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19 Representations of algebras

In the 19th century, the word “group” hadn’t been invented yet; all work was done
with subsets of GL(n) or Sn. Only much later was the abstract definition of a group was
given, an abstract set G which was an object in its own right.

While this abstraction is good for some reasons, it is often also useful to work with
concrete representations. This is the subject of representation theory. Linear algebra is
easier than abstract algebra, so if we can take a group G and represent it concretely as
a set of matrices in GL(n), this makes them easier to study. This is the representation
theory of groups: how can we take a group and represent its elements as matrices?

§19.1 Algebras

Prototypical example for this section: k[x1, . . . , xn] and k[G].

Rather than working directly with groups from the beginning, it will be more convenient
to deal with so-called k-algebras. This setting is more natural and general than that of
groups, so once we develop the theory of algebras well enough, it will be fairly painless
to specialize to the case of groups.

Colloquially,

An associative k-algebra is a possibly noncommutative ring with a copy
of k inside it. It is thus a k-vector space.

I’ll present examples before the definition:

Example 19.1.1 (Examples of k-algebras)
Let k be any field. The following are examples of k-algebras:

(a) The field k itself.

(b) The polynomial ring k[x1, . . . , xn].

(c) The set of n× n matrices with entries in k, which we denote by Matn(k). Note
the multiplication here is not commutative.

(d) The set Mat(V ) of linear maps T : V → V , with multiplication given by the
composition of operators. (Here V is some vector space over k.) This is really
the same as the previous example.

Definition 19.1.2. Let k be a field. A k-algebra A is a possibly noncommutative
ring, equipped with a ring homomorphism k ↪→ A, whose image is the “copy of k”. (In
particular, 1k 7→ 1A.)

Thus we can consider k as a subset of A, and we then additionally require λ · a = a · λ
for each λ ∈ k and a ∈ A.

If the multiplication operation is also commutative, then we say A is a commutative
algebra.
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Definition 19.1.3. Equivalently, a k-algebra A is a k-vector space which also has an
associative, bilinear multiplication operation (with an identity 1A). The “copy of k” is
obtained by considering elements λ1A for each λ ∈ k (i.e. scaling the identity by the
elements of k, taking advantage of the vector space structure).

Abuse of Notation 19.1.4. Some other authors don’t require A to be associative or to
have an identity, so to them what we have just defined is an “associative algebra with 1”.
However, this is needlessly wordy for our purposes.

Example 19.1.5 (Group algebra)
The group algebra k[G] is the k-vector space whose basis elements are the elements
of a group G, and where the product of two basis elements is the group multiplication.
For example, suppose G = Z/2Z = {1G, x}. Then

k[G] = {a1G + bx | a, b ∈ k}

with multiplication given by

(a1G + bx)(c1G + dx) = (ac+ bd)1G + (bc+ ad)x.

Question 19.1.6. When is k[G] commutative?

The example k[G] is very important, because (as we will soon see) a representation of
the algebra k[G] amounts to a representation of the group G itself.

It is worth mentioning at this point that:

Definition 19.1.7. A homomorphism of k-algebras A, B is a linear map T : A→ B
which respects multiplication (i.e. T (xy) = T (x)T (y)) and which sends 1A to 1B. In
other words, T is both a homomorphism as a ring and as a vector space.

We will also need to recall the “product ring” from Example 4.3.8, but for algebras,
we will prefer a different name and notation.

Definition 19.1.8. Given k-algebras A and B, the direct sum A ⊕ B is defined as
pairs a + b, where addition is done in the obvious way, but we declare ab = 0 for any
a ∈ A and b ∈ B.

Question 19.1.9. Show that 1A + 1B is the multiplicative identity of A⊕B.

Equivalently, similar to Definition 9.3.1 and Example 4.3.8, you can define the direct sum
A⊕B to be the set of pairs (a, b), where multiplication is defined by (a, b)(a′, b′) = (aa′, bb′).
In this notation, (1A, 1B) would be the multiplicative identity of A⊕B.

§19.2 Representations
Prototypical example for this section: k[S3] acting on k⊕3 is my favorite.

Definition 19.2.1. A representation of a k-algebra A (also a left A-module) is:

(i) A k-vector space V , and
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(ii) An action · of A on V : thus, for every a ∈ A we can take v ∈ V and act on it to
get a · v. This satisfies the usual axioms:

• (a+ b) · v = a · v + b · v, a · (v + w) = a · v + a · w, and (ab) · v = a · (b · v).
• λ · v = λv for λ ∈ k. In particular, 1A · v = v.

Definition 19.2.2. The action of A can be more succinctly described as saying that
there is a k-algebra homomorphism ρ : A→ Mat(V ). (So a · v = ρ(a)(v).) Thus we can
also define a representation of A as a pair

(V, ρ : A→ Mat(V )) .

This is completely analogous to how a group action G on a set X with n elements just
amounts to a group homomorphism G→ Sn. From this perspective, what we are really
trying to do is:

If A is an algebra, we are trying to represent the elements of A as matrices.

Abuse of Notation 19.2.3. While a representation is a pair (V, ρ) of both the vector
space V and the action ρ, we frequently will just abbreviate it to “V ”. This is probably
one of the worst abuses I will commit, but everyone else does it and I fear the mob.

Abuse of Notation 19.2.4. Rather than ρ(a)(v) we will just write ρ(a)v.

Example 19.2.5 (Representations of Mat(V ))
(a) Let A = Mat2(R). Then there is a representation (R⊕2, ρ) where a matrix a ∈ A

just acts by a · v = ρ(a)(v) = a(v).

(b) More generally, given a vector space V over any field k, there is an obvious
representation of A = Mat(V ) by a · v = ρ(a)(v) = a(v) (since a ∈ Mat(V )).
From the matrix perspective: if A = Mat(V ), then we can just represent A as
matrices over V .

(c) There are other representations of A = Mat2(R). A silly example is the repre-
sentation (R⊕4, ρ) given by

ρ :
[
a b
c d

]
7→


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 .
More abstractly, viewing R⊕4 as (R⊕2)⊕ (R⊕2), this is a · (v1, v2) = (a · v1, a · v2).

Example 19.2.6 (Representations of polynomial algebras)
(a) Let A = k. Then a representation of k is just any k-vector space V .

(b) If A = k[x], then a representation (V, ρ) of A amounts to a vector space V plus
the choice of a linear map T ∈ Mat(V ) (by T = ρ(x)).

(c) If A = k[x]/(x2) then a representation (V, ρ) of A amounts to a vector space V
plus the choice of a linear map T ∈ Mat(V ) satisfying T 2 = 0.
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(d) We can create arbitrary “functional equations” with this pattern. For example,
if A = k[x, y]/(x2 − x + y, y4) then representing A by V amounts to finding
commuting operators S, T ∈ Mat(V ) satisfying S2 = S − T and T 4 = 0.

Example 19.2.7 (Representations of groups)
(a) Let A = R[S3]. Then let

V = R⊕3 = {(x, y, z) | x, y, z ∈ R}.

We can let A act on V as follows: given a permutation π ∈ S3, we permute the
corresponding coordinates in V . So for example, if

If π = (1 2) then π · (x, y, z) = (y, x, z).

This extends linearly to let A act on V , by permuting the coordinates.
From the matrix perspective, what we are doing is representing the permutations
in S3 as permutation matrices on k⊕3, like

(1 2) 7→

0 1 0
1 0 0
0 0 1

 .
(b) More generally, let A = k[G]. Then a representation (V, ρ) of A amounts to a

group homomorphism ψ : G → GL(V ). (In particular, ρ(1G) = idV .) We call
this a group representation of G.

Example 19.2.8 (Regular representation)
Any k-algebra A is a representation (A, ρ) over itself, with a · b = ρ(a)(b) = ab (i.e.
multiplication given by A). This is called the regular representation, denoted
Reg(A).

§19.3 Direct sums
Prototypical example for this section: The example with R[S3] seems best.

Definition 19.3.1. Let A be k-algebra and let V = (V, ρV ) and W = (W,ρW ) be two
representations of A. Then V ⊕W is a representation, with action ρ given by

a · (v, w) = (a · v, a · w).

This representation is called the direct sum of V and W .

Example 19.3.2
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Earlier we let Mat2(R) act on R⊕4 by

ρ :
[
a b
c d

]
7→


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 .
So this is just a direct sum of two two-dimensional representations.

You can also view the vectors of R⊕4 as two vectors in R⊕2 “stacked horizontally”

as
(
e f
g h

)
, so the action would be given by

[
a b
c d

]
·
(
e f
g h

)
=
(
ae+ bg af + bh
ce+ dg cf + dh

)
.

Remark 19.3.3 — Perhaps this is the reason why people tend to write V as the
representation without the accompanied ρV , as long as it’s possible to embed the
k-algebra A into a subalgebra of Matd(k), then V can be isomorphically embedded
as a subrepresentation of (k⊕d)⊕m, being m copies of the obvious k⊕d representation
stacked horizontally.

More generally, given representations (V, ρV ) and (W,ρW ) the representation ρ of
V ⊕W looks like

ρ(a) =
[
ρV (a) 0

0 ρW (a)

]
.

Example 19.3.4 (Representation of Sn decomposes)
Let A = R[S3] again, acting via permutation of coordinates on

V = R⊕3 = {(x, y, z) | x, y, z ∈ R}.

Consider the two subspaces

W1 = {(t, t, t) | t ∈ R}
W2 = {(x, y, z) | x+ y + z = 0} .

Note V = W1 ⊕W2 as vector spaces. But each of W1 and W2 is a subrepresentation
(since the action of A keeps each Wi in place), so V = W1 ⊕W2 as representations
too.

Direct sums also come up when we play with algebras.

Proposition 19.3.5 (Representations of A⊕B are VA ⊕ VB)
Let A and B be k-algebras. Then every representation of A⊕B is of the form

VA ⊕ VB

where VA and VB are representations of A and B, respectively.
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Example 19.3.6
Take A = B = Mat2(R). There are two obvious representations of the k-algebra
A⊕B, VA and VB, corresponds to the action of A and B respectively.

Each of VA and VB are isomorphic to R⊕2 as R-vector spaces.
What this proposition says is that, you cannot “mix” the action of A and B in

order to get some representation V ∼= R2 of A⊕B, such as by (a+ b) ·v = a ·v+2b ·v
for a ∈ A and b ∈ B.

Sketch of Proof. Let (V, ρ) be a representation of A⊕B. For any v ∈ V , ρ(1A + 1B)v =
ρ(1A)v + ρ(1B)v. One can then set VA = {ρ(1A)v | v ∈ V } and VB = {ρ(1B)v | v ∈ V }.
These are disjoint, since if ρ(1A)v = ρ(1B)v′, we have ρ(1A)v = ρ(1A1A)v = ρ(1A1B)v′ =
0V , and similarly for the other side.

In the example above, if you see the representation VA ⊕ VB as R4, then any element
in A acting on an element in VA ⊕ VB would zero out the VB-component of the vector.

So, the key idea of the proof is:

The A and B component of A⊕B is used to act on V , in order to project
the vector space V into the components VA and VB to separate out the
subrepresentations.

§19.4 Irreducible and indecomposable representations
Prototypical example for this section: k[S3] decomposes as the sum of two spaces.

One of the goals of representation theory will be to classify all possible representations
of an algebra A. If we want to have a hope of doing this, then we want to discard “silly”
representations such as

ρ :
[
a b
c d

]
7→


a b 0 0
c d 0 0
0 0 a b
0 0 c d


and focus our attention instead on “irreducible” representations. This motivates:

Definition 19.4.1. Let V be a representation of A. A subrepresentation W ⊆ V is
a subspace W with the property that for any a ∈ A and w ∈ W , a · w ∈ W . In other
words, this subspace is invariant under actions by A.

Thus for example if V = W1 ⊕W2 for representations W1, W2 then W1 and W2 are
subrepresentations of V .

Definition 19.4.2. If V has no proper nonzero subrepresentations then it is irreducible.
If there is no pair of proper subrepresentations W1, W2 such that V = W1⊕W2, then we
say V is indecomposable.

Definition 19.4.3. For brevity, an irrep of an algebra/group is a finite-dimensional
irreducible representation.
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Example 19.4.4 (Representation of Sn decomposes)
Let A = R[S3] again, acting via permutation of coordinates on

V = R⊕3 = {(x, y, z) | x, y, z ∈ R}.

Consider again the two subspaces

W1 = {(t, t, t) | t ∈ R}
W2 = {(x, y, z) | x+ y + z = 0} .

As we’ve seen, V = W1 ⊕W2, and thus V is not irreducible. But one can show that
W1 and W2 are irreducible (and hence indecomposable) as follows.

• For W1 it’s obvious, since W1 is one-dimensional.

• For W2, consider any vector w = (a, b, c) with a+ b+ c = 0 and not all zero.
Then WLOG we can assume a ̸= b (since not all three coordinates are equal).
In that case, (1 2) sends w to w′ = (b, a, c). Then w and w′ span W2.

Thus V breaks down completely into irreps.

Unfortunately, if W is a subrepresentation of V , then it is not necessarily the case that
we can find a supplementary vector space W ′ such that V = W ⊕W ′. Put another way,
if V is reducible, we know that it has a subrepresentation, but a decomposition requires
two subrepresentations. Here is a standard counterexample:

Exercise 19.4.5. Let A = R[x], and V = R⊕2 be the representation with action

ρ(x) =
[
1 1
0 1

]
.

Show that the only subrepresentation is W = {(t, 0) | t ∈ R}. So V is not irreducible, but it
is indecomposable.

Here is a slightly more optimistic example, and the “prototypical example” that you
should keep in mind.

Exercise 19.4.6. Let A = Matd(k) and consider the obvious representation k⊕d of A that
we described earlier. Show that it is irreducible. (This is obvious if you understand the
definitions well enough.)

§19.5 Morphisms of representations
We now proceed to define the morphisms between representations.
Definition 19.5.1. Let (V, ρV ) and (W,ρW ) be representations of A. An intertwining
operator, or morphism, is a linear map T : V →W such that

T (a · v) = a · T (v)

for any a ∈ A, v ∈ V . (Note that the first · is the action of ρV and the second · is the
action of ρW .) This is exactly what you expect if you think that V and W are “left
A-modules”. If T is invertible, then it is an isomorphism of representations and we say
V ∼= W .



240 Napkin, by Evan Chen (v1.6.20241027)

Remark 19.5.2 (For commutative diagram lovers) — The condition T (a ·v) = a ·T (v)
can be read as saying that

V V

W W

ρ1(a)

T T

ρ2(a)

commutes for any a ∈ A.

Remark 19.5.3 (For category lovers) — A representation is just a “bilinear” functor
from an abelian one-object category {∗} (so Hom(∗, ∗) ∼= A) to the abelian category
Vectk. Then an intertwining operator is just a natural transformation.

Here are some examples of intertwining operators.

Example 19.5.4 (Intertwining operators)
(a) For any λ ∈ k, the scalar map T (v) = λv is intertwining.

(b) If W ⊆ V is a subrepresentation, then the inclusion W ↪→ V is an intertwining
operator.

(c) The projection map V1 ⊕ V2 ↠ V1 is an intertwining operator.

(d) Let V = R⊕2 and represent A = k[x] by (V, ρ) where

ρ(x) =
[

0 1
−1 0

]
.

Thus ρ(x) is rotation by 90◦ around the origin. Let T be rotation by 30◦. Then
T : V → V is intertwining (the rotations commute).

Example 19.5.5 (A non-example: Representation of Mat(V ))
Let A = Mat2(R)⊕Mat2(R). Then A can be viewed as a subset of Mat4(R) of the
matrices of the form 

a b 0 0
c d 0 0
0 0 e f
0 0 g h

 .
There are two obvious irreps of A, given by V1 consisting of the vectors in R4 of the
form (m,n, 0, 0), and V2 consisting of the vectors in R4 of the form (0, 0, p, q).

In this case, even though V1 and V2 are isomorphic as R-vector spaces, they’re
not isomorphic as representations of A – so any intertwining operator from V1 to V2
must be identically zero.



19 Representations of algebras 241

Exercise 19.5.6 (Kernel and image are subrepresentations). Let T : V →W be an inter-
twining operator.

(a) Show that kerT ⊆ V is a subrepresentation of V .

(b) Show that imT ⊆W is a subrepresentation of W .

The previous exercise gives us the famous Schur’s lemma.

Theorem 19.5.7 (Schur’s lemma)
Let V and W be representations of a k-algebra A. Let T : V → W be a nonzero
intertwining operator. Then

(a) If V is irreducible, then T is injective.

(b) If W is irreducible, then T is surjective.

In particular if both V and W are irreducible then T is an isomorphism.

An important special case is if k is algebraically closed: then the only intertwining
operators T : V → V are multiplication by a constant.

Theorem 19.5.8 (Schur’s lemma for algebraically closed fields)
Let k be an algebraically closed field. Let V be an irrep of a k-algebra A. Then any
intertwining operator T : V → V is multiplication by a scalar.

Exercise 19.5.9. Use the fact that T has an eigenvalue λ to deduce this from Schur’s
lemma. (Consider T − λ · idV , and use Schur to deduce it’s zero.)

We have already seen the counterexample of rotation by 90◦ for k = R; this was the same
counterexample we gave to the assertion that all linear maps have eigenvalues.

§19.6 The representations of Matd(k)
To give an example of the kind of progress already possible, we prove:

Theorem 19.6.1 (Representations of Matd(k))
Let k be any field, d be a positive integer and let W = k⊕d be the obvious rep-
resentation of A = Matd(k). Then the only finite-dimensional representations of
Matd(k) are W⊕n for some positive integer n (up to isomorphism). In particular, it
is irreducible if and only if n = 1.

For concreteness, I’ll just sketch the case d = 2, since the same proof applies verbatim to
other situations. This shows that the examples of representations of Mat2(R) we gave
earlier are the only ones.

As we’ve said this is essentially a functional equation. The algebra A = Mat2(k) has
basis given by four matrices

E1 =
[
1 0
0 0

]
, E2 =

[
0 0
0 1

]
, E3 =

[
0 1
0 0

]
, E4 =

[
0 0
1 0

]
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satisfying relations like E1 + E2 = idA, E2
i = Ei, E1E2 = 0, etc. So let V be a

representation of A, and let Mi = ρ(Ei) for each i; we want to classify the possible
matrices Mi on V satisfying the same functional equations. This is because, for example,

idV = ρ(idA) = ρ(E1 + E2) = M1 +M2.

By the same token M1M3 = M3. Proceeding in a similar way, we can obtain the following
multiplication table:

× M1 M2 M3 M4
M1 M1 0 M3 0
M2 0 M2 0 M4
M3 0 M3 0 M1
M4 M4 0 M2 0

and M1 +M2 = idV

Note that eachMi is a linear map V → V ; for all we know, it could have hundreds of entries.
Nonetheless, given the multiplication table of the basis Ei we get the corresponding table
for the Mi.

So, in short, the problem is as follows:

Find all vector spaces V and quadruples of matrices Mi satisfying the
multiplication table above.

Let W1 = M img
1 (V ) and W2 = M img

2 (V ) be the images of M1 and M2.

Claim 19.6.2. V = W1 ⊕W2.

Proof. First, note that for any v ∈ V we have

v = ρ(id)(v) = (M1 +M2)v = M1v +M2v.

Moreover, we have that W1 ∩ W2 = {0}, because if M1v1 = M2v2 then M1v1 =
M1(M1v1) = M1(M2v2) = 0.

Claim 19.6.3. W1 ∼= W2.

Proof. Check that the maps

W1
×M4−−−→W2 and W2

×M3−−−→W1

are well-defined and mutually inverse.

Now, let e1, . . . , en be basis elements of W1; thus M4e1, . . . , M4en are basis elements
of W2. However, each {ej ,M4ej} forms a basis of a subrepresentation isomorphic to
W = k⊕2 (what’s the isomorphism?).

This finally implies that all representations of A are of the form W⊕n. In particular,
W is irreducible because there are no representations of smaller dimension at all!

§19.7 A few harder problems to think about
Problem 19A†. Suppose we have one-dimensional representations V1 = (V1, ρ1) and
V2 = (V2, ρ2) of A. Show that V1 ∼= V2 if and only if ρ1(a) and ρ2(a) are multiplication
by the same constant for every a ∈ A.
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Problem 19B† (Schur’s lemma for commutative algebras). Let A be a commutative
algebra over an algebraically closed field k. Prove that any irrep of A is one-dimensional.

Problem 19C⋆. Let (V, ρ) be a representation of A. Then Mat(V ) is a representation
of A with action given by

a · T = ρ(a) ◦ T

for T ∈ Mat(V ).

(a) Show that ρ : Reg(A)→ Mat(V ) is an intertwining operator.

(b) If V is d-dimensional, show that Mat(V ) ∼= V ⊕d as representations of A.

Problem 19D⋆. Fix an algebra A. Find all intertwining operators

T : Reg(A)→ Reg(A).

Problem 19E. Let (V, ρ) be an indecomposable (not irreducible) representation of an
algebra A. Prove that any intertwining operator T : V → V is either nilpotent or an
isomorphism.

(Note that Theorem 19.5.8 doesn’t apply, since the field k may not be algebraically
closed.)





20 Semisimple algebras

In what follows, assume the field k is algebraically closed.
Fix an algebra A and suppose you want to study its representations. We have a “direct

sum” operation already. So, much like we pay special attention to prime numbers, we’re
motivated to study irreducible representations and then build all the representations of
A from there.

Unfortunately, we have seen (Exercise 19.4.5) that there exists a representation which
is not irreducible, and yet cannot be broken down as a direct sum (indecomposable).
This is weird and bad, so we want to give a name to representations which are more
well-behaved. We say that a representation is completely reducible if it doesn’t exhibit
this bad behavior.

Even better, we say a finite-dimensional algebra A is semisimple if all its finite-
dimensional representations are completely reducible. So when we study finite-dimensional
representations of semisimple algebras A, we just have to figure out what the irreps are,
and then piecing them together will give all the representations of A.

In fact, semisimple algebras A have even nicer properties. The culminating point of
the chapter is when we prove that A is semisimple if and only if A ∼=

⊕
i Mat(Vi), where

the Vi are the irreps of A (yes, there are only finitely many!).
In the end, we will see that the group algebras k[G] of a finite group G are all semisimple

(at least when k has characteristic 0), thus we’re justified in focusing on studying the
semisimple algebras.

Remark 20.0.1 (Digression) — The converse does not hold, however — if k has
characteristic 0, not every finite-dimensional semisimple k-algebra is isomorphic to
some group algebra. Classifying exactly when a k-algebra is isomorphic to a group
algebra turns out to be a hard question, see https://mathoverflow.net/q/314502.

§20.1 Schur’s lemma continued
Prototypical example for this section: For V irreducible, Homrep(V ⊕2, V ⊕2) ∼= k⊕4.

Definition 20.1.1. For an algebra A and representations V and W , we let Homrep(V,W )
be the set of intertwining operators between them. (It is also a k-algebra.)

By Schur’s lemma (since k is algebraically closed, which again, we are taking as a
standing assumption), we already know that if V and W are irreps, then

Homrep(V,W ) ∼=
{
k if V ∼= W

0 if V ̸∼= W.

Can we say anything more? For example, it also tells us that

Homrep(V, V ⊕2) = k⊕2.

The possible maps are v 7→ (c1v1, c2v2) for some choice of c1, c2 ∈ k.
More generally, suppose V is an irrep and consider Homrep(V ⊕m, V ⊕n). Intertwining

operators T : V ⊕m → V ⊕n are determined completely by the mn choices of compositions
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V V ⊕m V ⊕n V

⊃ T

where the first arrow is inclusion to the ith component of V ⊕m (for 1 ≤ i ≤ m) and the
second arrow is inclusion to the jth component of V ⊕n (for 1 ≤ j ≤ n). However, by
Schur’s lemma on each of these compositions, we know they must be constant.

Thus, Homrep(V ⊕n, V ⊕m) consist of n ×m “matrices” of constants, and the map is
provided by 

c11 c12 . . . c1(n−1) c1n
c21 c22 . . . c2(n−1) c2n
...

... . . . ...
...

cm1 cm2 . . . cm(n−1) cmn



v1
v2
...
vn

 ∈ V ⊕m

where the cij ∈ k but vi ∈ V ; note the type mismatch! This is not just a k-linear map
V ⊕n → V ⊕m; rather, the outputs are m linear combinations of the inputs.

More generally, we have:

Theorem 20.1.2 (Schur’s lemma for completely reducible representations)
Let V and W be completely reducible representations, and set V =

⊕
V ⊕ni
i , W =⊕

V ⊕mi
i for integers ni,mi ≥ 0, where each Vi is an irrep. Then

Homrep(V,W ) ∼=
⊕
i

Matmi×ni(k)

meaning that an intertwining operator T : V →W amounts to, for each i, an mi×ni
matrix of constants which gives a map V ⊕ni

i → V ⊕mi
i .

Corollary 20.1.3 (Subrepresentations of completely reducible representations)
Let V =

⊕
V ⊕ni
i be completely reducible. Then any subrepresentation W of V is

isomorphic to
⊕
V ⊕mi
i where mi ≤ ni for each i, and the inclusion W ↪→ V is given

by the direct sum of inclusion V ⊕mi
i ↪→ V ⊕ni

i , which are ni ×mi matrices.

Proof. Apply Schur’s lemma to the inclusion W ↪→ V .

Recall from Section 9.5 that a linear maps from a n-dimensional vector space to a m-
dimensional vector space can be written as a n×m matrix. Here the situation is similar,
however the matrices are made for each irrep independently, and the non-isomorphic
irreps, in some sense, “doesn’t talk to each other”.

Remark 20.1.4 — The representation V ⊕n can also be viewed as n vectors of V
“stacked horizontally”, as we did in Example 19.3.2:

...
...

...
v1 v2 · · · vn
...

...
...

 ∈ V ⊕n.
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That way, the action is given by


...

...
...

v1 v2 · · · vn
...

...
...



c11 c21 · · · c(m−1)1 cm1
c12 c22 · · · c(m−1)1 cm2
...

... . . . ...
...

c1n c2n · · · c(m−1)n cmn

 ∈ V ⊕m.

It may be clearer this way to see the type mismatch happening. And this also gives
a natural explanation why the intertwining operators in Problem 19D⋆ corresponds
to right matrix multiplication.

§20.2 Density theorem
We are going to take advantage of the previous result to prove that finite-dimensional
algebras have finitely many irreps.

Theorem 20.2.1 (Jacobson density theorem)
Let (V1, ρ1), . . . , (Vr, ρr) be pairwise nonisomorphic irreps of A. Then there is a
surjective map of vector spaces

r⊕
i=1

ρi : A↠
r⊕
i=1

Mat(Vi).

The right way to think about this theorem is that

Density is the “Chinese remainder theorem” for irreps of A.

Recall that in number theory, the Chinese remainder theorem tells us that given lots
of “unrelated” congruences, we can find a single N which simultaneously satisfies them
all. Similarly, given lots of different nonisomorphic irreps of A, this means that we can
select a single a ∈ A which induces any tuple (ρ1(a), . . . , ρr(a)) of actions we want — a
surprising result, since even the r = 1 case is not obvious at all!

ρ1(a) = M1 ∈ Mat(V1)

ρ2(a) = M2 ∈ Mat(V2)

a ∈ A
...

ρr(a) = Mr ∈ Mat(Vr)

This also gives us the non-obvious corollary:

Corollary 20.2.2 (Finiteness of number of representations)
Any finite-dimensional algebra A has at most dimA irreps.

Proof. If Vi are such irreps then A ↠
⊕

i V
⊕ dimVi
i , hence we have the inequality∑

(dimVi)2 ≤ dimA.
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Proof of density theorem. Let V = V1 ⊕ · · · ⊕ Vr, so A acts on V = (V, ρ) by ρ =
⊕

i ρi.
Thus by Problem 19C⋆, we can instead consider ρ as an intertwining operator

ρ : Reg(A)→
r⊕
i=1

Mat(Vi) ∼=
r⊕
i=1

V ⊕di
i .

We will use this instead as it will be easier to work with.
First, we handle the case r = 1. Fix a basis e1, . . . , en of V = V1. Assume for

contradiction that the map is not surjective. Then there is a map of representations (by
ρ and the isomorphism) Reg(A)→ V ⊕n given by a 7→ (a · e1, . . . , a · en). By hypothesis,
it is not surjective: its image is a proper subrepresentation of V ⊕n. Assume its image is
isomorphic to V ⊕m for m < n, so by Theorem 20.1.2 there is a matrix of constants X
with

Reg(A) V ⊕n V ⊕m

a (a · e1, . . . , a · en)

1A (e1, . . . , en) (v1, . . . , vm)

⊃
X·−

where the two arrows in the top row have the same image; hence the pre-image (v1, . . . , vm)
of (e1, . . . , en) can be found. But since m < n we can find constants c1, . . . , cn not all
zero such that X applied to the column vector (c1, . . . , cn) is zero:

n∑
i=1

ciei =
[
c1 . . . cn

] e1
...
en

 =
[
c1 . . . cn

]
X

 v1
...
vm

 = 0

contradicting the fact that ei are linearly independent. Hence we conclude the theorem
for r = 1.

As for r ≥ 2, the image ρimg(A) is necessarily of the form
⊕

i V
⊕di
i (by Corollary 20.1.3)

and by the above di = dimVi for each i.

Example 20.2.3 (Applying the proof of density theorem on an explicit example)
We can run through the argument on an explicit example to better understand how
it works — in order to do this, we need V to be an irrep, otherwise the image of
Reg(A) would not be isomorphic to V ⊕m, and we will not be able to run to the end
of the argument.

Let A = Mat2(k), and V ∼= k⊕2 with the obvious action. As we know, this is an
irrep.

The density theorem claims that ρ : A→ Mat(V ) is surjective, which means for
any e1, e2 ∈ V independent, and any w1, w2 ∈ V , we can find a ∈ A such that
a · (e1, e2) = (w1, w2).

Because we’re working through a counterexample, pick e1 = (1, 0), e2 = (2, 0)
instead. Then, for some w1, w2 ∈ V , there may be no a that sends e1 to w1 to e2 to
w2.

Consider the representation morphism Reg(A)→ V ⊕2 by a 7→ (a · e1, a · e2); its
image is thus {(v, 2v) | v ∈ V }, which is a subrepresentation of V ⊕2, isomorphic as a
representation to V ⊕1 ∼= V by

v 7→ (v, 2v) = v
[
1 2

]
.



20 Semisimple algebras 249

Then, we can find v =
(

1
0

)
∈ V ⊕1, for which

(
e1 e2

)
= v

[
1 2

]
.

Now, with the explicit array of numbers
[
1 2

]
, it is easy to find a linear dependence

on e1 and e2.

§20.3 Semisimple algebras
Definition 20.3.1. A finite-dimensional algebra A is semisimple if every finite-
dimensional representation of A is completely reducible.

Theorem 20.3.2 (Semisimple algebras)
Let A be a finite-dimensional algebra. Then the following are equivalent:

(i) A ∼=
⊕

i Matdi
(k) for some di.

(ii) A is semisimple.

(iii) Reg(A) is completely reducible.

Proof. (i) =⇒ (ii) follows from using Proposition 19.3.5 to breaks any finite-dimensional
representation of A into a direct sum of representations of Matdi

(k), then Theorem 19.6.1
shows any such representations are completely reducible. (ii) =⇒ (iii) is tautological.

To see (iii) =⇒ (i), we use the following clever trick. Consider

Homrep(Reg(A),Reg(A)).

On one hand, by Problem 19D⋆, it is isomorphic to Aop (A with opposite multiplication),
because the only intertwining operators Reg(A)→ Reg(A) are those of the form − · a.
On the other hand, suppose that we have set Reg(A) =

⊕
i V

⊕ni
i . By Theorem 20.1.2,

we have
Aop ∼= Homrep(Reg(A),Reg(A)) =

⊕
i

Matni×ni(k).

But Matn(k)op ∼= Matn(k) (just by transposing), so we recover the desired conclusion.

Remark 20.3.3 — The trick of the proof above resembles Cayley’s theorem (Prob-
lem 1F†), in that we make the object act on itself to get an explicit representation.

Remark 20.3.4 — We can compare this to Corollary 18.3.2. Here, any finite-
dimensional representation of A is a finite-dimensional left A-module, and from the
theorem above, we know that if A is semisimple, any such module can be broken
down into a direct sum of irreps Vi ∼= k⊕di .

Note that unlike the case where A is a PID, k⊕di is not isomorphic to a quotient
of the ring Matdi

(k).

In fact, if we combine the above result with the density theorem (and Corollary 20.2.2),
we obtain:
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Theorem 20.3.5 (Sum of squares formula)
For a finite-dimensional algebra A we have∑

i

dim(Vi)2 ≤ dimA

where the Vi are the irreps of A; equality holds exactly when A is semisimple, in
which case

Reg(A) ∼=
⊕
i

Mat(Vi) ∼=
⊕
I

V ⊕ dimVi
i .

Proof. The inequality was already mentioned in Corollary 20.2.2. It is equality if and
only if the map ρ : A→

⊕
i Mat(Vi) is an isomorphism; this means all Vi are present.

Remark 20.3.6 (Digression) — For any finite-dimensional A, the kernel of the map
ρ : A→

⊕
i Mat(Vi) is denoted Rad(A) and is the so-called Jacobson radical of A;

it’s the set of all a ∈ A which act by zero in all irreps of A. The usual definition of
“semisimple” given in books is that this Jacobson radical is trivial.

§20.4 Maschke’s theorem
We now prove that the representation theory of groups is as nice as possible.

Theorem 20.4.1 (Maschke’s theorem)
Let G be a finite group, and k an algebraically closed field whose characteristic does
not divide |G|. Then k[G] is semisimple.

This tells us that when studying representations of groups, all representations are
completely reducible.

Proof. Consider any finite-dimensional representation (V, ρ) of k[G]. Given a proper
subrepresentation W ⊆ V , our goal is to construct a supplementary G-invariant subspace
W ′ which satisfies

V = W ⊕W ′.

This will show that indecomposable ⇐⇒ irreducible, which is enough to show k[G] is
semisimple.

Let π : V →W be any projection of V onto W , meaning π(v) = v ⇐⇒ v ∈W . We
consider the averaging map P : V → V by

P = 1
|G|

∑
g∈G

ρ(g−1) ◦ π ◦ ρ(g).

We’ll use the following properties of the map:

Exercise 20.4.2. Show that the map P satisfies:

• For any w ∈W , P (w) = w.
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• For any v ∈ V , P (v) ∈W .

• The map P : V → V is an intertwining operator.

Thus P is idempotent (it is the identity on its image W ), so by Problem 9H⋆ we have
V = kerP ⊕ imP , but both kerP and imP are subrepresentations as desired.

Remark 20.4.3 — In the case where k = C, there is a shorter proof. Suppose
B : V × V → C is an arbitrary bilinear form. Then we can “average” it to obtain a
new bilinear form

⟨v, w⟩ := 1
|G|

∑
g∈G

B(g · v, g · w).

The averaged form ⟨−,−⟩ is G-invariant, in the sense that ⟨v, w⟩ = ⟨g · v, g · w⟩.
Then, one sees that if W ⊆ V is a subrepresentation, so is its orthogonal complement
W⊥. This implies the result.

§20.5 Example: the representations of C[S3]
We compute all irreps of C[S3]. I’ll take for granted right now there are exactly three
such representations (which will be immediate by the first theorem in the next chapter:
we’ll in fact see that the number of representations of G is exactly equal to the number
of conjugacy classes of G).

Given that, if the three representations of C[S3] have dimension d1, d2, d3 , then we
ought to have

d2
1 + d2

2 + d2
3 = |G| = 6.

From this, combined with some deep arithmetic, we deduce that we should have d1 =
d2 = 1 and d3 = 2 or some permutation.

In fact, we can describe these representations explicitly. First, we define:

Definition 20.5.1. Let G be a group. The complex trivial group representation
of a group G is the one-dimensional representation Ctriv = (C, ρ) where g · v = v for all
g ∈ G and v ∈ C (i.e. ρ(g) = id for all g ∈ G).

Remark 20.5.2 (Warning) — The trivial representation of an algebra A doesn’t
make sense for us: we might want to set a ·v = v but this isn’t linear in A. (You could
try to force it to work by deleting the condition 1A · v = v from our definition; then
one can just set a · v = 0. But even then Ctriv would not be the trivial representation
of k[G].)

Another way to see this is that the trivial representation depends on how the
k-algebra is written as a group algebra: k[Z/2Z] has a k-algebra automorphism given
by g 7→ −g, where g is the generator of the group Z/2Z; however the corresponding
trivial representations are different.

Then the representations are:

• The one-dimensional Ctriv; each σ ∈ S3 acts by the identity.

• There is a nontrivial one-dimensional representation Csign where the map S3 → C×

is given by sending σ to the sign of σ. Thus in Csign every σ ∈ S3 acts as ±1. Of
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course, Ctriv and Csign are not isomorphic (as one-dimensional representations are
never isomorphic unless the constants they act on coincide for all a, as we saw in
Problem 19A†).

• Finally, we have already seen the two-dimensional representation, but now we give
it a name. Define refl0 to be the representation whose vector space is {(x, y, z) |
x+ y + z = 0}, and whose action of S3 on it is permutation of coordinates.

Exercise 20.5.3. Show that refl0 is irreducible, for example by showing directly that
no subspace is invariant under the action of S3.

Thus V is also not isomorphic to the previous two representations.

This implies that these are all the irreps of S3. Note that, if we take the representation
V of S3 on k⊕3, we just get that V = refl0⊕Ctriv.

§20.6 A few harder problems to think about
Problem 20A. Find all the irreps of C[Z/nZ].

Problem 20B (Maschke requires |G| finite). Consider the representation of the group
R on C⊕2 under addition by a homomorphism

R→ Mat2(C) by t 7→
[
1 t
0 1

]
.

Show that this representation is not irreducible, but it is indecomposable.

Problem 20C. Prove that all irreducible representations of a finite group are finite-
dimensional.

Problem 20D. Determine all the complex irreps of D10.

Problem 20E (AIME 2018). The wheel shown below consists of two circles and five
spokes, with a label where a spoke meets a circle. A bug walks along the wheel, starting
from A. The bug takes 15 steps. At each step, the bug moves to an adjacent label such
that it only walks counterclockwise along the inner circle and clockwise along the outer
circle. In how many ways can the bug move to end up at A after all steps?

A
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Characters are basically the best thing ever. To every representation V of A we will
attach a so-called character χV : A→ k. It will turn out that the characters of irreps of
V will determine the representation V completely. Thus an irrep is just specified by a
set of dimA numbers.

§21.1 Definitions
Definition 21.1.1. Let V = (V, ρ) be a finite-dimensional representation of A. The
character χV : A→ k attached to A is defined by χV = Tr ◦ρ, i.e.

χV (a) := Tr (ρ(a) : V → V ) .

Since Tr and ρ are additive, this is a k-linear map (but it is not multiplicative). Note
also that χV⊕W = χV + χW for any representations V and W .

We are especially interested in the case A = k[G], of course. As usual, we just
have to specify χV (g) for each g ∈ G to get the whole map k[G] → k. Thus we often
think of χV as a function G → k, called a character of the group G. Here is the case
G = S3:

Example 21.1.2 (Character table of S3)
Let’s consider the three irreps of G = S3 from before. For Ctriv all traces are 1;
for Csign the traces are ±1 depending on sign (obviously, for one-dimensional maps
k → k the trace “is” just the map itself). For refl0 we take a basis (1, 0,−1) and
(0, 1,−1), say, and compute the traces directly in this basis.

χV (g) id (1 2) (2 3) (3 1) (1 2 3) (3 2 1)
Ctriv 1 1 1 1 1 1
Csign 1 −1 −1 −1 1 1
refl0 2 0 0 0 −1 −1

The above table is called the character table of the group G. The table above has
certain mysterious properties, which we will prove as the chapter progresses.

(I) The value of χV (g) only depends on the conjugacy class of g.

(II) The number of rows equals the number of conjugacy classes.

(III) The sum of the squares of any row is 6 again!

(IV) The “dot product” of any two rows is zero.

Abuse of Notation 21.1.3. The name “character” for χV : G→ k is a bit of a misnomer.
This χV is not multiplicative in any way, as the above example shows: one can almost
think of it as an element of k⊕|G|.
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Question 21.1.4. Show that χV (1A) = dimV , so one can read the dimensions of the
representations from the leftmost column of a character table.

§21.2 The dual space modulo the commutator
For any algebra, we first observe that since Tr(TS) = Tr(ST ), we have for any V that

χV (ab) = χV (ba).

This explains observation (I) from earlier:

Question 21.2.1. Deduce that if g and h are in the same conjugacy class of a group G,
and V is a representation of k[G], then χ(g) = χ(h).

Now, given our algebra A we define the commutator [A,A] to be the k-vector subspace
spanned by xy − yx for x, y ∈ A. Thus [A,A] is contained in the kernel of each χV .

Definition 21.2.2. The space Aab := A/[A,A] is called the abelianization of A. Each
character of A can be viewed as a map Aab → k, i.e. an element of (Aab)∨.

Example 21.2.3 (Examples of abelianizations)
(a) If A is commutative, then [A,A] = {0} and Aab = A.

(b) If A = Matk(d), then [A,A] consists exactly of the d× d matrices of trace zero.
(Proof: harmless exercise.) Consequently, Aab is one-dimensional.

(c) Suppose A = k[G]. Then in Aab, we identify gh and hg for each g, h ∈ G;
equivalently ghg−1 = h. So in other words, Aab is isomorphic to the space of
k-linear combinations of the conjugacy classes of G.

Remark 21.2.4 (Warning) — For a group G, the abelianization of G is defined to
be G/[G,G], where [G,G] is the subgroup generated by all the commutators.

When A = k[G], the space Aab is not isomorphic to the group algebra k[G/[G,G]]!
This is because, in the abelianization of the group G, we identify ghg−1h−1 = 1 for
all g, h ∈ G, which is not the same as gh− hg.

In fact, in the general case, Aab does not even inherit the structure of a k-algebra
from A, it can only get a k-vector space structure.

Theorem 21.2.5 (Character of representations of algebras)
Let A be an algebra over an algebraically closed field. Then

(a) Characters of pairwise non-isomorphic irreps are linearly independent in (Aab)∨.

(b) If A is finite-dimensional and semisimple, then the characters attached to irreps
form a basis of (Aab)∨.

In particular, in (b) the number of irreps of A equals dimAab.
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Proof. Part (a) is more or less obvious by the density theorem: suppose there is a linear
dependence, so that for every a we have

c1χV1(a) + c2χV2(a) + · · ·+ crχVr (a) = 0

for some integer r.

Question 21.2.6. Deduce that c1 = · · · = cr = 0 from the density theorem.

For part (b), assume there are r irreps. We may assume that

A =
r⊕
i=1

Mat(Vi)

where V1, . . . , Vr are the irreps of A. Since we have already showed the characters are
linearly independent we need only show that dim(A/[A,A]) = r, which follows from the
observation earlier that each Mat(Vi) has a one-dimensional abelianization.

Since G has dim k[G]ab conjugacy classes, this completes the proof of (II).

§21.3 Orthogonality of characters
Now we specialize to the case of finite groups G, represented over C.

Definition 21.3.1. Let Classes(G) denote the set of conjugacy classes of G.

If G has r conjugacy classes, then it has r irreps. Each (finite-dimensional) representa-
tion V , irreducible or not, gives a character χV .

Abuse of Notation 21.3.2. From now on, we will often regard χV as a function G→ C
or as a function Classes(G)→ C. So for example, we will write both χV (g) (for g ∈ G)
and χV (C) (for a conjugacy class C); the latter just means χV (gC) for any representative
gC ∈ C.

Definition 21.3.3. Let Funclass(G) denote the set of functions Classes(G)→ C viewed
as a vector space over C. We endow it with the inner form

⟨f1, f2⟩ = 1
|G|

∑
g∈G

f1(g)f2(g).

This is the same “dot product” that we mentioned at the beginning, when we looked
at the character table of S3. We now aim to prove the following orthogonality theorem,
which will imply (III) and (IV) from earlier.

Theorem 21.3.4 (Orthogonality)
For any finite-dimensional complex representations V and W of G we have

⟨χV , χW ⟩ = dim Homrep(W,V ).

In particular, if V and W are irreps then

⟨χV , χW ⟩ =
{

1 V ∼= W

0 otherwise.
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Corollary 21.3.5 (Irreps give an orthonormal basis)
The characters associated to irreps form an orthonormal basis of Funclass(G).

In order to prove this theorem, we have to define the dual representation and the
tensor representation, which give a natural way to deal with the quantity χV (g)χW (g).

Definition 21.3.6. Let V = (V, ρ) be a representation of G. The dual representation
V ∨ is the representation on V ∨ with the action of G given as follows: for each ξ ∈ V ∨,
the action of g gives a g · ξ ∈ V ∨ specified by

v
g·ξ7−−→ ξ

(
ρ(g−1)(v)

)
.

Definition 21.3.7. Let V = (V, ρV ) and W = (W,ρW ) be group representations of G.
The tensor product of V and W is the group representation on V ⊗W with the action
of G given on pure tensors by

g · (v ⊗ w) = (ρV (g)(v))⊗ (ρW (g)(w))

which extends linearly to define the action of G on all of V ⊗W .

Remark 21.3.8 — Warning: the definition for tensors does not extend to algebras.
We might hope that a · (v ⊗ w) = (a · v)⊗ (a · w) would work, but this is not even
linear in a ∈ A (what happens if we take a = 2, for example?).

Theorem 21.3.9 (Character traces)
If V and W are finite-dimensional representations of G, then for any g ∈ G.

(a) χV⊕W (g) = χV (g) + χW (g).

(b) χV⊗W (g) = χV (g) · χW (g).

(c) χV ∨(g) = χV (g).

Proof. Parts (a) and (b) follow from the identities Tr(S ⊕ T ) = Tr(S) + Tr(T ) and
Tr(S ⊗ T ) = Tr(S) Tr(T ). However, part (c) is trickier. As (ρ(g))|G| = ρ(g|G|) = ρ(1G) =
idV by Lagrange’s theorem, we can diagonalize ρ(g), say with eigenvalues λ1, . . . , λn
which are |G|th roots of unity, corresponding to eigenvectors e1, . . . , en. Then we see
that in the basis e∨

1 , . . . , e∨
n , the action of g on V ∨ has eigenvalues λ−1

1 , λ−1
2 , . . . , λ−1

n . So

χV (g) =
n∑
i=1

λi and χV ∨(g) =
n∑
i=1

λ−1
i =

n∑
i=1

λi

where the last step follows from the identity |z| = 1 ⇐⇒ z−1 = z.

Remark 21.3.10 (Warning) — The identities (b) and (c) do not extend linearly to
C[G], i.e. it is not true for example that χV ∨(a) = χV (a) if we think of χV as a map
C[G]→ C.
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Proof of orthogonality relation. The key point is that we can now reduce the sums of
products to just a single character by

χV (g)χW (g) = χV⊗W∨(g).

So we can rewrite the sum in question as just

⟨χV , χW ⟩ = 1
|G|

∑
g∈G

χV⊗W∨(g) = χV⊗W∨

 1
|G|

∑
g∈G

g

 .
Let P : V ⊗W∨ → V ⊗W∨ be the action of 1

|G|
∑
g∈G g, so we wish to find TrP .

Exercise 21.3.11. Show that P is idempotent. (Compute P ◦ P directly.)

Hence V ⊗W∨ = kerP ⊕ imP (by Problem 9H⋆) and imP is the subspace of elements
which are fixed under G. From this we deduce that

TrP = dim imP = dim
{
x ∈ V ⊗W∨ | g · x = x ∀g ∈ G

}
.

Now, consider the natural isomorphism V ⊗W∨ → Hom(W,V ).

Exercise 21.3.12. Let g ∈ G. Show that under this isomorphism, T ∈ Hom(W,V ) satisfies
g · T = T if and only if T (g ·w) = g · T (w) for each w ∈W . (This is just unwinding three or
four definitions.)

Consequently, χV⊗W∨(P ) = TrP = dim Homrep(W,V ) as desired.

The orthogonality relation gives us a fast and mechanical way to check whether a
finite-dimensional representation V is irreducible. Namely, compute the traces χV (g) for
each g ∈ G, and then check whether ⟨χV , χV ⟩ = 1. So, for example, we could have seen
the three representations of S3 that we found were irreps directly from the character
table. Thus, we can now efficiently verify any time we have a complete set of irreps.

§21.4 Examples of character tables

Example 21.4.1 (Dihedral group on 10 elements)
Let D10 =

〈
r, s | r5 = s2 = 1, rs = sr−1〉. Let ω = exp(2πi

5 ). We write four represen-
tations of D10:

• Ctriv, all elements of D10 act as the identity.

• Csign, r acts as the identity while s acts by negation.

• V1, which is two-dimensional and given by r 7→
[
ω 0
0 ω4

]
and s 7→

[
0 1
1 0

]
.

• V2, which is two-dimensional and given by r 7→
[
ω2 0
0 ω3

]
and s 7→

[
0 1
1 0

]
.

We claim that these four representations are irreducible and pairwise non-isomorphic.
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We do so by writing the character table:

D10 1 r, r4 r2, r3 srk

Ctriv 1 1 1 1
Csign 1 1 1 −1
V1 2 ω + ω4 ω2 + ω3 0
V2 2 ω2 + ω3 ω + ω4 0

Then a direct computation shows the orthogonality relations, hence we indeed have
an orthonormal basis. For example, ⟨Ctriv,Csign⟩ = 1 + 2 · 1 + 2 · 1 + 5 · (−1) = 0.

Example 21.4.2 (Character table of S4)
We now have enough machinery to compute the character table of S4, which has five
conjugacy classes (corresponding to cycle types id, 2, 3, 4 and 2 + 2). First of all, we
note that it has two one-dimensional representations, Ctriv and Csign, and these are
the only ones (because there are only two homomorphisms S4 → C×). So thus far
we have the table

S4 1 (• •) (• • •) (• • • •) (• •)(• •)
Ctriv 1 1 1 1 1
Csign 1 −1 1 −1 1

...
...

Note the columns represent 1 + 6 + 8 + 6 + 3 = 24 elements.
Now, the remaining three representations have dimensions d1, d2, d3 with

d2
1 + d2

2 + d2
3 = 4!− 2 = 22

which has only (d1, d2, d3) = (2, 3, 3) and permutations. Now, we can take the refl0
representation

{(w, x, y, z) | w + x+ y + z = 0}

with basis (1, 0, 0,−1), (0, 1, 0,−1) and (0, 0, 1,−1). This can be geometrically
checked to be irreducible, but we can also do this numerically by computing the
character directly (this is tedious): it comes out to have 3, 1, 0, −1, −1 which indeed
gives norm

⟨χrefl0 , χrefl0⟩ = 1
4!

 32︸︷︷︸
id

+ 6 · (1)2︸ ︷︷ ︸
(• •)

+ 8 · (0)2︸ ︷︷ ︸
(• • •)

+ 6 · (−1)2︸ ︷︷ ︸
(• • • •)

+ 3 · (−1)2︸ ︷︷ ︸
(• •)(• •)

 = 1.

Note that we can also tensor this with the sign representation, to get another
irreducible representation (since Csign has all traces ±1, the norm doesn’t change).
Finally, we recover the final row using orthogonality (which we name C2, for lack of
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a better name); hence the completed table is as follows.

S4 1 (• •) (• • •) (• • • •) (• •)(• •)
Ctriv 1 1 1 1 1
Csign 1 −1 1 −1 1
C2 2 0 −1 0 2

refl0 3 1 0 −1 −1
refl0⊗Csign 3 −1 0 1 −1

§21.5 A few harder problems to think about
Problem 21A† (Reading decompositions from characters). Let W be a complex rep-
resentation of a finite group G. Let V1, . . . , Vr be the complex irreps of G and set
ni = ⟨χW , χVi⟩. Prove that each ni is a non-negative integer and

W =
r⊕
i=1

V ⊕ni
i .

Problem 21B. Consider complex representations of G = S4. The representation
refl0⊗ refl0 is 9-dimensional, so it is clearly reducible. Compute its decomposition in
terms of the five irreducible representations.

Problem 21C (Tensoring by one-dimensional irreps). Let V and W be irreps of G, with
dimW = 1. Show that V ⊗W is irreducible.

Problem 21D (Quaternions). Compute the character table of the quaternion group Q8.

Problem 21E⋆ (Second orthogonality formula). Let g and h be elements of a finite
group G, and let V1, . . . , Vr be the irreps of G. Prove that

r∑
i=1

χVi(g)χVi(h) =
{
|CG(g)| if g and h are conjugates
0 otherwise.

Here, CG(g) = {x ∈ G : xg = gx} is the centralizer of g.
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With all this setup, we now take the time to develop some nice results which are of
independent interest.

§22.1 Frobenius divisibility

Theorem 22.1.1 (Frobenius divisibility)
Let V be a complex irrep of a finite group G. Then dimV divides |G|.

The proof of this will require algebraic integers (developed in the algebraic number theory
chapter). Recall that an algebraic integer is a complex number which is the root of a
monic polynomial with integer coefficients, and that these algebraic integers form a ring
Z under addition and multiplication, and that Z ∩Q = Z.

First, we prove:

Lemma 22.1.2 (Elements of Z[G] are integral)
Let α ∈ Z[G]. Then there exists a monic polynomial P with integer coefficients such
that P (α) = 0.

Proof. Let Ak be the Z-span of 1, α1, . . . , αk. Since Z[G] is Noetherian, the inclusions
A0 ⊆ A1 ⊆ A2 ⊆ . . . cannot all be strict, hence Ak = Ak+1 for some k, which means
αk+1 can be expressed in terms of lower powers of α.

Proof of Frobenius divisibility. Let C1, . . . , Cm denote the conjugacy classes of G. Then
consider the rational number

|G|
dimV

;

we will show it is an algebraic integer, which will prove the theorem. Observe that we
can rewrite it as

|G|
dimV

= |G| ⟨χV , χV ⟩dimV
=
∑
g∈G

χV (g)χV (g)
dimV

.

We split the sum over conjugacy classes, so

|G|
dimV

=
m∑
i=1

χV (Ci) ·
|Ci|χV (Ci)

dimV
.

We claim that for every i,
|Ci|χV (Ci)

dimV
= 1

dimV
TrTi

is an algebraic integer, where

Ti := ρ

∑
h∈Ci

h

 .
261
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To see this, note that Ti commutes with elements of G, and hence is an intertwining
operator Ti : V → V . Thus by Schur’s lemma, Ti = λi · idV and TrT = λi dimV . By
Lemma 22.1.2, λi ∈ Z, as desired.

Now we are done, since χV (Ci) ∈ Z too (it is the sum of conjugates of roots of unity),
so |G|

dimV is the sum of products of algebraic integers, hence itself an algebraic integer.

§22.2 Burnside’s theorem
We now prove a group-theoretic result. This is the famous poster child for representation
theory (in the same way that RSA is the poster child of number theory) because the
result is purely group theoretic.

Recall that a group is simple if it has no normal subgroups. In fact, we will
prove:

Theorem 22.2.1 (Burnside)
Let G be a nonabelian group of order paqb (where p, q are distinct primes and
a, b ≥ 0). Then G is not simple.

In what follows p and q will always denote prime numbers.

Lemma 22.2.2 (On gcd(|C|, dimV ) = 1)
Let V = (V, ρ) be an complex irrep of G. Assume C is a conjugacy class of G with
gcd(|C|, dimV ) = 1. Then for any g ∈ C, either

• ρ(g) is multiplication by a scalar, or

• χV (g) = Tr ρ(g) = 0.

Proof. If εi are the n eigenvalues of ρ(g) (which are roots of unity), then from the proof
of Frobenius divisibility we know |C|

n χV (g) ∈ Z, thus from gcd(|C|, n) = 1 we get

1
n
χV (g) = 1

n
(ε1 + · · ·+ εn) ∈ Z.

So this follows readily from a fact from algebraic number theory, namely Problem 53C⋆:
either ε1 = · · · = εn (first case) or ε1 + · · ·+ εn = 0 (second case).

Lemma 22.2.3 (Simple groups don’t have prime power conjugacy classes)
Let G be a finite simple group. Then G cannot have a conjugacy class of order pk
(where k > 0).

Proof. By contradiction. Assume C is such a conjugacy class, and fix any g ∈ C. By the
second orthogonality formula (Problem 21E⋆) applied g and 1G (which are not conjugate
since g ̸= 1G) we have

r∑
i=1

dimViχVi(g) = 0

where Vi are as usual all irreps of G.
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Exercise 22.2.4. Show that there exists a nontrivial irrep V such that p ∤ dimV and
χV (g) ̸= 0. (Proceed by contradiction to show that − 1

p ∈ Z if not.)

Let V = (V, ρ) be the irrep mentioned. By the previous lemma, we now know that ρ(g)
acts as a scalar in V .

Now consider the subgroup

H =
〈
ab−1 | a, b ∈ C

〉
⊆ G.

We claim this is a nontrivial normal subgroup of G. It is easy to check H is normal,
and since |C| > 1 we have that H is nontrivial. As represented by V each element of H
acts trivially in G, so since V is nontrivial and irreducible, H ̸= G. This contradicts the
assumption that G was simple.

With this lemma, Burnside’s theorem follows by partitioning the |G| elements of our
group into conjugacy classes. Assume for contradiction G is simple. Each conjugacy class
must have order either 1 (of which there are |Z(G)| by Problem 16D⋆) or divisible by pq
(by the previous lemma), but on the other hand the sum equals |G| = paqb. Consequently,
we must have |Z(G)| > 1. But G is not abelian, hence Z(G) ̸= G, thus the center Z(G)
is a nontrivial normal subgroup, contradicting the assumption that G was simple.

§22.3 Frobenius determinant
We finish with the following result, the problem that started the branch of representation
theory. Given a finite group G, we create n variables {xg}g∈G, and an n× n matrix MG

whose (g, h)th entry is xgh.

Example 22.3.1 (Frobenius determinants)
(a) If G = Z/2Z =

〈
T | T 2 = 1

〉
then the matrix would be

MG =
[
xid xT
xT xid

]
.

Then detMG = (xid − xT )(xid + xT ).

(b) If G = S3, a long computation gives the irreducible factorization of detMG is∑
σ∈S3

xσ

∑
σ∈S3

sign(σ)xσ

(F (xid, x(123), x(321)
)
− F

(
x(12), x(23), x(31)

) )2

where F (a, b, c) = a2 + b2 + c2 − ab− bc− ca; the latter factor is irreducible.

Theorem 22.3.2 (Frobenius determinant)
The polynomial detMG (in |G| variables) factors into a product of irreducible
polynomials such that

(i) The number of polynomials equals the number of conjugacy classes of G, and

(ii) The multiplicity of each polynomial equals its degree.
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You may already be able to guess how the “sum of squares” result is related! (Indeed,
look at deg detMG.)

Legend has it that Dedekind observed this behavior first in 1896. He didn’t know how
to prove it in general, so he sent it in a letter to Frobenius, who created representation
theory to solve the problem.

With all the tools we’ve built, it is now fairly straightforward to prove the result.

Proof. Let V = (V, ρ) = Reg(C[G]) and let V1, . . . , Vr be the irreps of G. Let’s consider
the map T : C[G]→ C[G] which has matrix MG in the usual basis of C[G], namely

T : T ({xg}g∈G) =
∑
g∈G

xgρ(g) ∈ Mat(V ).

Thus we want to examine detT .
But we know that V =

⊕r
i=1 V

⊕ dimVi
i as before, and so breaking down T over its

subspaces we know

detT =
r∏
i=1

(det(T ↾Vi))
dimVi .

So we only have to show two things: the polynomials detTVi are irreducible, and they
are pairwise different for different i.

Let Vi = (Vi, ρ), and pick k = dimVi.

• Irreducible: By the density theorem, for any M ∈ Mat(Vi) there exists a particular
choice of complex numbers xg ∈ G such that

M =
∑
g∈G

xg · ρi(g) = (T ↾Vi)({xg}).

View ρi(g) as a k × k matrix with complex coefficients. Thus the “generic”
(T ↾Vi)({xg}), viewed as a matrix with polynomial entries, must have linearly
independent entries (or there would be some matrix in Mat(Vi) that we can’t
achieve).
Then, the assertion follows (by a linear variable change) from the simple fact that
the polynomial det(yij)1≤i,j≤m in m2 variables is always irreducible.

• Pairwise distinct: We show that from detT |Vi({xg}) we can read off the character
χVi , which proves the claim. In fact

Exercise 22.3.3. Pick any basis for Vi. If dimVi = k, and 1G ̸= g ∈ G, then

χVi(g) is the coefficient of xgx
k−1
1G

.

Thus, we are done.
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