like the point z = 0 in 1
z ?

Answer: no, unfortunately. You can certainly take the function f above, and “smooth
out” the singularity.

(Only real part depicted. You can imagine the imaginary part.)
The best we can hope for, then, is to find a point where f is not holomorphic (complex

differentiable).
Construct 4 paths γa, γb, γc and γd as follows. The margin is only for illustration

purpose, in reality the edges directly overlap on each other.
γ

γa γb

γc γd

Notice that, because all the inner edges cancel out,∮
γ
f dz =

∮
γa

f dz +
∮
γb

f dz +
∮
γc

f dz +
∮
γd

f dz.

Which means
∮
γi
f dz ̸= 0 for some i ∈ {a, b, c, d}. (Idea: we have more accurately

located the singularity, now we know it is inside γi. Of course it’s also possible that there
are multiple singularities.)
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We also have |
∮
γi
f dz| ≥ 1

4 · |
∮
γ f dz| for some i. The reason why we must carefully

keep track of the magnitude (instead of just saying it’s ̸= 0) will become apparent later.
So, we keep doing that, and get a decreasing sequence of rectangles {γj}. Because the

edge length gets halved each time, the rectangles converge to a single point p.
How would the rectangle perimeter decrease? Perhaps something like the following:

j Perimeter of γj |
∮
γj
f dz|

0 1 1
1 1

2 ≥ 1
4

2 1
4 ≥ 1

16
3 1

8 ≥ 1
64

|
∮
γj
f dz| decreases quite quickly compared to the perimeter — as expected, we cannot

hope for f to blow up at p, but this is sufficient to show f is not holomorphic.
For the sake of contradiction, assume otherwise. Then, by definition,

lim
h→0

f(p+ h)− f(p)
h

= f ′(p)

where p is the point that the rectangles {γj} converges to as defined above, and f ′(p) ∈ C
is the derivative. In other words, for h ∈ C close enough to 0,

f(p+ h) = f(p) + f ′(p) · h+ ε(h) · h for ε(h) ∈ o(1).

Why is this a problem? Notice that f(p) and f ′(p) · h are both polynomials, so∮
γj

f(p) + f ′(p) · (z − p) dz = 0,

which means ∮
γj

f(z) dz =
∮
γj

ε(h) · (z − p) dz.

We know the left hand side decreases as 4−j , but the integral on the right hand side is
over a curve with length decreasing as 2−j .

Exercise 31.7.4. Finish the proof. (Use the ML estimation lemma.)

Finally, what to do with arbitrary curve (which may not even have an interior4)?
We construct the antiderivative F : Ω → C by integrating f across the side of a

rectangle, prove F ′ = f , and get a “fundamental theorem of calculus”, that is∮
α
f(z) dz = F (α(b))− F (α(a))

where α : [a, b]→ C is some path. Considering α = γ, because the starting and ending
point for a loop γ is the same, of course the integral would be 0.

§31.7.ii The rest
Next step, we should show the power series coincide with f , that is

f(z) =
∮
γ

f(t)
t

dt+
∮
γ

f(t)
t2

dt · z +
∮
γ

f(t)
t3

dt · z2 + · · ·

Here we assume γ is the unit circle, the power series is centered at 0, and t is inside the
unit disk.

4A space-filling curve is an example.
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Exercise 31.7.5. Prove it. (You only need to know that you can interchange the infinite
sum and the integral in this situation,a how to sum a geometric series, and Cauchy’s integral
formula)

aLook at Example 38.1.4 for some horror stories where you cannot interchange a limit and an
integral.

Remark 31.7.6 — Wait, where was Cauchy-Goursat theorem used? If you forgot,
it is used in the proof of Cauchy’s integral formula.

After we have proven that f is a power series, then using Proposition 29.4.5 (suitably
adapted for the case of complex holomorphic functions), the result follows.

§31.8 A few harder problems to think about
These aren’t olympiad problems, but I think they’re especially nice! In the next complex
analysis chapter we’ll see some more nice applications.

The first few results are the most important.

Problem 31A⋆ (Liouville’s theorem). Let f : C → C be an entire function. Suppose
that |f(z)| < 1000 for all complex numbers z. Prove that f is a constant function.

Problem 31B⋆ (Zeros are isolated). An isolated set in an open set U in the complex
plane is a set of points S such that around each point in S, one can draw an open
neighborhood not intersecting any other point of S.

Show that the zero set of any nonzero holomorphic function f : U → C is an isolated
set, unless there exists a nonempty open subset of U on which f is identically zero.

Problem 31C⋆ (Identity theorem). Let f, g : U → C be holomorphic, and assume that
U is connected. Prove that if f and g agree on some open neighborhood, then f = g.

Problem 31D† (Maximums Occur On Boundaries). Let f : U → C be holomorphic, let
Y ⊆ U be compact, and let ∂Y be boundary5 of Y . Show that

max
z∈Y
|f(z)| = max

z∈∂Y
|f(z)| .

In other words, the maximum values of |f | occur on the boundary. (Such maximums
exist by compactness.)

Problem 31E (Harvard quals). Let f : C→ C be a nonconstant entire function. Prove
that f img(C) is dense in C. (In fact, a much stronger result is true: Little Picard’s
theorem says that the image of a nonconstant entire function omits at most one point.)

Problem 31F (Removable singularity theorem). Let U be open, p ∈ U , and f : U \{p} →
C be holomorphic. Suppose f is bounded. Show that limz→p f(z) exists, and the extension
f : U → C is holomorphic at p.

5The boundary ∂Y is the set of points p such that no open neighborhood of p is contained in Y . It is
also a compact set if Y is compact.
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§32.1 The second nicest functions on earth

If holomorphic functions are like polynomials, then meromorphic functions are like
rational functions. Basically, a meromorphic function is a function of the form A(z)

B(z) where
A,B : U → C are holomorphic and B is not zero. The most important example of a
meromorphic function is 1

z .
We are going to see that meromorphic functions behave like “almost-holomorphic”

functions. Specifically, a meromorphic function A/B will be holomorphic at all points
except the zeros of B (called poles). By the identity theorem, there cannot be too many
zeros of B! So meromorphic functions can be thought of as “almost holomorphic” (like
1
z , which is holomorphic everywhere but the origin). We saw that

1
2πi

∮
γ

1
z
dz = 1

for γ(t) = eit the unit circle. We will extend our results on contours to such situations.
It turns out that, instead of just getting

∮
γ f(z) dz = 0 like we did in the holomorphic

case, the contour integrals will actually be used to count the number of poles inside the
loop γ. It’s ridiculous, I know.

§32.2 Meromorphic functions

Prototypical example for this section: 1
z , with a pole of order 1 and residue 1 at z = 0.

Let U be an open subset of C again.

Definition 32.2.1. A function f : U → C is meromorphic if there exists holomorphic
functions A,B : U → C with B not identically zero in any open neighborhood, and
f(z) = A(z)/B(z) whenever B(z) ̸= 0.

Let’s see how this function f behaves. If z ∈ U has B(z) ̸= 0, then in some small open
neighborhood the function B isn’t zero at all, and thus A/B is in fact holomorphic; thus
f is holomorphic at z. (Concrete example: 1

z is holomorphic in any disk not containing
0.)

On the other hand, suppose p ∈ U has B(p) = 0: without loss of generality, p = 0 to
ease notation. By using the Taylor series at p = 0 we can put

B(z) = ckz
k + ck+1z

k+1 + · · ·

with ck ̸= 0 (certainly some coefficient is nonzero since B is not identically zero!). Then
we can write

1
B(z) = 1

zk
· 1
ck + ck+1z + · · · .

But the fraction on the right is a holomorphic function in this open neighborhood! So all
that’s happened is that we have an extra z−k kicking around.

This gives us an equivalent way of viewing meromorphic functions:

359
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Definition 32.2.2. Let f : U → C as usual. A meromorphic function is a function
which is holomorphic on U except at an isolated set S of points (meaning it is holomorphic
as a function U \ S → C). For each p ∈ S, called a pole of f , the function f is further
required to admit a Laurent series, meaning that

f(z) = c−m
(z − p)m + c−m+1

(z − p)m−1 + · · ·+ c−1
z − p

+ c0 + c1(z − p) + . . .

for all z in some open neighborhood of p, other than z = p. Here m is a positive integer,
and c−m ̸= 0.

Note that the trailing end must terminate. By “isolated set”, I mean that we can draw
open neighborhoods around each pole in S, in such a way that no two open neighborhoods
intersect.

Example 32.2.3 (Example of a meromorphic function)
Consider the function

z + 1
sin z .

It is meromorphic, because it is holomorphic everywhere except at the zeros of sin z.
At each of these points we can put a Laurent series: for example at z = 0 we have

z + 1
sin z = (z + 1) · 1

z − z3

3! + z5

5! − · · ·

= 1
z
· z + 1

1−
(
z2

3! −
z4

5! + z6

7! − · · ·
)

= 1
z
· (z + 1)

∑
k≥0

(
z2

3! −
z4

5! + z6

7! − · · ·
)k

.

If we expand out the horrible sum (which I won’t do), then you get 1
z times a perfectly

fine Taylor series, i.e. a Laurent series.

Abuse of Notation 32.2.4. We’ll often say something like “consider the function
f : C→ C by z 7→ 1

z”. Of course this isn’t completely correct, because f doesn’t have a
value at z = 0. If I was going to be completely rigorous I would just set f(0) = 2015 or
something and move on with life, but for all intents let’s just think of it as “undefined at
z = 0”.

Why don’t I just write g : C \ {0} → C? The reason I have to do this is that it’s still
important for f to remember it’s “trying” to be holomorphic on C, even if isn’t assigned
a value at z = 0. As a function C \ {0} → C the function 1

z is actually holomorphic.

Remark 32.2.5 — I have shown that any function A(z)/B(z) has this charac-
terization with poles, but an important result is that the converse is true too: if
f : U \ S → C is holomorphic for some isolated set S, and moreover f admits a
Laurent series at each point in S, then f can be written as a rational quotient of
holomorphic functions. I won’t prove this here, but it is good to be aware of.

Definition 32.2.6. Let p be a pole of a meromorphic function f , with Laurent series

f(z) = c−m
(z − p)m + c−m+1

(z − p)m−1 + · · ·+ c−1
z − p

+ c0 + c1(z − p) + . . . .
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The integer m is called the order of the pole. A pole of order 1 is called a simple pole.
We also give the coefficient c−1 a name, the residue of f at p, which we write Res(f ; p).

The order of a pole tells you how “bad” the pole is. The order of a pole is the “opposite”
concept of the multiplicity of a zero. If f has a pole at zero, then its Laurent series
near z = 0 might look something like

f(z) = 1
z5 + 8

z3 −
2
z2 + 4

z
+ 9− 3z + 8z2 + · · ·

and so f has a pole of order five. By analogy, if g has a zero at z = 0, it might look
something like

g(z) = 3z3 + 2z4 + 9z5 + · · ·
and so g has a zero of multiplicity three. These orders are additive: f(z)g(z) still has
a pole of order 5 − 3 = 2, but f(z)g(z)2 is completely patched now, and in fact has a
simple zero now (that is, a zero of degree 1).

Exercise 32.2.7. Convince yourself that orders are additive as described above. (This is
obvious once you understand that you are multiplying Taylor/Laurent series.)

Metaphorically, poles can be thought of as “negative zeros”.
We can now give many more examples.

Example 32.2.8 (Examples of meromorphic functions)
(a) Any holomorphic function is a meromorphic function which happens to have no

poles. Stupid, yes.

(b) The function C → C by z 7→ 100z−1 for z ̸= 0 but undefined at zero is a
meromorphic function. Its only pole is at zero, which has order 1 and residue
100.

(c) The function C→ C by z 7→ z−3 + z2 + z9 is also a meromorphic function. Its
only pole is at zero, and it has order 3, and residue 0.

(d) The function C→ C by z 7→ ez

z2 is meromorphic, with the Laurent series at z = 0
given by

ez

z2 = 1
z2 + 1

z
+ 1

2 + z

6 + z2

24 + z3

120 + · · · .

Hence the pole z = 0 has order 2 and residue 1.

Example 32.2.9 (A rational meromorphic function)
Consider the function C→ C given by

z 7→ z4 + 1
z2 − 1 = z2 + 1 + 2

(z − 1)(z + 1)

= z2 + 1 + 1
z − 1 ·

1
1 + z−1

2

= 1
z − 1 + 3

2 + 9
4(z − 1) + 7

8(z − 1)2 − . . .

It has a pole of order 1 and residue 1 at z = 1. (It also has a pole of order 1 at
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z = −1; you are invited to compute the residue.)

Example 32.2.10 (Function with infinitely many poles)
The function C→ C by

z 7→ 1
sin(z)

has infinitely many poles: the numbers z = πk, where k is an integer. Let’s compute
the Laurent series at just z = 0:

1
sin(2πz) = 1

z
1! −

z3

3! + z5

5! − · · ·

= 1
z
· 1

1−
(
z2

3! −
z4

5! + · · ·
)

= 1
z

∑
k≥0

(
z2

3! −
z4

5! + · · ·
)k

.

which is a Laurent series, though I have no clue what the coefficients are. You can
at least see the residue; the constant term of that huge sum is 1, so the residue is 1.
Also, the pole has order 1.

Example 32.2.11 (A function that is not meromorphic)
Consider the function

z 7→ 1
sin(1/z) .

It is a holomorphic function on

U = C \ {0} \ S

where we define S = { 1
πk | k ∈ Z \ {0}}. Similar to z 7→ 1

sin(z) , each point in the set
S has a pole of order 1.

However, at z = 0, the function admits no Laurent series — if it were, there would
be a neighborhood around z = 0 where the function is defined, but there is no such
set.

However, f is meromorphic on C \ {0} — the set S is isolated, but S ∪ {0} is not
isolated.

The Laurent series, if it exists, is unique (as you might have guessed), and by our
result on holomorphic functions it is actually valid for any disk centered at p (minus the
point p). The part c−1

z−p + · · ·+ c−m

(z−p)m is called the principal part, and the rest of the
series c0 + c1(z − p) + · · · is called the analytic part.

§32.3 Winding numbers and the residue theorem
Recall that for a counterclockwise circle γ and a point p inside it, we had∮

γ
(z − p)m dz =

{
0 m ̸= −1
2πi m = −1
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where m is an integer. One can extend this result to in fact show that
∮
γ(z − p)m dz = 0

for any loop γ, where m ̸= −1. So we associate a special name for the nonzero value at
m = −1.
Definition 32.3.1. For a point p ∈ C and a loop γ not passing through it, we define the
winding number, denoted I(γ, p), by

I(γ, p) = 1
2πi

∮
γ

1
z − p

dz

For example, by our previous results we see that if γ is a circle, we have

I(circle, p) =
{

1 p inside the circle
0 p outside the circle.

If you’ve read the chapter on fundamental groups, then this is just the fundamental
group associated to C \ {p}. In particular, the winding number is always an integer.
(Essentially, it uses the complex logarithm to track how the argument of the function
changes. The details are more complicated, so we omit them here). In the simplest case
the winding numbers are either 0 or 1.
Definition 32.3.2. We say a loop γ is regular if I(γ, p) = 1 for all points p in the
interior of γ (for example, if γ is a counterclockwise circle).

With all these ingredients we get a stunning generalization of the Cauchy-Goursat
theorem:

Theorem 32.3.3 (Cauchy’s residue theorem)
Let f : Ω→ C be meromorphic, where Ω is simply connected. Then for any loop γ
not passing through any of its poles, we have

1
2πi

∮
γ
f(z) dz =

∑
pole p

I(γ, p) Res(f ; p).

In particular, if γ is regular then the contour integral is the sum of all the residues,
in the form

1
2πi

∮
γ
f(z) dz =

∑
pole p

inside γ

Res(f ; p).

Question 32.3.4. Verify that this result coincides with what you expect when you integrate∮
γ
cz−1 dz for γ a counter-clockwise circle.

The proof from here is not really too impressive – the “work” was already done in our
statements about the winding number.

Proof. Let the poles with nonzero winding number be p1, . . . , pk (the others do not affect
the sum).1 Then we can write f in the form

f(z) = g(z) +
k∑
i=1

Pi

( 1
z − pi

)
1To show that there must be finitely many such poles: recall that all our contours γ : [a, b] → C are in

fact bounded, so there is some big closed disk D which contains all of γ. The poles outside D thus
have winding number zero. Now we cannot have infinitely many poles inside the disk D, for D is
compact and the set of poles is a closed and isolated set!
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where Pi
(

1
z−pi

)
is the principal part of the pole pi. (For example, if f(z) = z3−z+1

z(z+1) we
would write f(z) = (z − 1) + 1

z −
1

1+z .)
The point of doing so is that the function g is holomorphic (we’ve removed all the

“bad” parts), so ∮
γ
g(z) dz = 0

by Cauchy-Goursat.
On the other hand, if Pi(x) = c1x+ c2x

2 + · · ·+ cdx
d then∮

γ
Pi

( 1
z − pi

)
dz =

∮
γ
c1 ·

( 1
z − pi

)
dz +

∮
γ
c2 ·

( 1
z − pi

)2
dz + . . .

= c1 · I(γ, pi) + 0 + 0 + . . .

= I(γ, pi) Res(f ; pi).

which gives the conclusion.

Remark 32.3.5 (Intuition behind Cauchy’s integral formula) — In the setting of
Theorem 31.5.1, note that if f is meromorphic in the disk D, we can compute the
Laurent series of f at the point a:

f(z) = c−m
(z − a)m + c−m+1

(z − a)m−1 + · · ·+ c−1
z − a

+ c0 + c1(z − a) + · · ·

By the residue theorem, integrating f(z) around the boundary of D results in the
c−1 coefficient in the Laurent series:

1
2πi

∮
γ
f(z) dz = Res(f ; a) = c−1.

Of course, this is useless — f is holomorphic at a, so c−1 = 0. We want to compute
c0 = f(a) instead.

Nevertheless, the trick is that we can manipulate the function f in order to move
the coefficient we want to compute to the coefficient corresponding to (z − a)−1.
How are we going to do that? By dividing by z − a, of course!

So, f(z)
z−a is meromorphic in the disk D, with Laurent series expansion around a

being

f(z)
z − a

= c−m
(z − a)m+1 + c−m+1

(z − a)m + · · ·+ c−1
(z − a)2 + c0

z − a
+ c1 + c2(z − a) + · · ·

Because f(z)
z−a has no other poles in D except at a, the residue theorem immediately

tells us the integral 1
2πi
∮
γ
f(z)
z−a dz equals Res(f(z)

z−a ; a), which equals c0 looking at the
Laurent series above.

§32.4 Argument principle
One tricky application is as follows. Given a polynomial P (x) = (x−a1)e1(x−a2)e2 . . . (x−
an)en , you might know that we have

P ′(x)
P (x) = e1

x− a1
+ e2
x− a2

+ · · ·+ en
x− an

.
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The quantity P ′/P is called the logarithmic derivative, as it is the derivative of logP .
This trick allows us to convert zeros of P into poles of P ′/P with order 1; moreover the
residues of these poles are the multiplicities of the roots.

In an analogous fashion, we can obtain a similar result for any meromorphic function
f .

Proposition 32.4.1 (The logarithmic derivative)
Let f : U → C be a meromorphic function. Then the logarithmic derivative f ′/f is
meromorphic as a function from U to C; its only poles are:

(i) A pole at each zero of f whose residue is the multiplicity, and

(ii) A pole at each pole of f whose residue is the negative of the pole’s order.

Again, you can almost think of a pole as a zero of negative multiplicity. This spirit is
exemplified below.

Proof. Dead easy with Laurent series. Let a be a zero/pole of f , and WLOG set a = 0
for convenience. We take the Laurent series at zero to get

f(z) = ckz
k + ck+1z

k+1 + . . .

where k < 0 if 0 is a pole and k > 0 if 0 is a zero. Taking the derivative gives

f ′(z) = kckz
k−1 + (k + 1)ck+1z

k + . . . .

Now look at f ′/f ; with some computation, it equals

f ′(z)
f(z) = 1

z

kck + (k + 1)ck+1z + . . .

ck + ck+1z + . . .
.

So we get a simple pole at z = 0, with residue k.

Using this trick you can determine the number of zeros and poles inside a regular
closed curve, using the so-called Argument Principle.2

Theorem 32.4.2 (Argument principle)
Let γ be a regular curve. Suppose f : U → C is meromorphic inside and on γ, and
none of its zeros or poles lie on γ. Then

1
2πi

∮
γ

f ′

f
dz = 1

2πi

∮
f◦γ

1
z
dz = Z − P

where Z is the number of zeros inside γ (counted with multiplicity) and P is the
number of poles inside γ (again with multiplicity).

2So-called because the argument of a complex number z is the angle formed by the real axis and the
vector representing z, not because you need to use any argument. If z ∈ C is interpreted as a point in
R2, the argument of z is the same as θ(z) defined in Example 44.7.4.
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Proof. Immediate by applying Cauchy’s residue theorem alongside the preceding propo-
sition. In fact you can generalize to any curve γ via the winding number: the integral
is

1
2πi

∮
γ

f ′

f
dz =

∑
zero z

I(γ, z)−
∑

pole p
I(γ, p)

where the sums are with multiplicity.

Thus the Argument Principle allows one to count zeros and poles inside any region of
choice.

Computers can use this to get information on functions whose values can be computed
but whose behavior as a whole is hard to understand. Suppose you have a holomorphic
function f , and you want to understand where its zeros are. Then just start picking
various circles γ. Even with machine rounding error, the integral will be close enough
to the true integer value that we can decide how many zeros are in any given circle.
Numerical evidence for the Riemann Hypothesis (concerning the zeros of the Riemann
zeta function) can be obtained in this way.

§32.5 Digression: the Argument Principle viewed geometrically
There is another, more geometric, way to understand the Argument Principle.

Assume a function f is holomorphic on a connected open set U containing 0, and
possibly has a zero or a pole at 0. Let γ : [0, 2π]→ U be some curve contained in U , such
that 0 is not in the image of the curve.

Let a = γ(0) be the starting point of γ, and b = γ(2π) be the ending point of γ.
We all know that z 7→ log z is not an actual function — even ignoring the singularity

at 0, it has a branch cut (we will formally handle this in Chapter 33).
Nevertheless, if we close our eyes and shuffling some symbols around, we get:

1
2πi

∮
γ

f ′(z)
f(z) dz = 1

2πi

∮
γ

d

dz
log f(z) dz

= 1
2πi

∮
γ
d(log f(z))

= 1
2πi · (log f(b)− log f(a)).

Miraculously, everything seems to cancel out so nicely! This is not a coincidence.
Now, if γ is a circle, then a = b, so the formula above seemingly states that the integral

will be 0? Fortunately for us, no — log is in fact not a function.
So, does the formula above means anything? It does! While we won’t prove this

rigorously, the point is that:

If we let a point p smoothly moves from a to b, and let log f(p) follows the
value, then log f(b)− log f(a) represents the change in value of log f(p).

In the notation of Section 66.2, we have the mouse moves along γ from a to b, the first
robot moves along f ◦ γ from f(a) to f(b), and the second robot moves from log f(a) to
log f(b).

If we forget about the mouse for a moment, note that:
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The quantity 1
2πi
∮
γ
f ′(z)
f(z) dz is equal to the number of times the first robot

winds around the origin.

That is, I(f ◦ γ, 0). (This is essentially obvious to see, because of all the work we have
done to prove

∮
d log z =

∮ 1
z dz equals the winding number.)

Finally, if we look at some simple examples like z3:

Im

Re0 z0

z1

z6

z30

z31

z36

We can immediately see the relation between the winding number and the multiplicity of
a zero:

If z moves around the origin in a circle once, then zn moves around the
origin in a circle n times.

z−n is not much different — it moves around the origin in a circle n times, just in the
opposite direction.

Piecing all these pieces together, we get the Argument Principle — the logarithmic
derivative can be used to count the multiplicity of the roots and the order of the poles.

§32.6 Philosophy: why are holomorphic functions so nice?
All the fun we’ve had with holomorphic and meromorphic functions comes down to the
fact that complex differentiability is such a strong requirement. It’s a small miracle that
C, which a priori looks only like R2, is in fact a field. Moreover, R2 has the nice property
that one can draw nontrivial loops (it’s also true for real functions that

∫ a
a f dx = 0, but

this is not so interesting!), and this makes the theory much more interesting.
As another piece of intuition from Siu3: If you try to get (left) differentiable functions

over quaternions, you find yourself with just linear functions.

§32.7 A few harder problems to think about
Problem 32A (Fundamental theorem of algebra). Prove that if f is a nonzero polynomial
of degree n then it has n roots.

Problem 32B† (Rouché’s theorem). Let f, g : U → C be holomorphic functions, where
U contains the unit disk. Suppose that |f(z)| > |g(z)| for all z on the unit circle. Prove

3Harvard professor.
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that f and f + g have the same number of zeros which lie strictly inside the unit circle
(counting multiplicities).

Problem 32C (Wedge contour). For each odd integer n ≥ 3, evaluate the improper
integral ∫ ∞

0

1
1 + xn

dx.

Problem 32D (Another contour). Prove that the integral∫ ∞

−∞

cosx
x2 + 1 dx

converges and determine its value.

Problem 32E⋆. Let f : U → C be a nonconstant holomorphic function.

(a) (Open mapping theorem) Prove that f img(U) is open in C.4

(b) (Maximum modulus principle) Show that |f | cannot have a maximum over U . That
is, show that for any z ∈ U , there is some z′ ∈ U such that |f(z)| < |f(z′)|.

4Thus the image of any open set V ⊆ U is open in C (by repeating the proof for the restriction of f to
V ).



33 Holomorphic square roots and
logarithms

In this chapter we’ll make sense of a holomorphic square root and logarithm. The main
results are Theorem 33.3.2, Theorem 33.4.2, Corollary 33.5.1, and Theorem 33.5.2. If you
like, you can read just these four results, and skip the discussion of how they came to be.

Let f : U → C be a holomorphic function. A holomorphic nth root of f is a function
g : U → C such that f(z) = g(z)n for all z ∈ U . A logarithm of f is a function g : U → C
such that f(z) = eg(z) for all z ∈ U . The main question we’ll try to figure out is: when
do these exist? In particular, what if f = id?

§33.1 Motivation: square root of a complex number
To start us off, can we define

√
z for any complex number z?

The first obvious problem that comes up is that for any z, there are two numbers w
such that w2 = z. How can we pick one to use? For our ordinary square root function,
we had a notion of “positive”, and so we simply took the positive root.

Let’s expand on this: given z = r (cos θ + i sin θ) (here r ≥ 0) we should take the root
to be

w =
√
r (cosα+ i sinα) .

such that 2α ≡ θ (mod 2π); there are two choices for α (mod 2π), differing by π.
For complex numbers, we don’t have an obvious way to pick α. Nonetheless, perhaps

we can also get away with an arbitrary distinction: let’s see what happens if we just
choose the α with −1

2π < α ≤ 1
2π.

Pictured below are some points (in red) and their images (in blue) under this “upper-
half” square root. The condition on α means we are forcing the blue points to lie on the
right-half plane.

Im

Re0

z0

z1
z2

z3

z4

z5
z6

z7

w0

w1

w2

w3w4w5

w6

w7

Here, w2
i = zi for each i, and we are constraining the wi to lie in the right half of

the complex plane. We see there is an obvious issue: there is a big discontinuity near
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the points w5 and w7! The nearby point w6 has been mapped very far away. This
discontinuity occurs since the points on the negative real axis are at the “boundary”. For
example, given −4, we send it to −2i, but we have hit the boundary: in our interval
−1

2π ≤ α <
1
2π, we are at the very left edge.

The negative real axis that we must not touch is what we will later call a branch cut,
but for now I call it a ray of death. It is a warning to the red points: if you cross this
line, you will die! However, if we move the red circle just a little upwards (so that it
misses the negative real axis) this issue is avoided entirely, and we get what seems to be
a “nice” square root.

Im

Re0

z0

z1
z2

z3

z4

z5
z6

z7
w0

w1

w2

w3w4w5

w6
w7

In fact, the ray of death is fairly arbitrary: it is the set of “boundary issues” that arose
when we picked −1

2π < α ≤ 1
2π. Suppose we instead insisted on the interval 0 ≤ α < π;

then the ray of death would be the positive real axis instead. The earlier circle we had
now works just fine.

Im

Re0

z0

z1
z2

z3

z4

z5
z6

z7

w0

w1

w2

w3w4w5
w6

w7

What we see is that picking a particular α-interval leads to a different set of edge cases,
and hence a different ray of death. The only thing these rays have in common is their
starting point of zero. In other words, given a red circle and a restriction of α, I can
make a nice “square rooted” blue circle as long as the ray of death misses it.

So, what exactly is going on?
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§33.2 Square roots of holomorphic functions

To get a picture of what’s happening, we would like to consider a more general problem:
let f : U → C be holomorphic. Then we want to decide whether there is a holomorphic
g : U → C such that

f(z) = g(z)2.

Our previous discussion with f = id tells us we cannot hope to achieve this for U = C;
there is a “half-ray” which causes problems. However, there are certainly functions
f : C→ C such that a g exists. As a simplest example, f(z) = z2 should definitely have
a square root!

Now let’s see if we can fudge together a square root. Earlier, what we did was try to
specify a rule to force one of the two choices at each point. This is unnecessarily strict.
Perhaps we can do something like: start at a point in z0 ∈ U , pick a square root w0 of
f(z0), and then try to “fudge” from there the square roots of the other points. What
do I mean by fudge? Well, suppose z1 is a point very close to z0, and we want to pick
a square root w1 of f(z1). While there are two choices, we also would expect w0 to be
close to w1. Unless we are highly unlucky, this should tell us which choice of w1 to pick.
(Stupid concrete example: if I have taken the square root −4.12i of −17 and then ask
you to continue this square root to −16, which sign should you pick for ±4i?)

There are two possible ways we could get unlucky in the scheme above: first, if w0 = 0,
then we’re sunk. But even if we avoid that, we have to worry that if we run a full loop
in the complex plane, we might end up in a different place from where we started. For
concreteness, consider the following situation, again with f = id:

Im

Re0
z0

z1

z2

z3

z4

z5

z6

z7

w0

w1

w2

w3
w4w5

w6

w7

We started at the point z0, with one of its square roots as w0. We then wound a full
red circle around the origin, only to find that at the end of it, the blue arc is at a different
place where it started!

The interval construction from earlier doesn’t work either: no matter how we pick the
interval for α, any ray of death must hit our red circle. The problem somehow lies with
the fact that we have enclosed the very special point 0.

Nevertheless, we know that if we take f(z) = z2, then we don’t run into any problems
with our “make it up as you go” procedure. So, what exactly is going on?
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§33.3 Covering projections
By now, if you have read the part on algebraic topology, this should all seem quite
familiar. The “fudging” procedure exactly describes the idea of a lifting.

More precisely, recall that there is a covering projection

(−)2 : C \ {0} → C \ {0}.

Let V = {z ∈ U | f(z) ̸= 0}. For z ∈ U \ V , we already have the square root g(z) =√
f(z) =

√
0 = 0. So the burden is completing g : V → C.

Then essentially, what we are trying to do is construct a lifting g in the diagram

E = C \ {0}

V B = C \ {0}.

p=•2g

f

Our map p can be described as “winding around twice”. Our Theorem 66.2.5 now tells
us that this lifting exists if and only if

f img
∗ (π1(V )) ⊆ pimg

∗ (π1(E))

is a subset of the image of π1(E) by p. Since B and E are both punctured planes, we
can identify them with S1.

Question 33.3.1. Show that the image under p is exactly 2Z once we identify π1(B) = Z.

That means that for any loop γ in V , we need f ◦ γ to have an even winding number
around 0 ∈ B. This amounts to

1
2π

∮
γ

f ′

f
dz ∈ 2Z

since f has no poles.
Replacing 2 with n and carrying over the discussion gives the first main result.

Theorem 33.3.2 (Existence of holomorphic nth roots)
Let f : U → C be holomorphic. Then f has a holomorphic nth root if and only if

1
2πi

∮
γ

f ′

f
dz ∈ nZ

for every contour γ in U .

§33.4 Complex logarithms
The multivalued nature of the complex logarithm comes from the fact that

exp(z + 2πi) = exp(z).

So if ew = z, then any complex number w + 2πik is also a solution.
We can handle this in the same way as before: it amounts to a lifting of the following

diagram.
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E = C

U B = C \ {0}

p=expg

f

There is no longer a need to work with a separate V since:

Question 33.4.1. Show that if f has any zeros then g can’t possibly exist.

In fact, the map exp: C → C \ {0} is a universal cover, since C is simply connected.
Thus, pimg(π1(C)) is trivial. So in addition to being zero-free, f cannot have any winding
number around 0 ∈ B at all. In other words:

Theorem 33.4.2 (Existence of logarithms)
Let f : U → C be holomorphic. Then f has a logarithm if and only if

1
2πi

∮
γ

f ′

f
dz = 0

for every contour γ in U .

§33.5 Some special cases
The most common special case is

Corollary 33.5.1 (Nonvanishing functions from simply connected domains)
Let f : Ω → C be continuous, where Ω is simply connected. If f(z) ̸= 0 for every
z ∈ Ω, then f has both a logarithm and holomorphic nth root.

Finally, let’s return to the question of f = id from the very beginning. What’s the best
domain U such that √

− : U → C

is well-defined? Clearly U = C cannot be made to work, but we can do almost as well.
For note that the only zero of f = id is at the origin. Thus if we want to make a logarithm
exist, all we have to do is make an incision in the complex plane that renders it impossible
to make a loop around the origin. The usual choice is to delete negative half of the real
axis, our very first ray of death; we call this a branch cut, with branch point at 0 ∈ C
(the point which we cannot circle around). This gives

Theorem 33.5.2 (Branch cut functions)
There exist holomorphic functions

log : C \ (−∞, 0]→ C
n
√
− : C \ (−∞, 0]→ C

satisfying the obvious properties.
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There are many possible choices of such functions (n choices for the nth root and infinitely
many for log); a choice of such a function is called a branch. So this is what is meant
by a “branch” of a logarithm.

The principal branch is the “canonical” branch, analogous to the way we arbitrarily
pick the positive branch to define

√
− : R≥0 → R≥0. For log, we take the w such that

ew = z and the imaginary part of w lies in (−π, π] (since we can shift by integer multiples
of 2πi). Often, authors will write Log z to emphasize this choice.

§33.6 A few harder problems to think about
Problem 33A. Show that a holomorphic function f : U → C has a holomorphic
logarithm if and only if it has a holomorphic nth root for every integer n.

Problem 33B. Show that the function f : U → C by z 7→ z(z − 1) has a holomorphic
square root, where U is the entire complex plane minus the closed interval [0, 1].



34 Bonus: Topological Abel-Ruffini
Theorem

We’ve already shown the Fundamental Theorem of Algebra. Now, with our earlier
intuition on holomorphic nth roots, we can now show that there is no general formula
for the roots of a quintic polynomial.

§34.1 The Game Plan

Firstly, what do we even mean by “formula” here?

Definition 34.1.1. A quintic formula would be a formula taking in the coefficients
(a0, . . . , a5) of a degree 5 polynomial P , using the operations +, −, ×, ÷, n

√ finitely
many times, that maps to the five roots (z1, · · · , z5) of P .

Now, any proposed quintic formula F receives the same coefficients when the roots are
the same, and thus gives the same output. This is fine at first glance, but swapping two
roots continuously might pose more issues. F must create and preserve some order of
the roots under these permutations.

Question 34.1.2. Convince yourself any F indeed must track which root is which when
moving roots along smooth paths.

Remark 34.1.3 — This isn’t true if we bring even more complicated functions such
as Bring Radicals to the table. But this wasn’t really considered “fair game.”

§34.2 Step 1: The Simplest Case

Let’s first ignore the n
√ operator for motivation. Suppose I told you that some rational

function R always finds a root of a quintic polynomial P (z) = (z− z1)(z− z2)(z− z3)(z−
z4)(z − z5). For simplicity, let all the roots be distinct.

Suppose that initially R outputs z1. Consider what happens we smoothly swap the
roots z1 and z2 along two non-intersecting paths that doesn’t go through other roots.
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Im

Re0

z1

z2

z3

z4
z5

Since R is continuous, it must be tracking the same root. However, once we finish
swapping z1 and z2, the coefficients of P are the same as they were initially. But this
means that R has been tricked into changing the root it outputs, contradiction!

The bigger picture here is that we were able to find an operation that fixes R while
changing the order of the roots in S5.

§34.3 Step 2: Nested Roots

Once we add n
√ back to the picture, this idea no longer works right out of the box.

Example 34.3.1 (Quadratic Formula)
If you’ve done any competition math, you know that for a polynomial P (z) =
az2 + bz + c = (z − z1)(z − z2), it follows that the two branches of

−b±
√
b2 − 4ac

2a

give z1 and z2.
So why can’t swapping z1 and z2 yield a contradiction here? It’s because while all

the coefficients end up in the starting position, the liftings of how
√
b2 − 4ac travels

may not.

Exercise 34.3.2. Consider the polynomial z2− 1. Then smoothly swap the roots to get the
intermediary polynomials of (z− eit)(z + eit). See that the two roots given by the quadratic
formula also swap position.

Let’s now consider the next simplest case of the nth root of a rational function n
√
R,

and try to fix it with a nontrivial permutation of the roots.
Swapping the roots z1 and z2, we keep R the same, but R’s path α around the origin

may have accumulated some change in phase 2πa. If we were to unswap z1 and z2 in the
same manner, we’d undo the change in phase, but we’d also be back to doing nothing.

However, while changes in phase are abelian, permutations are not. Let’s consider
another operation of swapping the roots z2 and z3. Taking a commutator of the
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two operations, we keep all the phases the same, but end up with a permutation
(12)(23)(12)−1(23)−1.

If we mark the second operation’s path with β, this corresponds to αβα−1β−1.

Im

Re0 R

α

β

Exercise 34.3.3. Show that this permutation operation is nontrivial.

We now have better tools: We have permutations in S5 that fix the nth roots of
rational functions, and their compositions under +, −, ×, ÷.

How do we handle the nested radicals now?

Example 34.3.4 (Cubic Formula)
The cubic formula contains a nasty term

3

√√√√2b3 − 9abc+ 27a2d+
√

(2b3 − 9abc+ 27ad)2 − 4(b3 − 3ac)3

2 .

Here, we’ve taken multiple roots.

Definition 34.3.5. Define the degree of a nested radical as the maximum number of
times radicals can be found in other radicals.

Let’s now consider nested radicals of degree 2, such as say 3
√√

ab+ c−
√
d. We know

that we have nontrivial commutators σ and ρ that fix the interior of the cube root, but
once again the phase may not be preserved under each operation individually. Once
again, we can again consider the commutators of these commutators, say σρσ−1ρ−1 which
by the same logic fixes the issues with phase.

There’s no reason, we can’t consider the commutators of commutators of commutators
to fix radicals of degree 3 and so on. It thus just remains that we always can keep getting
nontrivial commutators.

§34.4 Step 3: Normal Groups
We’ve reduced this to a group theory problem. Given a chain of commutators

S5 = G ⊇ G(1) ⊇ G(2) ⊇ . . .
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where each group is the commutator subgroup of the next, we want to show that G(n)

never becomes trivial. This chain is called the derived series.

Exercise 34.4.1. Show that for the commutator subgroup [G,G] of a group G, we have
that [G,G] ⊴ G, and that G/[G,G] is Abelian.

Definition 34.4.2. A group G is solvable if its derived series is nontrivial.

So all that remains is showing that S5 is not solvable. This is a calculation that isn’t
relevant to the topology ideas in this chapter, so we defer it to Problem 34A.

§34.5 Summary
While this is indeed a valid proof, it has some pros and cons. As a con, we haven’t shown
that any polynomial such as z5 − z − 1 has a root that can’t be expressed using nested
nth roots. We’ve only that we don’t have a formula for all degree 5 polynomials.

As a pro, this argument makes it easy to add even more functions such as exp, sin,
and cos to the mix and show even then that no such formula exists. It also allows you to
broadly understand what people mean when they compare this theorem to a fact that
A5 is not solvable.

§34.6 A few harder problems to think about
Problem 34A. Show that A5 is not solvable.
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