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9 Vector spaces
This is a pretty light chapter. The point of it is to define what a vector space and a

basis are. These are intuitive concepts that you may already know.

§9.1 The definitions of a ring and field
Prototypical example for this section: Z, R, and C are rings; the latter two are fields.

I’ll very informally define a ring/field here, in case you skipped the earlier chapter.
• A ring is a structure with a commutative addition and multiplication, as well as

subtraction, like Z. It also has an additive identity 0 and multiplicative identity 1.

• If the multiplication is invertible like in R or C, (meaning 1
x makes sense for any

x ̸= 0), then the ring is called a field.
In fact, if you replace “field” by “R” everywhere in what follows, you probably won’t lose
much. It’s customary to use the letter R for rings, and k or K for fields.

Finally, in case you skipped the chapter on groups, I should also mention:
• An additive abelian group is a structure with a commutative addition, as well

as subtraction, plus an additive identity 0. It doesn’t have to have multiplication.
A good example is R3 (with addition componentwise).

§9.2 Modules and vector spaces
Prototypical example for this section: Polynomials of degree at most n.

You intuitively know already that Rn is a “vector space”: its elements can be added
together, and there’s some scaling by real numbers. Let’s develop this more generally.

Fix a commutative ring R. Then informally,

An R-module is any structure where you can add two elements and scale
by elements of R.

Moreover, a vector space is just a module whose commutative ring is actually a field.
I’ll give you the full definition in a moment, but first, examples. . .

Example 9.2.1 (Quadratic polynomials, aka my favorite example)
My favorite example of an R-vector space is the set of polynomials of degree at
most two, namely {

ax2 + bx+ c | a, b, c ∈ R
}
.

Indeed, you can add any two quadratics, and multiply by constants. You can’t
multiply two quadratics to get a quadratic, but that’s irrelevant – in a vector space
there need not be a notion of multiplying two vectors together.
In a sense we’ll define later, this vector space has dimension 3 (as expected!).

139
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Example 9.2.2 (All polynomials)
The set of all polynomials with real coefficients is an R-vector space, because you
can add any two polynomials and scale by constants.

Example 9.2.3 (Euclidean space)
(a) The complex numbers

{a+ bi | a, b ∈ R}

form a real vector space. As we’ll see later, it has “dimension 2”.

(b) The real numbers R form a real vector space of dimension 1.

(c) The set of 3D vectors
{(x, y, z) | x, y, z ∈ R}

forms a real vector space, because you can add any two triples component-wise.
Again, we’ll later explain why it has “dimension 3”.

Example 9.2.4 (More examples of vector spaces)
(a) The set

Q[
√

2] =
{
a+ b

√
2 | a, b ∈ Q

}
has a structure of a Q-vector space in the obvious fashion: one can add any two
elements, and scale by rational numbers. (It is not an R-vector space — why?)

(b) The set
{(x, y, z) | x+ y + z = 0 and x, y, z ∈ R}

is a 2-dimensional real vector space.

(c) The set of all functions f : R→ R is also a real vector space (since the notions
f + g and c · f both make sense for c ∈ R).

Now let me write the actual rules for how this multiplication behaves.

Definition 9.2.5. Let R be a commutative ring. An R-module starts with an additive
abelian group M = (M,+) whose identity is denoted 0 = 0M . We additionally specify
a left multiplication by elements of R. This multiplication must satisfy the following
properties for r, r1, r2 ∈ R and m,m1,m2 ∈M :

(i) r1 · (r2 ·m) = (r1r2) ·m.

(ii) Multiplication is distributive, meaning

(r1 + r2) ·m = r1 ·m+ r2 ·m and r · (m1 +m2) = r ·m1 + r ·m2.

(iii) 1R ·m = m.

(iv) 0R ·m = 0M . (This is actually extraneous; one can deduce it from the first three.)

If R is a field we say M is an R-vector space; its elements are called vectors and the
members of R are called scalars.
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Abuse of Notation 9.2.6. In the above, we’re using the same symbol + for the addition
of M and the addition of R. Sorry about that, but it’s kind of hard to avoid, and the
point of the axioms is that these additions should be related. I’ll try to remember to put
r ·m for the multiplication of the module and r1r2 for the multiplication of R.

Question 9.2.7. In Example 9.2.1, I was careful to say “degree at most 2” instead of
“degree 2”. What’s the reason for this? In other words, why is{

ax2 + bx+ c | a, b, c ∈ R, a ̸= 0
}

not an R-vector space?

A couple less intuitive but somewhat important examples. . .

Example 9.2.8 (Abelian groups are Z-modules)
(Skip this example if you’re not comfortable with groups.)

(a) The example of real polynomials{
ax2 + bx+ c | a, b, c ∈ R

}
is also a Z-module! Indeed, we can add any two such polynomials, and we can
scale them by integers.

(b) The set of integers modulo 100, say Z/100Z, is a Z-module as well. Can you
see how?

(c) In fact, any abelian group G = (G,+) is a Z-module. The multiplication can
be defined by

n · g = g + · · ·+ g︸ ︷︷ ︸
n times

(−n) · g = n · (−g)

for n ≥ 0. (Here −g is the additive inverse of g.)

Example 9.2.9 (Every ring is its own module)
(a) R can be thought of as an R-vector space over itself. Can you see why?

(b) By the same reasoning, we see that any commutative ring R can be thought of
as an R-module over itself.

§9.3 Direct sums
Prototypical example for this section: {ax2 + bx+ c} = R⊕ xR⊕ x2R, and R3 is the sum
of its axes.

Let’s return to Example 9.2.1, and consider

V =
{
ax2 + bx+ c | a, b, c ∈ R

}
.

Even though I haven’t told you what a dimension is, you can probably see that this
vector space “should have” dimension 3. We’ll get to that in a moment.
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The other thing you may have noticed is that somehow the x2, x and 1 terms don’t
“talk to each other”. They’re totally unrelated. In other words, we can consider the three
sets

x2R :=
{
ax2 | a ∈ R

}
xR := {bx | b ∈ R}
R := {c | c ∈ R} .

In an obvious way, each of these can be thought of as a “copy” of R.
Then V quite literally consists of the “sums of these sets”. Specifically, every element

of V can be written uniquely as the sum of one element from each of these sets. This
motivates us to write

V = x2R⊕ xR⊕ R.

The notion which captures this formally is the direct sum.

Definition 9.3.1. Let M be an R-module. Let M1 and M2 be subsets of M which are
themselves R-modules. Then we write M = M1 ⊕M2 and say M is a direct sum of M1
and M2 if every element from M can be written uniquely as the sum of an element from
M1 and M2.

Example 9.3.2 (Euclidean plane)
Take the vector space R2 = {(x, y) | x ∈ R, y ∈ R}. We can consider it as a direct
sum of its x-axis and y-axis:

X = {(x, 0) | x ∈ R} and Y = {(0, y) | y ∈ R} .

Then R2 = X ⊕ Y .

This gives us a “top-down” way to break down modules into some disconnected
components.

By applying this idea in reverse, we can also construct new vector spaces as follows. In
a very unfortunate accident, the two names and notations for technically distinct things
are exactly the same.

Definition 9.3.3. Let M and N be R-modules. We define the direct sum M ⊕N to
be the R-module whose elements are pairs (m,n) ∈M ×N . The operations are given by

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2).

and
r · (m,n) = (r ·m, r · n).

For example, while we technically wrote R2 = X ⊕ Y , since each of X and Y is a copy
of R, we might as well have written R2 ∼= R⊕ R.

Abuse of Notation 9.3.4. The above illustrates an abuse of notation in the way we
write a direct sum. The symbol ⊕ has two meanings.

• If V is a given space and W1 and W2 are subspaces, then V = W1 ⊕W2 means
that “V splits as a direct sum W1 ⊕W2” in the way we defined above.

• If W1 and W2 are two unrelated spaces, then W1⊕W2 is defined as the vector space
whose elements are pairs (w1, w2) ∈W1 ×W2.
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You can see that these definitions “kind of” coincide.

In this way, you can see that V should be isomorphic to R ⊕ R ⊕ R; we had V =
x2R⊕ xR⊕R, but the 1, x, x2 don’t really talk to each other and each of the summands
is really just a copy of R at heart.

Definition 9.3.5. We can also define, for every positive integer n, the module

M⊕n := M ⊕M ⊕ · · · ⊕M︸ ︷︷ ︸
n times

.

§9.4 Linear independence, spans, and basis

Prototypical example for this section:
{
1, x, x2} is a basis of

{
ax2 + bx+ c | a, b, c ∈ R

}
.

The idea of a basis, the topic of this section, gives us another way to capture the notion
that

V =
{
ax2 + bx+ c | a, b, c ∈ R

}
is sums of copies of {1, x, x2}. This section should be very intuitive, if technical. If you
can’t see why the theorems here “should” be true, you’re doing it wrong.

Let M be an R-module now. We define three very classical notions that you likely are
already familiar with. If not, fall upon your notion of Euclidean space or V above.

Definition 9.4.1. A linear combination of some vectors v1, . . . , vn is a sum of the
form r1v1 + · · ·+ rnvn, where r1, . . . , rn ∈ R. The linear combination is called trivial if
r1 = r2 = · · · = rn = 0R, and nontrivial otherwise.

Definition 9.4.2. Consider a finite set of vectors v1, . . . , vn in a module M .

• It is called linearly independent if there is no nontrivial linear combination with
value 0M . (Observe that 0M = 0 · v1 + 0 · v2 + · · · + 0 · vn is always true – the
assertion is that there is no other way to express 0M in this form.)

• It is called a generating set if every v ∈M can be written as a linear combination
of the {vi}. If M is a vector space we say it is spanning instead.

• It is called a basis (plural bases) if every v ∈ M can be written uniquely as a
linear combination of the {vi}.

The same definitions apply for an infinite set, with the proviso that all sums must be
finite.

So by definition,
{
1, x, x2} is a basis for V . It’s not the only one: {2, x, x2} and

{x+ 4, x− 2, x2 + x} are other examples of bases, though not as natural. However, the
set S = {3 + x2, x+ 1, 5 + 2x+ x2} is not a basis; it fails for two reasons:

• Note that 0 = (3 + x2) + 2(x + 1) − (5 + 2x + x2). So the set S is not linearly
independent.

• It’s not possible to write x2 as a sum of elements of S. So S fails to be spanning.

With these new terms, we can say a basis is a linearly independent and spanning set.
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Example 9.4.3 (More examples of bases)
(a) Regard Q[

√
2] =

{
a+ b

√
2 | a, b ∈ Q

}
as a Q-vector space. Then {1,

√
2} is a

basis.

(b) If V is the set of all real polynomials, there is an infinite basis {1, x, x2, . . . }. The
condition that we only use finitely many terms just says that the polynomials
must have finite degree (which is good).

(c) Let V = {(x, y, z) | x+ y + z = 0 and x, y, z ∈ R}. Then we expect there to be
a basis of size 2, but unlike previous examples there is no immediately “obvious”
choice. Some working examples include:

• (1,−1, 0) and (1, 0,−1),
• (0, 1,−1) and (1, 0,−1),
• (5, 3,−8) and (2,−1,−1).

Exercise 9.4.4. Show that a set of vectors is a basis if and only if it is linearly independent
and spanning. (Think about the polynomial example if you get stuck.)

Now we state a few results which assert that bases in vector spaces behave as nicely as
possible.

Theorem 9.4.5 (Maximality and minimality of bases)
Let V be a vector space over some field k and take e1, . . . , en ∈ V . The following
are equivalent:

(a) The ei form a basis.

(b) The ei are spanning, but no proper subset is spanning.

(c) The ei are linearly independent, but adding any other element of V makes
them not linearly independent.

Remark 9.4.6 — If we replace V by a general module M over a commutative ring
R, then (a) =⇒ (b) and (a) =⇒ (c) but not conversely.

Proof. Straightforward, do it yourself if you like. The key point to notice is that you
need to divide by scalars for the converse direction, hence V is required to be a vector
space instead of just a module for the implications (b) =⇒ (a) and (c) =⇒ (a).

Theorem 9.4.7 (Dimension theorem for vector spaces)
If a vector space V has a finite basis, then every other basis has the same number
of elements.

Proof. We prove something stronger: Assume v1, . . . , vn is a spanning set while w1, . . . , wm
is linearly independent. We claim that n ≥ m.
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Question 9.4.8. Show that this claim is enough to imply the theorem.

Let A0 = {v1, . . . , vn} be the spanning set. Throw in w1: by the spanning condition,
w1 = c1v1 + · · ·+ cnvn. There’s some nonzero coefficient, say cn. Thus

vn = 1
cn
w1 −

c1
cn
v1 −

c2
cn
v2 − . . . .

Thus A1 = {v1, . . . , vn−1, w1} is spanning. Now do the same thing, throwing in w2, and
deleting some element of the vi as before to get A2; the condition that the wi are linearly
independent ensures that some vi coefficient must always not be zero. Since we can
eventually get to Am, we have n ≥ m.

Remark 9.4.9 (Generalizations)

• The theorem is true for an infinite basis as well if we interpret “the number
of elements” as “cardinality”. This is confusing on a first read through, so we
won’t elaborate.

• In fact, this is true for modules over any commutative ring. Interestingly, the
proof for the general case proceeds by reducing to the case of a vector space.

The dimension theorem, true to its name, lets us define the dimension of a vector
space as the size of any finite basis, if one exists. When it does exist we say V is
finite-dimensional. So for example,

V =
{
ax2 + bx+ c | a, b, c ∈ R

}
has dimension three, because

{
1, x, x2} is a basis. That’s not the only basis: we could as

well have written {
a(x2 − 4x) + b(x+ 2) + c | a, b, c ∈ R

}
and gotten the exact same vector space. But the beauty of the theorem is that no matter
how we try to contrive the generating set, we always will get exactly three elements.
That’s why it makes sense to say V has dimension three.

On the other hand, the set of all polynomials R[x] is infinite-dimensional (which should
be intuitively clear).

A basis e1, . . . , en of V is really cool because it means that to specify v ∈ V , I only
have to specify a1, . . . , an ∈ k, and then let v = a1e1 + · · ·+ anen. You can even think of
v as (a1, . . . , an). To put it another way, if V is a k-vector space we always have

V = e1k ⊕ e2k ⊕ · · · ⊕ enk.

§9.5 Linear maps
Prototypical example for this section: Evaluation of {ax2 + bx+ c} at x = 3.

We’ve seen homomorphisms and continuous maps. Now we’re about to see linear maps,
the structure preserving maps between vector spaces. Can you guess the definition?

Definition 9.5.1. Let V and W be vector spaces over the same field k. A linear map
is a map T : V →W such that:
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(i) We have T (v1 + v2) = T (v1) + T (v2) for any v1, v2 ∈ V .1

(ii) For any a ∈ k and v ∈ V , T (a · v) = a · T (v).

If this map is a bijection (equivalently, if it has an inverse), it is an isomorphism. We
then say V and W are isomorphic vector spaces and write V ∼= W .

Example 9.5.2 (Examples of linear maps)
(a) For any vector spaces V and W there is a trivial linear map sending everything

to 0W ∈W .

(b) For any vector space V , there is the identity isomorphism id: V → V .

(c) The map R3 → R by (a, b, c) 7→ 4a+ 2b+ c is a linear map.

(d) Let V be the set of real polynomials of degree at most 2. The map R3 → V by
(a, b, c) 7→ ax2 + bx+ c is an isomorphism.

(e) Let V be the set of real polynomials of degree at most 2. The map V → R by
ax2 +bx+c 7→ 9a+3b+c is a linear map, which can be described as “evaluation
at 3”.

(f) Let W be the set of functions R→ R. The evaluation map W → R by f 7→ f(0)
is a linear map.

(g) There is a map of Q-vector spaces Q[
√

2] → Q[
√

2] called “multiply by
√

2”;
this map sends a+ b

√
2 7→ 2b+ a

√
2. This map is an isomorphism, because it

has an inverse “multiply by 1/
√

2”.

In the expression T (a · v) = a · T (v), note that the first · is the multiplication of V and
the second · is the multiplication of W . Note that this notion of isomorphism really only
cares about the size of the basis:

Proposition 9.5.3 (n-dimensional vector spaces are isomorphic)
If V is an n-dimensional vector space, then V ∼= k⊕n.

Question 9.5.4. Let e1, . . . , en be a basis for V . What is the isomorphism? (Your first
guess is probably right.)

Remark 9.5.5 — You could technically say that all finite-dimensional vector spaces
are just k⊕n and that no other space is worth caring about. But this seems kind of
rude. Spaces often are more than just triples: ax2 + bx+ c is a polynomial, and so
it has some “essence” to it that you’d lose if you compressed it into (a, b, c).
Moreover, a lot of spaces, like the set of vectors (x, y, z) with x+ y + z = 0, do not
have an obvious choice of basis. Thus to cast such a space into k⊕n would require
you to make arbitrary decisions.

1In group language, T is a homomorphism (V,+) → (W,+).
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§9.6 What is a matrix?

Now I get to tell you what a matrix is! This is fun, because now I can finally explain to
you how to derive the recipes for matrix multiplication, rather than being told.

This section is so important, and also revelatory for so many students, that I’m actually
going to do it twice. The first time, I’m going to work in an extremely special case,
namely V = W = R2, using lots of numbers. (This is how I explained this concept when
I taught it to first-year undergraduate students that didn’t have proof experience.) Then
the second time, we’ll do it in modern language without all the numbers.

§9.6.i Extended example with R2, suitable for the general public

Throughout this section, I’ll work specifically with R2, whose elements I will write as [ xy ]
rather than (x, y) (you’ll see why when I talk about matrix multiplication).

Pop quiz:

• Question 1: Suppose that you’re given a linear map T : R2 → R2 such that
T ([ 3

4 ]) = [ π9 ] and T ([ 100
100 ]) = [ 0

12 ]. What are T ([ 103
104 ]) and T ([ 203

204 ])?
Answer 1: just add them.

T

([
103
104

])
=
[
π
9

]
+
[

0
12

]
=
[
π
21

]

T

([
203
204

])
=
[
π
9

]
+ 2

[
0
12

]
=
[
π
33

]
.

• Question 2: Suppose that you’re given a linear map T : R2 → R2 such that
T ([ 1

0 ]) = [ 1
3 ] and T ([ 0

1 ]) = [ 2
4 ]. What is T ([ 50

70 ])?
Answer 2:

T

([
50
70

])
= 50

[
1
3

]
+ 70

[
2
4

]
=
[
190
430

]
.

So what this example illustrates is that the requirements on a linear map T : R2 → R2

are so strong that if you just know T ([ 1
0 ]) and T ([ 0

1 ]) then you can compute the values
of T at any other point. That’s true for any two basis vectors (i.e., Question 1 could
have been asked for inputs much nastier than the cherry-picked [ 103

104 ] and [ 203
204 ], and it

would still be solvable), but of course [ 1
0 ] and [ 0

1 ] is an especially convenient choice.
Now we can give the following definition:

Definition 9.6.1. For a linear transform T : R2 → R2, its matrix is an encoding of T
obtained by gluing the column vectors

T

([
1
0

])
and T

([
0
1

])

together to get a 2× 2 array of numbers.

For example,

T

([
1
0

])
=
[
1
3

]
and T

([
0
1

])
=
[
2
4

]
⇐⇒ T encoded as

[
1 2
3 4

]
.
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Now, what happens if you apply the matrix multiplication rule from high school to
the column vector [ 50

70 ]? Well, you get that[
1 2
3 4

] [
50
70

]
=
[
1 · 50 + 2 · 70
3 · 50 + 4 · 70

]
=
[
190
430

]

. . . and you can see we’re actually just doing the second pop quiz question again. So:

If T : R2 → R2 is encoded as a 2× 2 matrix M , then multiplication of M
with a (column) vector v ∈ R2 is defined to coincide with T (v).

Remark 9.6.2 (The identity matrix deserves its name) — This also gives a more
natural reason why the 2× 2 identity matrix is [ 1 0

0 1 ] rather than the explanation
high school gives (namely, “well, try multiplying by it and notice you get the same
thing”). If id is the identity function, then id ([ 1

0 ]) = [ 1
0 ], so that’s the first column

of the matrix; similarly id ([ 0
1 ]) = [ 0

1 ] is the second column.

Now, what happens if we bring two maps S and T into the game, and compose them?
We can do the same game with S ◦ T .

• Question 3: Suppose that you’re given a linear map T : R2 → R2 such that
T ([ 1

0 ]) = [ 1
3 ] and T ([ 0

1 ]) = [ 2
4 ]. Then you’re given a second linear map S : R2 → R2

such that S ([ 1
0 ]) = [ 5

7 ] and S ([ 0
1 ]) = [ 6

8 ]. What are S (T ([ 1
0 ])) and S (T ([ 0

1 ]))?
Answer 3:

S

(
T

([
1
0

]))
= S

([
1
3

])
= 1

[
5
7

]
+ 3

[
6
8

]
=
[
23
31

]
.

S

(
T

([
0
1

]))
= S

([
2
4

])
= 2

[
5
7

]
+ 4

[
6
8

]
=
[
34
46

]
.

Since S ◦ T is itself a linear map, we now know its matrix encoding:

S ◦ T =
[
23 34
31 46

]
.

Now, you might have learned some matrix multiplication rule in school as a definition.
If you execute that definition on the matrices for S and T , you should get[

5 6
7 8

]
︸ ︷︷ ︸

encoding of S

[
1 2
3 4

]
︸ ︷︷ ︸

encoding of T

=
[
5 · 1 + 6 · 3 5 · 2 + 6 · 4
7 · 1 + 8 · 3 7 · 2 + 8 · 4

]
=
[
23 34
31 46

]

It’s the encoding for S ◦ T — indeed, you can see why, because if you trace through the
work in Answer 3, it’s actually the same arithmetic being carried out.

This shows why our Napkin definition of matrix as the encoding of a linear function
is better than what many of you have seen. In high school, the recipe for matrix
multiplication is provided as an unnatural definition, e.g., in cute pictures like Figure 9.1.
However, for us, the recipe in Figure 9.1 is a theorem: we can derive how to get the
encoding of S ◦ T given the encodings of S and T .
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Figure 9.1: Matrix multiplication as taught in American high school: “here’s a recipe,
trust me bro”. Image from [Ma12].

§9.6.ii General discussion, back to Napkin levels of abstraction

Let’s go back to modern language, where we work with finite-dimensional spaces over any
field, and any basis of the spaces (rather than a fixed basis like in the previous section).

Pick a finite-dimensional vector space V with some basis e1, . . . , em and a vector space
W with basis w1, . . . , wn. Suppose I have a map T : V →W and I want to tell you what
T is. It would be awfully inconsiderate of me to try and tell you what T (v) is at every
point v. But we saw I only have to tell you what T (e1), . . . , T (em) are, because from
there you can work out T (a1e1 + · · ·+ amem) for yourself:

T (a1e1 + · · ·+ amem) = a1T (e1) + · · ·+ amT (em).

Since the ei are a basis, that tells you all you need to know about T .

Example 9.6.3 (Extending linear maps)
Let V =

{
ax2 + bx+ c | a, b, c ∈ R

}
. Then T (ax2+bx+c) = aT (x2)+bT (x)+cT (1).

Now I can even be more concrete. I could tell you what T (e1) is, but seeing as I have
a basis of W , I can actually just tell you what T (e1) is in terms of this basis. Specifically,
there are unique a11, a21, . . . , an1 ∈ k such that

T (e1) = a11w1 + a21w2 + · · ·+ an1wn.

So rather than telling you the value of T (e1) in some abstract space W , I could just tell
you what a11, a21, . . . , an1 were. Then I’d repeat this for T (e2), T (e3), all the way up to
T (em), and that would tell you everything you need to know about T .

That’s where the matrix T comes from! It’s a concise way of writing down all mn
numbers I need to tell you.
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To be explicit, the matrix for T is defined as the array

T =

 | | |
T (e1) T (e2) . . . T (em)
| | |


︸ ︷︷ ︸

m columns

}
n rows

=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

... . . . ...
an1 an2 . . . anm

 .
To drive this point home,

A matrix is the laziest possible way to specify a linear map from V to W .

Example 9.6.4 (An example of a matrix)
Here is a concrete example in terms of a basis. Let V = R3 with basis e1, e2, e3
and let W = R2 with basis w1, w2. If I have T : V →W then uniquely determined
by three values, for example:

T (e1) = 4w1 + 7w2

T (e2) = 2w1 + 3w2

T (e3) = w1

The columns then correspond to T (e1), T (e2), T (e3):

T =
[
4 2 1
7 3 0

]

Example 9.6.5 (An example of a matrix after choosing a basis)
We again let V =

{
ax2 + bx+ c

}
be the vector space of polynomials of degree at

most 2. We fix the basis 1, x, x2 for it.
Consider the “evaluation at 3” map, a map V → R. We pick 1 as the basis element
of the RHS; then we can write it as a 1× 3 matrix[

1 3 9
]

with the columns corresponding to T (1), T (x), T (x2).

From here you can actually work out for yourself what it means to multiply two
matrices. Suppose we have picked a basis for three spaces U , V , W . Given maps
T : U → V and S : V →W , we can consider their composition S ◦ T , i.e.

U
T−→ V

S−→W.

Matrix multiplication is defined exactly so that the matrix ST is the same thing we get
from interpreting the composed function S ◦ T as a matrix, as we saw last section.
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In particular, since function composition is associative, it follows that matrix multipli-
cation is as well.

This means you can define concepts like the determinant or the trace of a matrix both
in terms of an “intrinsic” map T : V → W and in terms of the entries of the matrix.
Since the map T itself doesn’t refer to any basis, the abstract definition will imply that
the numerical definition doesn’t depend on the choice of a basis.

§9.7 Subspaces and picking convenient bases

Prototypical example for this section: Any two linearly independent vectors in R3.

Definition 9.7.1. Let M be a left R-module. A submodule N of M is a module N
such that every element of N is also an element of M . If M is a vector space then N is
called a subspace.

Example 9.7.2 (Kernels)
The kernel of a map T : V → W (written kerT ) is the set of v ∈ V such that
T (v) = 0W . It is a subspace of V , since it’s closed under addition and scaling
(why?).

Example 9.7.3 (Spans)
Let V be a vector space and v1, . . . , vm be any vectors of V . The span of these
vectors is defined as the set

{a1v1 + · · ·+ amvm | a1, . . . , am ∈ k} .

Note that it is a subspace of V as well!

Question 9.7.4. Why is 0V an element of each of the above examples? In general, why
must any subspace contain 0V ?

Subspaces behave nicely with respect to bases.

Theorem 9.7.5 (Basis completion)
Let V be an n-dimensional space, and V ′ a subspace of V . Then

(a) V ′ is also finite-dimensional.

(b) If e1, . . . , em is a basis of V ′, then there exist em+1, . . . , en in V such that
e1, . . . , en is a basis of V .

Proof. Omitted, since it is intuitive and the proof is not that enlightening. (However, we
will use this result repeatedly later on, so do take the time to internalize it now.)

A very common use case is picking a convenient basis for a map T .
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Theorem 9.7.6 (Picking a basis for linear maps)
Let T : V → W be a map of finite-dimensional vector spaces, with n = dimV ,
m = dimW . Then there exists a basis v1, . . . , vn of V and a basis w1, . . . , wm of
W , as well as a nonnegative integer k, such that

T (vi) =
{
wi if i ≤ k
0W if i > k.

Moreover dim kerT = n− k and dimT img(V ) = k.

Sketch of Proof. You might like to try this one yourself before reading on: it’s a repeated
application of Theorem 9.7.5.

Let kerT have dimension n−k. We can pick vk+1, . . . , vn a basis of kerT . Then extend
it to a basis v1, . . . , vn of V . The map T is injective over the span of v1, . . . , vk (since
only 0V is in the kernel) so its images in W are linearly independent. Setting wi = T (vi)
for each i, we get some linearly independent set in W . Then extend it again to a basis of
W .

This theorem is super important, not only because of applications but also because it
will give you the right picture in your head of how a linear map is supposed to look. I’ll
even draw a cartoon of it to make sure you remember:

V
e1

e2

...

ek

ek+1

ek+2

...

en

W
f1

f2

...

fk

fk+1

fk+2

fk+3

...

fm

T

0

0

0

imT

kerT

In particular, for T : V →W , one can write V = kerT ⊕ V ′, so that T annihilates its
kernel while sending V ′ to an isomorphic copy in W .

A corollary of this (which you should have expected anyways) is the so called rank-
nullity theorem, which is the analog of the first isomorphism theorem.

Theorem 9.7.7 (Rank-nullity theorem)
Let V and W be finite-dimensional vector spaces. If T : V →W , then

dimV = dim kerT + dim imT.

Question 9.7.8. Conclude the rank-nullity theorem from Theorem 9.7.6.
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§9.8 A cute application: Lagrange interpolation

Here’s a cute application2 of linear algebra to a theorem from high school.

Theorem 9.8.1 (Lagrange interpolation)
Let x1, . . . , xn+1 be distinct real numbers and y1, . . . , yn+1 any real numbers. Then
there exists a unique polynomial P of degree at most n such that

P (xi) = yi

for every i.

When n = 1 for example, this loosely says there is a unique line joining two points.

Proof. The idea is to consider the vector space V of polynomials with degree at most n,
as well as the vector space W = Rn+1.

Question 9.8.2. Check that dimV = n + 1 = dimW . This is easiest to do if you pick
a basis for V , but you can then immediately forget about the basis once you finish this
exercise.

Then consider the linear map T : V →W given by

P 7→ (P (x1), . . . , P (xn+1)) .

This is indeed a linear map because, well, T (P +Q) = T (P ) + T (Q) and T (cP ) = cT (P ).
It also happens to be injective: if P ∈ kerT , then P (x1) = · · · = P (xn+1) = 0, but
degP ≤ n and so P can only be the zero polynomial.

So T is an injective map between vector spaces of the same dimension. Thus it is
actually a bijection, which is exactly what we wanted.

§9.9 Pedagogical digression: Arrays of numbers are evil

(This whole section is Evan yapping about how to teach linear algebra, so it can be safely
skipped.)

As I’ll stress repeatedly, a matrix represents a linear map between two vector spaces.
Writing it in the form of an m × n matrix is merely a very convenient way to see the
map concretely. But it obfuscates the fact that this map is, well, a map, not an array of
numbers.

If you took high school precalculus, you’ll see everything done in terms of matrices.
To any typical high school student, a matrix is an array of numbers. No one is sure what
exactly these numbers represent, but they’re told how to magically multiply these arrays
to get more arrays. They’re told that the matrix

1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


2Source: Communicated to me by Joe Harris at the first Harvard-MIT Undergraduate Math Symposium.
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is an “identity matrix”, because when you multiply by another matrix it doesn’t change.
Then they’re told that the determinant is some magical combination of these numbers
formed by this weird multiplication rule. No one knows what this determinant does,
other than the fact that det(AB) = detA detB, and something about areas and row
operations and Cramer’s rule.

Then you go into linear algebra in college, and you do more magic with these arrays of
numbers. You’re told that two matrices T1 and T2 are similar if

T2 = ST1S
−1

for some invertible matrix S. You’re told that the trace of a matrix TrT is the sum of
the diagonal entries. Somehow this doesn’t change if you look at a similar matrix, but
you’re not sure why. Then you define the characteristic polynomial as

pT (X) = det(XI − T ).

Somehow this also doesn’t change if you take a similar matrix, but now you really don’t
know why. And then you have the Cayley-Hamilton theorem in all its black magic:
pT (T ) is the zero map. Out of curiosity you Google the proof, and you find some ad-hoc
procedure which still leaves you with no idea why it’s true.

This is terrible. What’s so special about T2 = ST1S
−1? Only if you know that the

matrices are linear maps does this make sense: T2 is just T1 rewritten with a different
choice of basis.

I really want to push the opposite view. Linear algebra is the study of linear maps,
but it is taught as the study of arrays of numbers, and no one knows what these numbers
mean. And for a good reason: the numbers are meaningless. They are a highly convenient
way of encoding the matrix, but they are not the main objects of study, any more than
the dates of events are the main objects of study in history.

The other huge downside is that people get the impression that the only (real) vector
space in existence is R⊕n. As explained in Remark 9.5.5, while you can work this way if
you’re a soulless robot, it’s very unnatural for humans to do so.

When I took Math 55a as a freshman at Harvard, I got the exact opposite treatment:
we did all of linear algebra without writing down a single matrix. During all this time I
was quite confused. What’s wrong with a basis? I didn’t appreciate until later that this
approach was the morally correct way to treat the subject: it made it clear what was
happening.

Throughout the Napkin, I’ve tried to strike a balance between these two approaches,
using matrices when appropriate to illustrate the maps and to simplify proofs, but
ultimately writing theorems and definitions in their morally correct form. I hope that
this has both the advantage of giving the “right” definitions while being concrete enough
to be digested. But I would like to say for the record that, if I had to pick between the
high school approach and the 55a approach, I would pick 55a in a heartbeat.

§9.10 A word on general modules
Prototypical example for this section: Z[

√
2] is a Z-module of rank two.

I focused mostly on vector spaces (aka modules over a field) in this chapter for simplicity,
so I want to make a few remarks about modules over a general commutative ring R
before concluding.

Firstly, recall that for general modules, we say “generating set” instead of “spanning
set”. Shrug.
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The main issue with rings is that our key theorem Theorem 9.4.5 fails in spectacular
ways. For example, consider Z as a Z-module over itself. Then {2} is linearly independent,
but it cannot be extended to a basis. Similarly, {2, 3} is spanning, but one cannot cut it
down to a basis. You can see why defining dimension is going to be difficult.

Nonetheless, there are still analogs of some of the definitions above.

Definition 9.10.1. An R-module M is called finitely generated if it has a finite
generating set.

Definition 9.10.2. An R-module M is called free if it has a basis. As said before, the
analogue of the dimension theorem holds, and we use the word rank to denote the size
of the basis. As before, there’s an isomorphism M ∼= R⊕n where n is the rank.

Example 9.10.3 (An example of a Z-module)
The Z-module

Z[
√

2] =
{
a+ b

√
2 | a, b ∈ Z

}
has a basis {1,

√
2}, so we say it is a free Z-module of rank 2.

Abuse of Notation 9.10.4 (Notation for groups). Recall that an abelian group can be
viewed a Z-module (and in fact vice-versa!), so we can (and will) apply these words to
abelian groups. We’ll use the notation G⊕H for two abelian groups G and H for their
Cartesian product, emphasizing the fact that G and H are abelian. This will happen
when we study algebraic number theory and homology groups.

§9.11 A few harder problems to think about

General hint: Theorem 9.7.6 will be your best friend for many of these problems.

Problem 9A†. Let V and W be finite-dimensional vector spaces with nonzero dimen-
sion, and consider linear maps T : V → W . Complete the following table by writing
“sometimes”, “always”, or “never” for each entry.

T injective T surjective T isomorphism
If dimV > dimW . . .
If dimV = dimW . . .
If dimV < dimW . . .

Problem 9B† (Equal dimension vector spaces are usually isomorphisms). Let V and
W be finite-dimensional vector spaces with dimV = dimW . Prove that for a map
T : V →W , the following are equivalent:

• T is injective,

• T is surjective,

• T is bijective.

Problem 9C. Let’s say a magic square is a 3× 3 matrix of real numbers where the sum
of all diagonals, columns, and rows is equal, such as

[ 8 1 6
3 5 7
4 9 2

]
. Find the dimension of the

set of magic squares, as a real vector space under addition.
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Problem 9D (Multiplication by
√

5). Let V = Q[
√

5] =
{
a+ b

√
5
}

be a two-dimensional
Q-vector space, and fix the basis {1,

√
5} for it. Write down the 2×2 matrix with rational

coefficients that corresponds to multiplication by
√

5.

Problem 9E (Multivariable Lagrange interpolation). Let S ⊂ Z2 be a set of n lattice
points. Prove that there exists a nonzero two-variable polynomial p with real coefficients,
of degree at most

√
2n, such that p(x, y) = 0 for every (x, y) ∈ S.

Problem 9F (Putnam 2003). Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + (xy)2 = a(x)c(y) + b(x)d(y)

holds identically?

Problem 9G (TSTST 2014). Let P (x) and Q(x) be arbitrary polynomials with real
coefficients, and let d be the degree of P (x). Assume that P (x) is not the zero polynomial.
Prove that there exist polynomials A(x) and B(x) such that

(i) Both A and B have degree at most d/2,

(ii) At most one of A and B is the zero polynomial,

(iii) P divides A+Q ·B.

Problem 9H⋆ (Idempotents are projection maps). Let P : V → V be a linear map,
where V is a vector space (not necessarily finite-dimensional). Suppose P is idempotent,
meaning P (P (v)) = P (v) for each v ∈ V , or equivalently P is the identity on its image.
Prove that

V = kerP ⊕ imP.

Thus we can think of P as projection onto the subspace imP .

Problem 9I⋆. Let V be a finite dimensional vector space. Let T : V → V be a linear
map, and let Tn : V → V denote T applied n times. Prove that there exists an integer
N such that

V = kerTN ⊕ imTN .
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This chapter will develop the theory of eigenvalues and eigenvectors, the so-called
“Jordan canonical form”. (Later on we will use it to define the characteristic polynomial.)

§10.1 Why you should care
We know that a square matrix T is really just a linear map from V to V . What’s the
simplest type of linear map? It would just be multiplication by some scalar λ, which
would have associated matrix (in any basis!)

T =


λ 0 . . . 0
0 λ . . . 0
...

... . . . ...
0 0 . . . λ

 .
That’s perhaps too simple, though. If we had a fixed basis e1, . . . , en then another very
“simple” operation would just be scaling each basis element ei by λi, i.e. a diagonal
matrix of the form

T =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn

 .
These maps are more general. Indeed, you can, for example, compute T 100 in a heartbeat:
the map sends ei → λ100

i ei. (Try doing that with an arbitrary n× n matrix.)
Of course, most linear maps are probably not that nice. Or are they?

Example 10.1.1 (Getting lucky)
Let V be some two-dimensional vector space with e1 and e2 as basis elements. Let’s
consider a map T : V → V by e1 7→ 2e1 and e2 7→ e1 + 3e2, which you can even
write concretely as

T =
[
2 1
0 3

]
in basis e1, e2.

This doesn’t look anywhere as nice until we realize we can rewrite it as

e1 7→ 2e1

e1 + e2 7→ 3(e1 + e2).

So suppose we change to the basis e1 and e1 + e2. Thus in the new basis,

T =
[
2 0
0 3

]
in basis e1, e1 + e2.

So our completely random-looking map, under a suitable change of basis, looks like
the very nice maps we described before!

157
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In this chapter, we will be making our luck, and we will see that our better understanding
of matrices gives us the right way to think about this.

§10.2 Warning on assumptions
Most theorems in this chapter only work for

• finite-dimensional vector spaces V ,

• over a field k which is algebraically closed.

On the other hand, the definitions work fine without these assumptions.

§10.3 Eigenvectors and eigenvalues
Let k be a field and V a vector space over it. In the above example, we saw that there
were two very nice vectors, e1 and e1 + e2, for which V did something very simple.
Naturally, these vectors have a name.

Definition 10.3.1. Let T : V → V and v ∈ V a nonzero vector. We say that v is an
eigenvector if T (v) = λv for some λ ∈ k (possibly zero, but remember v ̸= 0). The
value λ is called an eigenvalue of T .

We will sometimes abbreviate “v is an eigenvector with eigenvalue λ” to just “v is a
λ-eigenvector”.

Of course, no mention to a basis anywhere.

Example 10.3.2 (An example of an eigenvector and eigenvalue)

Consider the example earlier with T =
[
2 1
0 3

]
.

(a) Note that e1 and e1 + e2 are 2-eigenvectors and 3-eigenvectors.

(b) Of course, 5e1 is also an 2-eigenvector.

(c) And, 7e1 + 7e2 is also a 3-eigenvector.

So you can quickly see the following observation.

Question 10.3.3. Show that the λ-eigenvectors, together with {0} form a subspace.

Definition 10.3.4. For any λ, we define the λ-eigenspace as the set of λ-eigenvectors
together with 0.

This lets us state succinctly that “2 is an eigenvalue of T with one-dimensional eigenspace
spanned by e1”.

Unfortunately, it’s not exactly true that eigenvalues always exist.

Example 10.3.5 (Eigenvalues need not exist)
Let V = R2 and let T be the map which rotates a vector by 90◦ around the origin.
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Then T (v) is not a multiple of v for any v ∈ V , other than the trivial v = 0.

However, it is true if we replace k with an algebraically closed field.1

Theorem 10.3.6 (Eigenvalues always exist over algebraically closed fields)
Suppose k is an algebraically closed field. Let V be a finite dimensional k-vector
space. Then if T : V → V is a linear map, there exists an eigenvalue λ ∈ k.

Proof. (From [Ax97]) The idea behind this proof is to consider “polynomials” in T . For
example, 2T 2 − 4T + 5 would be shorthand for 2T (T (v))− 4T (v) + 5v. In this way we
can consider “polynomials” P (T ); this lets us tie in the “algebraically closed” condition.
These polynomials behave nicely:

Question 10.3.7. Show that P (T ) +Q(T ) = (P +Q)(T ) and P (T ) ◦Q(T ) = (P ·Q)(T ).

Let n = dimV <∞ and fix any nonzero vector v ∈ V , and consider vectors v, T (v),
. . . , Tn(v). There are n+ 1 of them, so they can’t be linearly independent for dimension
reasons; thus there is a nonzero polynomial P such that P (T ) is zero when applied to
v. WLOG suppose P is a monic polynomial, and thus P (z) = (z − r1) . . . (z − rm) say.
Then we get

0 = (T − r1id) ◦ (T − r2id) ◦ · · · ◦ (T − rmid)(v)

(where id is the identity matrix). This means at least one of T − riid is not injective, i.e.
has a nontrivial kernel, which is the same as an eigenvector.

So in general we like to consider algebraically closed fields. This is not a big loss: any
real matrix can be interpreted as a complex matrix whose entries just happen to be real,
for example.

§10.4 The Jordan form

So that you know exactly where I’m going, here’s the main theorem.

Definition 10.4.1. A Jordan block is an n× n matrix of the following shape:



λ 1 0 0 . . . 0 0
0 λ 1 0 . . . 0 0
0 0 λ 1 . . . 0 0
0 0 0 λ . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . λ 1
0 0 0 0 . . . 0 λ


.

In other words, it has λ on the diagonal, and 1 above it. We allow n = 1, so
[
λ
]

is a
Jordan block.

1A field is algebraically closed if all its polynomials have roots, the archetypal example being C.
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Theorem 10.4.2 (Jordan canonical form)
Let T : V → V be a linear map of finite-dimensional vector spaces over an alge-
braically closed field k. Then we can choose a basis of V such that the matrix T is
“block-diagonal” with each block being a Jordan block.
Such a matrix is said to be in Jordan form. This form is unique up to rearranging
the order of the blocks.

As an example, this means the matrix should look something like:



λ1 1
0 λ1

λ2
λ3 1 0
0 λ3 1
0 0 λ3

. . .
λm 1
0 λm



Question 10.4.3. Check that diagonal matrices are the special case when each block is
1× 1.

What does this mean? Basically, it means our dream is almost true. What happens is
that V can get broken down as a direct sum

V = J1 ⊕ J2 ⊕ · · · ⊕ Jm

and T acts on each of these subspaces independently. These subspaces correspond to the
blocks in the matrix above. In the simplest case, dim Ji = 1, so Ji has a basis element e
for which T (e) = λie; in other words, we just have a simple eigenvalue. But on occasion,
the situation is not quite so simple, and we have a block of size greater than 1; this leads
to 1’s just above the diagonals.

I’ll explain later how to interpret the 1’s, when I make up the word descending staircase.
For now, you should note that even if dim Ji ≥ 2, we still have a basis element which is
an eigenvector with eigenvalue λi.

Example 10.4.4 (A concrete example of Jordan form)
Let T : k6 → k6 and suppose T is given by the matrix

T =



5 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 7 0 0
0 0 0 0 3 0
0 0 0 0 0 3


.

Reading the matrix, we can compute all the eigenvectors and eigenvalues: for any
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constants a, b ∈ k we have

T (a · e1) = 5a · e1

T (a · e2) = 2a · e2

T (a · e4) = 7a · e4

T (a · e5 + b · e6) = 3 [a · e5 + b · e6] .

The element e3 on the other hand, is not an eigenvector since T (e3) = e2 + 2e3.

§10.5 Nilpotent maps
Bear with me for a moment. First, define:
Definition 10.5.1. A map T : V → V is nilpotent if Tm is the zero map for some
integer m. (Here Tm means “T applied m times”.)

What’s an example of a nilpotent map?

Example 10.5.2 (The “descending staircase”)
Let V = k⊕3 have basis e1, e2, e3. Then the map T which sends

e3 7→ e2 7→ e1 7→ 0

is nilpotent, since T (e1) = T 2(e2) = T 3(e3) = 0, and hence T 3(v) = 0 for all v ∈ V .

The 3× 3 descending staircase has matrix representation

T =

0 1 0
0 0 1
0 0 0

 .
You’ll notice this is a Jordan block.

Exercise 10.5.3. Show that the descending staircase above has 0 as its only eigenvalue.

That’s a pretty nice example. As another example, we can have multiple such staircases.

Example 10.5.4 (Double staircase)
Let V = k⊕5 have basis e1, e2, e3, e4, e5. Then the map

e3 7→ e2 7→ e1 7→ 0 and e5 7→ e4 7→ 0

is nilpotent.

Picture, with some zeros omitted for emphasis:

T =


0 1 0
0 0 1
0 0 0

0 1
0 0


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You can see this isn’t really that different from the previous example; it’s just the same
idea repeated multiple times. And in fact we now claim that all nilpotent maps have
essentially that form.

Theorem 10.5.5 (Nilpotent Jordan)
Let V be a finite-dimensional vector space over an algebraically closed field k. Let
T : V → V be a nilpotent map. Then we can write V =

⊕m
i=1 Vi where each Vi

has a basis of the form vi, T (vi), . . . , T dimVi−1(vi) for some vi ∈ Vi, and such that
T dimVi(vi) = 0.

Hence:

Every nilpotent map can be viewed as independent staircases.

Each chain vi, T (vi), T (T (vi)), . . . is just one staircase. The proof is given later, but
first let me point out where this is going.

Here’s the punch line. Let’s take the double staircase again. Expressing it as a matrix
gives, say

S =


0 1 0
0 0 1
0 0 0

0 1
0 0

 .
Then we can compute

S + λid =


λ 1 0
0 λ 1
0 0 λ

λ 1
0 λ

 .
It’s a bunch of λ Jordan blocks! This gives us a plan to proceed: we need to break V into
a bunch of subspaces such that T − λid is nilpotent over each subspace. Then Nilpotent
Jordan will finish the job.

§10.6 Reducing to the nilpotent case
Definition 10.6.1. Let T : V → V . A subspace W ⊆ V is called T -invariant if
T (w) ∈W for any w ∈W . In this way, T can be thought of as a map W →W .

In this way, the Jordan form is a decomposition of V into invariant subspaces.
Now I’m going to be cheap, and define:

Definition 10.6.2. A map T : V → V is called indecomposable if it’s impossible to
write V = W1 ⊕W2 where both W1 and W2 are nontrivial T -invariant spaces.

Picture of a decomposable map: 
W1

0 0 0
0 0 0

0 0
W20 0

0 0


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As you might expect, we can break a space apart into “indecomposable” parts.

Proposition 10.6.3 (Invariant subspace decomposition)
Let V be a finite-dimensional vector space. Given any map T : V → V , we can
write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm
where each Vi is T -invariant, and for any i the map T : Vi → Vi is indecomposable.

Proof. Same as the proof that every integer is the product of primes. If V is not
decomposable, we are done. Otherwise, by definition write V = W1⊕W2 and then repeat
on each of W1 and W2.

Incredibly, with just that we’re almost done! Consider a decomposition as above,
so that T : V1 → V1 is an indecomposable map. Then T has an eigenvalue λ1, so let
S = T − λ1id; hence kerS ̸= {0}.

Question 10.6.4. Show that V1 is also S-invariant, so we can consider S : V1 → V1.

By Problem 9I⋆, we have

V1 = kerSN ⊕ imSN

for some N . But we assumed T was indecomposable, so this can only happen if
imSN = {0} and kerSN = V1 (since kerSN contains our eigenvector). Hence S is
nilpotent, so it’s a collection of staircases. In fact, since T is indecomposable, there is
only one staircase. Hence V1 is a Jordan block, as desired.

§10.7 (Optional) Proof of nilpotent Jordan

The proof is just induction on dimV . Assume dimV ≥ 1, and let W = T img(V ) be the
image of V . Since T is nilpotent, we must have W ⊊ V . Moreover, if W = {0} (i.e. T is
the zero map) then we’re already done. So assume {0} ⊊W ⊊ V .

By the inductive hypothesis, we can select a good basis of W :

B′ =
{
T (v1), T (T (v1)), T (T (T (v1))), . . .

T (v2), T (T (v2)), T (T (T (v2))), . . .
. . . ,

T (vℓ), T (T (vℓ)), T (T (T (vℓ))), . . .
}

for some T (vi) ∈W (here we have taken advantage of the fact that each element of W is
itself of the form T (v) for some v).

Also, note that there are exactly ℓ elements of B′ which are in kerT (namely the last
element of each of the ℓ staircases). We can thus complete it to a basis vℓ+1, . . . , vm
(where m = dim kerT ). (In other words, the last element of each staircase plus the m− ℓ
new ones are a basis for kerT .)
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Now consider

B =
{
v1, T (v1), T (T (v1)), T (T (T (v1))), . . .

v2, T (v2), T (T (v2)), T (T (T (v2))), . . .
. . . ,

vℓ, T (vℓ), T (T (vℓ)), T (T (T (vℓ))), . . .

vℓ+1, vℓ+2, . . . , vm
}
.

Question 10.7.1. Check that there are exactly ℓ + dimW + (dim kerT − ℓ) = dimV
elements.

Exercise 10.7.2. Show that all the elements are linearly independent. (Assume for
contradiction there is some linear dependence, then take T of both sides.)

Hence B is a basis of the desired form.

§10.8 Algebraic and geometric multiplicity

Prototypical example for this section: The matrix T below.

This is some convenient notation: let’s consider the matrix in Jordan form

T =



7 1
0 7

9
7 1 0
0 7 1
0 0 7


.

We focus on the eigenvalue 7, which appears multiple times, so it is certainly “repeated”.
However, there are two different senses in which you could say it is repeated.

• Algebraic: You could say it is repeated five times, because it appears five times on
the diagonal.

• Geometric: You could say it really only appears two times: because there are only
two eigenvectors with eigenvalue 7, namely e1 and e4.
Indeed, the vector e2 for example has T (e2) = 7e2 + e1, so it’s not really an
eigenvector! If you apply T − 7id to e2 twice though, you do get zero.

Question 10.8.1. In this example, how many times do you need to apply T − 7id to e6 to
get zero?

Both these notions are valid, so we will name both. To preserve generality, we first state
the “intrinsic” definition.

Definition 10.8.2. Let T : V → V be a linear map and λ a scalar.

• The geometric multiplicity of λ is the dimension dimVλ of the λ-eigenspace.
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• Define the generalized eigenspace V λ to be the subspace of V for which (T −
λid)n(v) = 0 for some n ≥ 1. The algebraic multiplicity of λ is the dimension
dimV λ.

(Silly edge case: we allow “multiplicity zero” if λ is not an eigenvalue at all.)

However in practice you should just count the Jordan blocks.

Example 10.8.3 (An example of eigenspaces via Jordan form)
Retain the matrix T mentioned earlier and let λ = 7.

• The eigenspace Vλ has basis e1 and e4, so the geometric multiplicity is 2.

• The generalized eigenspace V λ has basis e1, e2, e4, e5, e6 so the algebraic
multiplicity is 5.

To be completely explicit, here is how you think of these in practice:

Proposition 10.8.4 (Geometric and algebraic multiplicity vs Jordan blocks)
Assume T : V → V is a linear map of finite-dimensional vector spaces, written in
Jordan form. Let λ be a scalar. Then

• The geometric multiplicity of λ is the number of Jordan blocks with eigenvalue
λ; the eigenspace has one basis element per Jordan block.

• The algebraic multiplicity of λ is the sum of the dimensions of the Jordan
blocks with eigenvalue λ; the eigenspace is the direct sum of the subspaces
corresponding to those blocks.

Proof. Definition 10.8.2 was essentially chosen to be a basis-free rephrasing of this
proposition.

Question 10.8.5. Show that the geometric multiplicity is always less than or equal to the
algebraic multiplicity.

This actually gives us a tentative definition:

• The trace is the sum of the eigenvalues, counted with algebraic multiplicity.

• The determinant is the product of the eigenvalues, counted with algebraic multi-
plicity.

This definition is okay, but it has the disadvantage of requiring the ground field to be alge-
braically closed. It is also not the definition that is easiest to work with computationally.
The next two chapters will give us a better definition.

§10.9 A few harder problems to think about
Problem 10A (Sum of algebraic multiplicities). Given a 2018-dimensional complex
vector space V and a map T : V → V , what is the sum of the algebraic multiplicities of
all eigenvalues of T?
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Problem 10B (The word “diagonalizable”). A linear map T : V → V (where dimV is
finite) is said to be diagonalizable if it has a basis e1, . . . , en such that each ei is an
eigenvector.

(a) Explain the name “diagonalizable”.

(b) Suppose we are working over an algebraically closed field. Then show that T is
diagonalizable if and only if for any λ, the geometric multiplicity of λ equals the
algebraic multiplicity of λ.

Problem 10C (Switcharoo). Let V be the C-vector space with basis e1 and e2. The
map T : V → V sends T (e1) = e2 and T (e2) = e1. Determine the eigenspaces of T .

Problem 10D. Suppose T : C⊕2 → C⊕2 is a linear map of C-vector spaces such that
T 2011 = id. Must T be diagonalizable?

Problem 10E (Writing a polynomial backwards). Define the complex vector space
V of polynomials with degree at most 2, say V =

{
ax2 + bx+ c | a, b, c ∈ C

}
. Define

T : V → V by
T (ax2 + bx+ c) = cx2 + bx+ a.

Determine the eigenspaces of T .

Problem 10F (Differentiation of polynomials). Let V = R[x] be the infinite-dimensional
real vector space of all polynomials with real coefficients. Note that d

dx : V → V is a
linear map (for example it sends x3 to 3x2). Which real numbers are eigenvalues of this
map?

Problem 10G (Differentiation of functions). Let V be the infinite-dimensional real
vector space of all infinitely differentiable functions R→ R. Note that d

dx : V → V is a
linear map (for example it sends cosx to − sin x). Which real numbers are eigenvalues of
this map?



11 Dual space and trace
You may have learned in high school that given a matrix[

a c
b d

]
the trace is the sum along the diagonals a+ d and the determinant is ad− bc. But we
know that a matrix is somehow just encoding a linear map using a choice of basis. Why
would these random formulas somehow not depend on the choice of a basis?

In this chapter, we are going to give an intrinsic definition of TrT , where T : V → V
and dimV <∞. This will give a coordinate-free definition which will in particular imply
the trace a+ d doesn’t change if we take a different basis.

In doing so, we will introduce two new constructions: the tensor product V ⊗W (which
is a sort of product of two spaces, with dimension dimV · dimW ) and the dual space V ∨,
which is the set of linear maps V → k (a k-vector space). Later on, when we upgrade
from a vector space V to an inner product space, we will see that the dual space V ∨

gives a nice interpretation of the “transpose” of a matrix. You’ll already see some of that
come through here.

The trace is only defined for finite-dimensional vector spaces, so if you want you can
restrict your attention to finite-dimensional vector spaces for this chapter. (On the other
hand we do not need the ground field to be algebraically closed.)

The next chapter will then do the same for the determinant.

§11.1 Tensor product
Prototypical example for this section: R[x]⊗ R[y] = R[x, y].

We know that dim(V ⊕W ) = dimV + dimW , even though as sets V ⊕W looks like
V ×W . What if we wanted a real “product” of spaces, with multiplication of dimensions?

For example, let’s pull out my favorite example of a real vector space, namely

V =
{
ax2 + bx+ c | a, b, c ∈ R

}
.

Here’s another space, a little smaller:

W = {dy + e | d, e ∈ R} .

If we take the direct sum, then we would get some rather unnatural vector space of
dimension five (whose elements can be thought of as pairs (ax2 + bx+ c, dy + e)). But
suppose we want a vector space whose elements are products of polynomials in V and W ;
it would contain elements like 4x2y + 5xy + y + 3. In particular, the basis would be{

x2y, x2, xy, x, y, 1
}

and thus have dimension six.
For this we resort to the tensor product. It does exactly this, except that the “multipli-

cation” is done by a scary1 symbol ⊗: think of it as a “wall” that separates the elements
between the two vector spaces. For example, the above example might be written as

4x2 ⊗ y + 5x⊗ y + 1⊗ y + 3⊗ 1.
1Seriously, ⊗ looks terrifying to non-mathematicians, and even to many math undergraduates.

167
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(This should be read as (4x2 ⊗ y) + (5x⊗ y) + . . . ; addition comes after ⊗.) Of course
there should be no distinction between writing 4x2 ⊗ y and x2 ⊗ 4y or even 2x2 ⊗ 2y.
While we want to keep the x and y separate, the scalars should be free to float around.

Of course, there’s no need to do everything in terms of just the monomials. We are
free to write

(x+ 1)⊗ (y + 1).

If you like, you can expand this as

x⊗ y + 1⊗ y + x⊗ 1 + 1⊗ 1.

Same thing. The point is that we can take any two of our polynomials and artificially
“tensor” them together.

The definition of the tensor product does exactly this, and nothing else.2

Definition 11.1.1. Let V and W be vector spaces over the same field k. The tensor
product V ⊗k W is the abelian group generated by elements of the form v ⊗ w, subject
to relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(c · v)⊗ w = v ⊗ (c · w).

As a vector space, its action is given by c · (v ⊗ w) = (c · v)⊗ w = v ⊗ (c · w).

Here’s another way to phrase the same idea. We define a pure tensor as an element
of the form v ⊗ w for v ∈ V and w ∈W . But we let the ⊗ wall be “permeable” in the
sense that

(c · v)⊗ w = v ⊗ (c · w) = c · (v ⊗ w)

and we let multiplication and addition distribute as we expect. Then V ⊗W consists of
sums of pure tensors.

Example 11.1.2 (Infinite-dimensional example of tensor product: two-variable
polynomials)
Although it’s not relevant to this chapter, this definition works equally well with
infinite-dimensional vector spaces. The best example might be

R[x]⊗R R[y] = R[x, y].

That is, the tensor product of polynomials in x with real polynomials in y turns
out to just be two-variable polynomials R[x, y].

Remark 11.1.3 (Warning on sums of pure tensors) — Remember the elements of
V ⊗k W really are sums of these pure tensors! If you liked the previous example,
this fact has a nice interpretation — not every polynomial in R[x, y] = R[x]⊗R R[y]
factors as a polynomial in x times a polynomial in y (i.e. as pure tensors f(x)⊗g(y)).
But they all can be written as sums of pure tensors xa ⊗ yb.

2I’ll only define this for vector spaces for simplicity. The definition for modules over a commutative ring
R is exactly the same.
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As the example we gave suggested, the basis of V ⊗kW is literally the “product” of the
bases of V and W . In particular, this fulfills our desire that dim(V ⊗kW ) = dimV ·dimW .

Proposition 11.1.4 (Basis of V ⊗W )
Let V and W be finite-dimensional k-vector spaces. If e1, . . . , em is a basis of V
and f1, . . . , fn is a basis of W , then the basis of V ⊗kW is precisely ei ⊗ fj , where
i = 1, . . . ,m and j = 1, . . . , n.

Proof. Omitted; it’s easy at least to see that this basis is spanning.

Example 11.1.5 (Explicit computation)
Let V have basis e1, e2 and W have basis f1, f2. Let v = 3e1 + 4e2 ∈ V and
w = 5f1 + 6f2 ∈W . Let’s write v ⊗ w in this basis for V ⊗k W :

v ⊗ w = (3e1 + 4e2)⊗ (5f1 + 6f2)
= (3e1)⊗ (5f1) + (4e2)⊗ (5f1) + (3e1)⊗ (6f2) + (4e2)⊗ (6f2)
= 15(e1 ⊗ f1) + 20(e2 ⊗ f1) + 18(e1 ⊗ f2) + 24(e2 ⊗ f2).

So you can see why tensor products are a nice “product” to consider if we’re really
interested in V ×W in a way that’s more intimate than just a direct sum.

Abuse of Notation 11.1.6. Moving forward, we’ll almost always abbreviate ⊗k to just
⊗, since k is usually clear.

Remark 11.1.7 — Observe that to define a linear map V ⊗W → X, I only have
to say what happens to each pure tensor v ⊗ w, since the pure tensors generate
V ⊗W . But again, keep in mind that V ⊗W consists of sums of these pure tensors!
In other words, V ⊗W is generated by pure tensors.

Remark 11.1.8 — Much like the Cartesian product A×B of sets, you can tensor
together any two vector spaces V and W over the same field k; the relationship
between V and W is completely irrelevant. One can think of the ⊗ as a “wall”
through which one can pass scalars in k, but otherwise keeps the elements of V and
W separated. Thus, ⊗ is content-agnostic.
This also means that even if V and W have some relation to each other, the
tensor product doesn’t remember this. So for example v ⊗ 1 ̸= 1 ⊗ v, just like
(g, 1G) ̸= (1G, g) in the group G×G.

§11.2 Dual space
Prototypical example for this section: Rotate a column matrix by 90 degrees.

Consider the following vector space:

Example 11.2.1 (Functions from R3 → R)
The set of real functions f(x, y, z) is an infinite-dimensional real vector space.
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Indeed, we can add two functions to get f + g, and we can think of functions like
2f .

This is a terrifyingly large vector space, but you can do some reasonable reductions. For
example, you can restrict your attention to just the linear maps from R3 to R.

That’s exactly what we’re about to do. This definition might seem strange at first,
but bear with me.

Definition 11.2.2. Let V be a k-vector space. Then V ∨, the dual space of V , is
defined as the vector space whose elements are linear maps from V to k.

The addition and multiplication are pointwise: it’s the same notation we use when we
write cf + g to mean c · f(x) + g(x). The dual space itself is less easy to think about.

Let’s try to find a basis for V ∨. First, here is a very concrete interpretation of the
vector space. Suppose for example V = R3. We can think of elements of V as column
matrices, like

v =

2
5
9

 ∈ V.
Then a linear map f : V → k can be interpreted as a row matrix:

f =
[
3 4 5

]
∈ V ∨.

Then

f(v) =
[
3 4 5

] 2
5
9

 = 71.

More precisely: to specify a linear map V → k, I only have to tell you where
each basis element of V goes. In the above example, f sends e1 to 3, e2 to 4, and e3
to 5. So f sends

2e1 + 5e2 + 9e3 7→ 2 · 3 + 5 · 4 + 9 · 5 = 71.

Let’s make all this precise.

Proposition 11.2.3 (The dual basis for V ∨)
Let V be a finite-dimensional vector space with basis e1, . . . , en. For each i consider
the function e∨

i : V → k defined by

e∨
i (ej) =

{
1 i = j

0 i ̸= j.

In more humane terms, e∨
i (v) gives the coefficient of ei in v.

Then e∨
1 , e∨

2 , . . . , e∨
n is a basis of V ∨.

Example 11.2.4 (Explicit example of element in V ∨)
In this notation, f = 3e∨

1 + 4e∨
2 + 5e∨

3 . Do you see why the “sum” notation works
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as expected here? Indeed

f(e1) = (3e∨
1 + 4e∨

2 + 5e∨
3 )(e1)

= 3e∨
1 (e1) + 4e∨

2 (e1) + 5e∨
3 (e1)

= 3 · 1 + 4 · 0 + 5 · 0 = 3.

That’s exactly what we wanted.

You might be inclined to point out that V ∼= V ∨ at this point, with an isomorphism
given by ei 7→ e∨

i . You might call it “rotating the column matrix by 90◦”.
This statement is technically true, but for a generic vector space V without any extra

information, you can just think of this as an artifact of the dimV = dimV ∨ (as any two
vector spaces of equal dimension are isomorphic). Most importantly, the isomorphism
given above depends on what basis you picked.

Remark 11.2.5 (Explicit example showing that the isomorphism V → V ∨ given above
is unnatural) Alice or Bob are looking at the same two-dimensional real vector space

V = {(x, y, z) | x+ y + z = 0} .

Also, let vexample = (3, 5,−8) be an example of an arbitrary element of V for
concreteness.
Suppose Alice chooses the following basis vectors for V .

e1 = (1, 0,−1)
e2 = (0, 1,−1).

Alice uses this to construct an isomorphism A : V → V ∨ as described above, and
considers e∨

1 = A(e1). The element e∨
1 ∈ V ∨ is a function e∨

1 : V → R, meaning
Alice can plug any vector in V into it. As an example, for vexample

e∨
1 (vexample) = e∨

1 ((3, 5,−8)) = e∨
1 (3e1 + 5e2) = 3.

Meanwhile, Bob chooses the different basis vectors

f1 = (1, 0,−1)
f2 = (1,−1, 0).

This gives Bob an isomorphism B : V → V ∨, and a corresponding f∨
1 = B(f1). Bob

can also evaluate it anywhere, e.g.

f∨
1 (vexample) = f∨

1 ((3, 5,−8)) = f∨
1 (8f1 − 5f2) = 8.

It follows that e∨
1 = A ((1, 0,−1)) and f∨

1 = B ((1, 0,−1)) are different elements of
V ∨. In other words Alice and Bob got different isomorphisms because they picked
different bases.

§11.3 V ∨ ⊗W gives matrices from V to W

Goal of this section:
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If V and W are finite-dimensional k-vector spaces then V ∨⊗W represents
linear maps V →W .

Here’s the intuition. If V is three-dimensional and W is five-dimensional, then we can
think of the maps V →W as a 5× 3 array of numbers. We want to think of these maps
as a vector space: (since one can add or scale matrices). So it had better be a vector
space with dimension 15, but just saying “k⊕15” is not really that satisfying (what is the
basis?).

To do better, we consider the tensor product

V ∨ ⊗W

which somehow is a product of maps out of V and the target space W . We claim that
this is in fact the space we want: i.e. there is a natural bijection between elements
of V ∨ ⊗W and linear maps from V to W .

First, how do we interpret an element of V ∨ ⊗W as a map V →W ? For concreteness,
suppose V has a basis e1, e2, e3, and W has a basis f1, f2, f3, f4, f5. Consider an element
of V ∨ ⊗W , say

e∨
1 ⊗ (f2 + 2f4) + 4e∨

2 ⊗ f5.

We want to interpret this element as a function V →W : so given a v ∈ V , we want to
output an element of W . There’s really only one way to do this: feed in v ∈ V into the
V ∨ guys on the left. That is, take the map

v 7→ e∨
1 (v) · (f2 + 2f4) + 4e∨

2 (v) · f5 ∈W.

So, there’s a natural way to interpret any element ξ1 ⊗w1 + · · ·+ ξm ⊗wm ∈ V ∨ ⊗W as
a linear map V →W . The claim is that in fact, every linear map V →W has such an
interpretation.

First, for notational convenience,
Definition 11.3.1. Let Hom(V,W ) denote the set of linear maps from V to W (which
one can interpret as matrices which send V to W ), viewed as a vector space over k. (The
“Hom” stands for homomorphism.)

Question 11.3.2. Identify Hom(V, k) by name.

We can now write down something that’s more true generally.

Theorem 11.3.3 (V ∨ ⊗W ⇐⇒ linear maps V →W )
Let V and W be finite-dimensional vector spaces. We described a map

Ψ: V ∨ ⊗W → Hom(V,W )

by sending ξ1 ⊗ w1 + · · ·+ ξm ⊗ wm to the linear map

v 7→ ξ1(v)w1 + · · ·+ ξm(v)wm.

Then Ψ is an isomorphism of vector spaces, i.e. every linear map V →W can be
uniquely represented as an element of V ∨ ⊗W in this way.

The above is perhaps a bit dense, so here is a concrete example.
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Example 11.3.4 (Explicit example)
Let V = R2 and take a basis e1, e2 of V . Then define T : V → V by

T =
[
1 2
3 4

]
.

Then we have

Ψ(e∨
1 ⊗ e1 + 2e∨

2 ⊗ e1 + 3e∨
1 ⊗ e2 + 4e∨

2 ⊗ e2) = T.

The beauty is that the Ψ definition is basis-free; thus even if we change the basis,
although the above expression will look completely different, the actual element in
V ∨ ⊗ V doesn’t change.

Despite this, we’ll indulge ourselves in using coordinates for the proof.

Proof of Theorem 11.3.3. This looks intimidating, but it’s actually not difficult. We
proceed in two steps:

1. First, we check that Ψ is surjective; every linear map has at least one representation
in V ∨ ⊗W . To see this, take any T : V →W . Suppose V has basis e1, e2, e3 and
that T (e1) = w1, T (e2) = w2 and T (e3) = w3. Then the element

e∨
1 ⊗ w1 + e∨

2 ⊗ w2 + e∨
3 ⊗ w3

works, as it is contrived to agree with T on the basis elements ei.

2. So it suffices to check now that dimV ∨⊗W = dim Hom(V,W ). Certainly, V ∨⊗W
has dimension dimV ·dimW . But by viewing Hom(V,W ) as dimV ·dimW matrices,
we see that it too has dimension dimV · dimW .

So there is a natural isomorphism V ∨⊗W ∼= Hom(V,W ). While we did use a basis
liberally in the proof that it works, this doesn’t change the fact that the isomorphism
is “God-given”, depending only on the spirit of V and W itself and not which basis we
choose to express the vector spaces in.

§11.4 The trace

We are now ready to give the definition of a trace. Recall that a square matrix T can be
thought of as a map T : V → V . According to the above theorem,

Hom(V, V ) ∼= V ∨ ⊗ V

so every map V → V can be thought of as an element of V ∨⊗ V . But we can also define
an evaluation map ev : V ∨ ⊗ V → k by “collapsing” each pure tensor: f ⊗ v 7→ f(v). So
this gives us a composed map

Hom(V, V ) V ∨ ⊗ V k.
∼= ev

This result is called the trace of a matrix T .
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Example 11.4.1 (Example of a trace)
Continuing the previous example,

TrT = e∨
1 (e1) + 2e∨

2 (e1) + 3e∨
1 (e2) + 4e∨

2 (e2) = 1 + 0 + 0 + 4 = 5.

And that is why the trace is the sum of the diagonal entries.

§11.5 A few harder problems to think about
Problem 11A (Trace is sum of eigenvalues). Let V be an n-dimensional vector space
over an algebraically closed field k. Let T : V → V be a linear map with eigenvalues λ1,
λ2, . . . , λn (counted with algebraic multiplicity). Show that TrT = λ1 + · · ·+ λn.

Problem 11B† (Product of traces). Let T : V → V and S : W → W be linear maps
of finite-dimensional vector spaces V and W . Define T ⊗ S : V ⊗ W → V ⊗ W by
v ⊗ w 7→ T (v)⊗ S(w). Prove that

Tr(T ⊗ S) = Tr(T ) Tr(S).

Problem 11C† (Traces kind of commute). Let T : V → W and S : W → V be linear
maps between finite-dimensional vector spaces V and W . Show that

Tr(T ◦ S) = Tr(S ◦ T ).

Problem 11D (Putnam 1988). Let V be an n-dimensional vector space. Let T : V → V
be a linear map and suppose there exists n+ 1 eigenvectors, any n of which are linearly
independent. Does it follow that T is a scalar multiple of the identity?
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The goal of this chapter is to give the basis-free definition of the determinant: that is,
we’re going to define detT for T : V → V without making reference to the encoding for
T . This will make it obvious that the determinant of a matrix does not depend on the
choice of basis, and that several properties are vacuously true (e.g. that the determinant
is multiplicative).

The determinant is only defined for finite-dimensional vector spaces, so if you want
you can restrict your attention to finite-dimensional vector spaces for this chapter. On
the other hand we do not need the ground field to be algebraically closed.

§12.1 Wedge product

Prototypical example for this section:
∧2(R2) gives parallelograms.

We’re now going to define something called the wedge product. It will look at first like
the tensor product V ⊗ V , but we’ll have one extra relation.

For simplicity, I’ll first define the wedge product
∧2(V ). But we will later replace 2

with any n.

Definition 12.1.1. Let V be a k-vector space. The 2-wedge product
∧2(V ) is the

abelian group generated by elements of the form v ∧ w (where v, w ∈ V ), subject to the
same relations

(v1 + v2) ∧ w = v1 ∧ w + v2 ∧ w
v ∧ (w1 + w2) = v ∧ w1 + v ∧ w2

(c · v) ∧ w = v ∧ (c · w)

plus two additional relations:

v ∧ v = 0 and v ∧ w = −w ∧ v.

As a vector space, its action is given by c · (v ∧ w) = (c · v) ∧ w = v ∧ (c · w).

Exercise 12.1.2. Show that the condition v ∧ w = −(w ∧ v) is actually extraneous: you
can derive it from the fact that v ∧ v = 0. (Hint: expand (v + w) ∧ (v + w) = 0.)

This looks almost exactly the same as the definition for a tensor product, with two
subtle differences. The first is that we only have V now, rather than V and W as with
the tensor product.1 Secondly, there is a new mysterious relation

v ∧ v = 0 =⇒ v ∧ w = −(w ∧ v).

What’s that doing there? It seems kind of weird.
I’ll give you a hint.

1So maybe the wedge product might be more accurately called the “wedge power”!
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Example 12.1.3 (Wedge product explicit computation)
Let V = R2, and let v = ae1 + be2, w = ce1 + de2. Now let’s compute v ∧ w in∧2(V ).

v ∧ w = (ae1 + be2) ∧ (ce1 + de2)
= ac(e1 ∧ e1) + bd(e2 ∧ e2) + ad(e1 ∧ e2) + bc(e2 ∧ e1)
= ad(e1 ∧ e2) + bc(e2 ∧ e1)
= (ad− bc)(e1 ∧ e2).

What is ad− bc? You might already recognize it:

• You might know that the area of the parallelogram formed by v and w is ad− bc.

• You might recognize it as the determinant of
[
a c
b d

]
. In fact, you might even know

that the determinant is meant to interpret hypervolumes.

0

v = ae1 + be2

w = ce1 + de2

v + w

ad− bc

This is absolutely no coincidence. The wedge product is designed to interpret signed
areas. That is, v ∧w is meant to interpret the area of the parallelogram formed by v and
w. You can see why the condition (cv) ∧ w = v ∧ (cw) would make sense now. And now
of course you know why v ∧ v ought to be zero: it’s an area zero parallelogram!

The miracle of wedge products is that the only additional condition we need to
add to the tensor product axioms is that v ∧ v = 0. Then suddenly, the wedge will do all
our work of interpreting volumes for us.

Remark 12.1.4 (Side digression on definitions in mathematics) This “property-based”
philosophy is a common trope in modern mathematics. You have some intuition
about an object you wish to define, and then you write down a wishlist of properties
that “should” follow. But then it turns out the properties are sufficient to work
with, and so for the definition, you just define an abstract object satisfying all the
properties on your wishlist. Thereafter the intuition plays no “official” role; it serves
only as cheerleading motivation for the wishlist.
For wedge products, the wishlist has only the single property v ∧ v = 0.

In analog to earlier:
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Proposition 12.1.5 (Basis of
∧2(V ))

Let V be a vector space with basis e1, . . . , en. Then a basis of
∧2(V ) is

ei ∧ ej

where i < j. Hence
∧2(V ) has dimension

(n
2
)
.

Proof. Surprisingly slippery, and also omitted. (You can derive it from the corresponding
theorem on tensor products.)

Now I have the courage to define a multi-dimensional wedge product. It’s just the
same thing with more wedges.

Definition 12.1.6. Let V be a vector space and m a positive integer. The space
∧m(V )

is generated by wedges of the form

v1 ∧ v2 ∧ · · · ∧ vm

subject to relations

· · · ∧ (v1 + v2) ∧ . . . = (· · · ∧ v1 ∧ . . . ) + (· · · ∧ v2 ∧ . . . )
· · · ∧ (cv1) ∧ v2 ∧ . . . = · · · ∧ v1 ∧ (cv2) ∧ . . .

· · · ∧ v ∧ v ∧ . . . = 0
· · · ∧ v ∧ w ∧ . . . = −(· · · ∧ w ∧ v ∧ . . . )

As a vector space

c · (v1 ∧ v2 ∧ · · · ∧ vm) = (cv1) ∧ v2 ∧ · · · ∧ vm = v1 ∧ (cv2) ∧ · · · ∧ vm = . . . .

This definition is pretty wordy, but in English the three conditions say

• We should be able to add products like before,

• You can put constants onto any of the m components (as is directly pointed out in
the “vector space” action), and

• Switching any two adjacent wedges negates the whole wedge.

So this is the natural generalization of
∧2(V ). You can convince yourself that any element

of the form
· · · ∧ v ∧ · · · ∧ v ∧ . . .

should still be zero.
Just like e1 ∧ e2 was a basis earlier, we can find the basis for general m and n.

Proposition 12.1.7 (Basis of the wedge product)
Let V be a vector space with basis e1, . . . , en. A basis for

∧m(V ) consists of the
elements

ei1 ∧ ei2 ∧ · · · ∧ eim
where

1 ≤ i1 < i2 < · · · < im ≤ n.

Hence
∧m(V ) has dimension

(n
m

)
.
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Sketch of proof. We knew earlier that ei1 ⊗ · · · ⊗ eim was a basis for the tensor product.
Here we have the additional property that (a) if two basis elements re-appear then the
whole thing becomes zero, thus we should assume the i’s are all distinct; and (b) we
can shuffle around elements, and so we arbitrarily decide to put the basis elements in
increasing order.

§12.2 The determinant
Prototypical example for this section: (ae1 + be2) ∧ (ce1 + de2) = (ad− bc)(e1 ∧ e2).

Now we’re ready to define the determinant. Suppose T : V → V is a square matrix.
We claim that the map

∧m(V )→
∧m(V ) given on wedges by

v1 ∧ v2 ∧ · · · ∧ vm 7→ T (v1) ∧ T (v2) ∧ · · · ∧ T (vm).

and extending linearly to all of
∧m(V ) is a well-defined linear map (Here “well-defined”

means that equivalent elements of the domain get mapped to equivalent elements of the
codomain. This, and linearity, both follow from T being a linear map.) We call that map∧m(T ).

Example 12.2.1 (Example of
∧m(T ))

In V = R4 with standard basis e1, e2, e3, e4, let T (e1) = e2, T (e2) = 2e3, T (e3) = e3
and T (e4) = 2e2 + e3. Then, for example,

∧2(T ) sends

(e1 ∧ e2) + (e3 ∧ e4) 7→ T (e1) ∧ T (e2) + T (e3) ∧ T (e4)
= e2 ∧ 2e3 + e3 ∧ (2e2 + e3)
= 2(e2 ∧ e3 + e3 ∧ e2)
= 0.

Now here’s something interesting. Suppose V has dimension n, and let m = n. Then∧n(V ) has dimension
(n
n

)
= 1 — it’s a one dimensional space! Hence

∧n(V ) ∼= k.
So
∧n(T ) can be thought of as a linear map from k to k. But we know that a linear

map from k to k is just multiplication by a constant. Hence
∧n(T ) is multiplication by

some constant.

Definition 12.2.2. Let T : V → V , where V is an n-dimensional vector space. Then∧n(T ) is multiplication by a constant c; we define the determinant of T as c = detT .

Example 12.2.3 (The determinant of a 2× 2 matrix)
Let V = R2 again with basis e1 and e2. Let

T =
[
a c
b d

]
.

In other words, T (e1) = ae1 + be2 and T (e2) = ce1 + de2.
Now let’s consider

∧2(V ). It has a basis e1 ∧ e2. Now
∧2(T ) sends it to

e1 ∧ e2

∧2(T )
7−−−−→ T (e1) ∧ T (e2) = (ae1 + be2) ∧ (ce1 + de2) = (ad− bc)(e1 ∧ e2).

So
∧2(T ) :

∧2(V ) →
∧2(V ) is multiplication by detT = ad − bc, because it sent



12 Determinant 179

e1 ∧ e2 to (ad− bc)(e1 ∧ e2).

And that is the definition of a determinant. Once again, since we defined it in terms of∧n(T ), this definition is totally independent of the choice of basis. In other words, the
determinant can be defined based on T : V → V alone without any reference to matrices.

Question 12.2.4. Why does
∧n(S ◦ T ) =

∧n(S) ◦
∧n(T )?

In this way, we also get
det(S ◦ T ) = det(S) det(T )

for free.
More generally if we replace 2 by n, an write out the result of expanding

(a11e1 + a21e2 + · · · ) ∧ · · · ∧ (a1ne1 + a2ne2 + · · ·+ annen)

then you will get the formula

det(A) =
∑
σ∈Sn

sgn(σ)a1,σ(1)a2,σ(2) . . . an,σ(n)

called the Leibniz formula for determinants. American high school students will
recognize it; this is (unfortunately) taught as the definition of the determinant, rather
than a corollary of the better definition using wedge products.

Exercise 12.2.5. Verify that expanding the wedge product yields the Leibniz formula for
n = 3.

§12.3 Characteristic polynomials, and Cayley-Hamilton
Let’s connect with the theory of eigenvalues. Take a map T : V → V , where V is
n-dimensional over an algebraically closed field, and suppose its eigenvalues are λ1, λ2,
. . . , λn (with repetition). Then the characteristic polynomial is given by

pT (X) = (X − λ1)(X − λ2) . . . (X − λn).

Note that if we’ve written T in Jordan form, that is,

T =


λ1 ∗ 0 . . . 0
0 λ2 ∗ . . . 0
0 0 λ3 . . . 0
...

...
... . . . ...

0 0 0 . . . λn


(here each ∗ is either 0 or 1), then we can hack together the definition

pT (X) := det (X · idn − T ) = det


X − λ1 ∗ 0 . . . 0

0 X − λ2 ∗ . . . 0
0 0 X − λ3 . . . 0
...

...
... . . . ...

0 0 0 . . . X − λn

 .
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The latter definition is what you’ll see in most linear algebra books because it lets
you define the characteristic polynomial without mentioning the word “eigenvalue” (i.e.
entirely in terms of arrays of numbers). I’ll admit it does have the merit that it means
that given any matrix, it’s easy to compute the characteristic polynomial and hence
compute the eigenvalues; but I still think the definition should be done in terms of
eigenvalues to begin with. For instance the determinant definition obscures the following
theorem, which is actually a complete triviality.

Theorem 12.3.1 (Cayley-Hamilton)
Let T : V → V be a map of finite-dimensional vector spaces over an algebraically
closed field. Then for any T : V → V , the map pT (T ) is the zero map.

Here, by pT (T ) we mean that if

pT (X) = Xn + cn−1X
n−1 + · · ·+ c0

then
pT (T ) = Tn + cn−1T

n−1 + · · ·+ c1T + c0I

is the zero map, where T k denotes T applied k times. We saw this concept already when
we proved that T had at least one nonzero eigenvector.

Example 12.3.2 (Example of Cayley-Hamilton using determinant definition)

Suppose T =
[
1 2
3 4

]
. Using the determinant definition of characteristic polynomial,

we find that pT (X) = (X − 1)(X − 4)− (−2)(−3) = X2 − 5X − 2. Indeed, you can
verify that

T 2 − 5T − 2 =
[

7 10
15 22

]
− 5 ·

[
1 2
3 4

]
− 2 ·

[
1 0
0 1

]
=
[
0 0
0 0

]
.

If you define pT without the word eigenvalue, and adopt the evil view that matrices are
arrays of numbers, then this looks like a complete miracle. (Indeed, just look at the
terrible proofs on Wikipedia.)

But if you use the abstract viewpoint of T as a linear map, then the theorem is almost
obvious:

Proof of Cayley-Hamilton. Suppose we write V in Jordan normal form as

V = J1 ⊕ · · · ⊕ Jm

where Ji has eigenvalue λi and dimension di. By definition,

pT (T ) = (T − λ1)d1(T − λ2)d2 . . . (T − λm)dm .

By definition, (T − λ1)d1 is the zero map on J1. So pT (T ) is zero on J1. Similarly it’s
zero on each of the other Ji’s — end of story.
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Remark 12.3.3 (Tensoring up) — The Cayley-Hamilton theorem holds without the
hypothesis that k is algebraically closed: because for example any real matrix can
be regarded as a matrix with complex coefficients (a trick we’ve mentioned before).
I’ll briefly hint at how you can use tensor products to formalize this idea.
Let’s take the space V = R3, with basis e1, e2, e3. Thus objects in V are of the
form r1e1 + r2e2 + r3e3 where r1, r2, r3 are real numbers. We want to consider
essentially the same vector space, but with complex coefficients zi rather than real
coefficients ri.
So here’s what we do: view C as a R-vector space (with basis {1, i}, say) and
consider the complexification

VC := C⊗R V.

Then you can check that our elements are actually of the form

z1 ⊗ e1 + z2 ⊗ e2 + z3 ⊗ e3.

Here, the tensor product is over R, so we have z ⊗ rei = (zr)⊗ ei for r ∈ R. Then
VC can be thought as a three-dimensional vector space over C, with basis 1⊗ ei for
i ∈ {1, 2, 3}. In this way, the tensor product lets us formalize the idea that we “fuse
on” complex coefficients.
If T : V →W is a map, then TC : VC →WC is just the map z⊗v 7→ z⊗T (v). You’ll
see this written sometimes as TC = id⊗ T . One can then apply theorems to TC and
try to deduce the corresponding results on T .

§12.4 A few harder problems to think about

Problem 12A (Column operations). Show that for any real numbers xij (here 1 ≤
i, j ≤ n) we have

det


x11 x12 . . . x1n
x21 x22 . . . x2n
...

... . . . ...
xn1 xn2 . . . xnn

 = det


x11 + cx12 x12 . . . x1n
x21 + cx22 x22 . . . x2n

...
... . . . ...

xn1 + cxn2 xn2 . . . xnn

 .

Problem 12B (Determinant is product of eigenvalues). Let V be an n-dimensional vector
space over an algebraically closed field k. Let T : V → V be a linear map with eigenvalues
λ1, λ2, . . . , λn (counted with algebraic multiplicity). Show that detT = λ1 . . . λn.

Problem 12C (Exponential matrix). Let X be an n×n matrix with complex coefficients.
We define the exponential map by

exp(X) = 1 +X + X2

2! + X3

3! + · · ·

(take it for granted that this converges to some n× n matrix). Prove that

det(exp(X)) = eTrX .

Problem 12D (Extension to Problem 9B†). Let T : V → V be a map of finite-dimensional
vector spaces. Prove that T is an isomorphism if and only if detT ̸= 0.
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Problem 12E (Based on Sweden 2010). A herd of 1000 cows of nonzero weight is
given. Prove that we can remove one cow such that the remaining 999 cows cannot be
partitioned into two sets with equal sum of weights.

Problem 12F (Putnam 2015). Define S to be the set of real matrices
(
a b
c d

)
such that a,

b, c, d form an arithmetic progression in that order. Find all M ∈ S such that for some
integer k > 1, Mk ∈ S.

Problem 12G. Let V be a finite-dimensional vector space over k and T : V → V . Show
that

det(a · idV − T ) =
dimV∑
n=0

adimV−n · (−1)n Tr
(
n∧

(T )
)

where the trace is taken by viewing
∧n(T ) :

∧n(V )→
∧n(V ).

Problem 12H (Cauchy-Binet formula). Let n ≥ s ≥ 1 be integers, and let A and B be
an s× n matrix and n× s matrix, respectively. (Hence AB is an s× s matrix.) For any
subset S ⊆ {1, 2, . . . , n} with |S| = s, we let AS be the s× s submatrix of A of the rows
with indices in S and let BS be the s× s submatrix of B of the columns with indices in
S. Prove that

det(AB) =
∑

|S|=s
detAS detBS .



13 Inner product spaces

It will often turn out that our vector spaces which look more like Rn not only have the
notion of addition, but also a notion of orthogonality and the notion of distance. All this
is achieved by endowing the vector space with a so-called inner form, which you likely
already know as the “dot product” for Rn. Indeed, in Rn you already know that

• v · w = 0 if and only if v and w are perpendicular, and

• |v|2 = v · v.

The purpose is to quickly set up this structure in full generality. Some highlights of the
chapter:

• We’ll see that the high school “dot product” formulation is actually very natural:
it falls out from the two axioms we listed above. If you ever wondered why

∑
aibi

behaves as nicely as it does, now you’ll know.

• We show how the inner form can be used to make V into a metric space, giving it
more geometric structure.

• A few chapters later, we’ll identify V ∼= V ∨ in a way that wasn’t possible before,
and as a corollary deduce the nice result that symmetric matrices with real entries
always have real eigenvalues.

Throughout this chapter, all vector spaces are over C or R, unless otherwise specified.
We’ll generally prefer working over C instead of R since C is algebraically closed (so, e.g.
we have Jordan forms). Every real matrix can be thought of as a matrix with complex
entries anyways.

§13.1 The inner product
Prototypical example for this section: Dot product in Rn.

§13.1.i For real numbers: bilinear forms
First, let’s define the inner form for real spaces. Rather than the notation v ·w it is most
customary to use ⟨v, w⟩ for general vector spaces.

Definition 13.1.1. Let V be a real vector space. A real inner form1 is a function

⟨•, •⟩ : V × V → R

which satisfies the following properties:

• The form is symmetric: for any v, w ∈ V we have

⟨v, w⟩ = ⟨w, v⟩ .

Of course, one would expect this property from a product.
1Other names include “inner product”, “dot product”, “positive definite nondegenerate symmetric

bilinear form”, . . .
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• The form is bilinear, or linear in both arguments, meaning that ⟨−, v⟩ and
⟨v,−⟩ are linear functions for any fixed v. Spelled explicitly this means that

⟨cx, v⟩ = c ⟨x, v⟩
⟨x+ y, v⟩ = ⟨x, v⟩+ ⟨y, v⟩ .

and similarly if v was on the left. This is often summarized by the single equation
⟨cx+ y, z⟩ = c ⟨x, z⟩+ ⟨y, z⟩.

• The form is positive definite, meaning ⟨v, v⟩ ≥ 0 is a nonnegative real number,
and equality takes place only if v = 0V .

Exercise 13.1.2. Show that linearity in the first argument plus symmetry already gives
you linearity in the second argument, so we could edit the above definition by only requiring
⟨−, v⟩ to be linear.

Example 13.1.3 (Rn)
As we already know, one can define the inner form on Rn as follows. Let e1 =
(1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1) be the usual basis. Then we let

⟨a1e1 + · · ·+ anen, b1e1 + · · ·+ bnen⟩ := a1b1 + · · ·+ anbn.

It’s easy to see this is bilinear (symmetric and linear in both arguments). To see it
is positive definite, note that if ai = bi then the dot product is a2

1 + · · ·+ a2
n, which

is zero exactly when all ai are zero.

§13.1.ii For complex numbers: sesquilinear forms
The definition for a complex product space is similar, but has one difference: rather than
symmetry we instead have conjugate symmetry meaning ⟨v, w⟩ = ⟨w, v⟩. Thus, while we
still have linearity in the first argument, we actually have a different linearity for the
second argument. To be explicit:

Definition 13.1.4. Let V be a complex vector space. A complex inner product is a
function

⟨•, •⟩ : V × V → C

which satisfies the following properties:

• The form has conjugate symmetry, which means that for any v, w ∈ V we have

⟨v, w⟩ = ⟨w, v⟩.

• The form is sesquilinear (the name means “one-and-a-half linear”). This means
that:

– The form is linear in the first argument, so again we have

⟨x+ y, v⟩ = ⟨x, v⟩+ ⟨y, v⟩
⟨cx, v⟩ = c ⟨x, v⟩ .

Again this is often abbreviated to the single line ⟨cx+ y, v⟩ = c ⟨x, v⟩+ ⟨y, v⟩
in the literature.
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– However, it is now anti-linear in the second argument: for any complex
number c and vectors x and y we have

⟨v, x+ y⟩ = ⟨v, x⟩+ ⟨v, y⟩
⟨v, cx⟩ = c ⟨v, x⟩ .

Note the appearance of the complex conjugate c, which is new! Again, we can
abbreviate this to just ⟨v, cx+ y⟩ = c ⟨v, x⟩+ ⟨v, y⟩ if we only want to write
one equation.

• The form is positive definite, meaning ⟨v, v⟩ is a nonnegative real number, and
equals zero exactly when v = 0V .

Exercise 13.1.5. Show that anti-linearity follows from conjugate symmetry plus linearity
in the first argument.

Example 13.1.6 (Cn)
The dot product in Cn is defined as follows: let e1, e2, . . . , en be the standard
basis. For complex numbers wi, zi we set

⟨w1e1 + · · ·+ wnen, z1e1 + · · ·+ znen⟩ := w1z1 + · · ·+ wnzn.

Question 13.1.7. Check that the above is in fact a complex inner form.

§13.1.iii Inner product space

It’ll be useful to treat both types of spaces simultaneously:

Definition 13.1.8. An inner product space is either a real vector space equipped
with a real inner form, or a complex vector space equipped with a complex inner form.

A linear map between inner product spaces is a map between the underlying vector
spaces (we do not require any compatibility with the inner form).

Remark 13.1.9 (Why sesquilinear?) — The above example explains one reason
why we want to satisfy conjugate symmetry rather than just symmetry. If we had
tried to define the dot product as

∑
wizi, then we would have lost the condition of

being positive definite, because there is no guarantee that ⟨v, v⟩ =
∑
z2
i will even

be a real number at all. On the other hand, with conjugate symmetry we actually
enforce ⟨v, v⟩ = ⟨v, v⟩, i.e. ⟨v, v⟩ ∈ R for every v.
Let’s make this point a bit more forcefully. Suppose we tried to put a bilinear form
⟨−,−⟩, on a complex vector space V . Let e be any vector with ⟨e, e⟩ = 1 (a unit
vector). Then we would instead get ⟨ie, ie⟩ = −⟨e, e⟩ = −1; this is a vector with
length

√
−1, which is not okay! That’s why it is important that, when we have a

complex inner product space, our form is sesquilinear, not bilinear.

Now that we have a dot product, we can talk both about the norm and orthogonality.
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§13.2 Norms

Prototypical example for this section: Rn becomes its usual Euclidean space with the
vector norm.

The inner form equips our vector space with a notion of distance, which we call the
norm.

Definition 13.2.1. Let V be an inner product space. The norm of v ∈ V is defined by

∥v∥ =
√
⟨v, v⟩.

This definition makes sense because we assumed our form to be positive definite, so ⟨v, v⟩
is a nonnegative real number.

Example 13.2.2 (Rn and Cn are normed vector spaces)
When V = Rn or V = Cn with the standard dot product norm, then the norm of v
corresponds to the absolute value that we are used to.

Our goal now is to prove that

With the metric d(v, w) = ∥v − w∥, V becomes a metric space.

Question 13.2.3. Verify that d(v, w) = 0 if and only if v = w.

So we just have to establish the triangle inequality. Let’s now prove something we all
know and love, which will be a stepping stone later:

Lemma 13.2.4 (Cauchy-Schwarz)
Let V be an inner product space. For any v, w ∈ V we have

|⟨v, w⟩| ≤ ∥v∥ ∥w∥

with equality if and only if v and w are linearly dependent.

Proof. The theorem is immediate if ⟨v, w⟩ = 0. It is also immediate if ∥v∥ ∥w∥ = 0, since
then one of v or w is the zero vector. So henceforth we assume all these quantities are
nonzero (as we need to divide by them later).

The key to the proof is to think about the equality case: we’ll use the inequality
⟨cv − w, cv − w⟩ ≥ 0. Deferring the choice of c until later, we compute

0 ≤ ⟨cv − w, cv − w⟩
= ⟨cv, cv⟩ − ⟨cv, w⟩ − ⟨w, cv⟩+ ⟨w,w⟩
= |c|2 ⟨v, v⟩ − c ⟨v, w⟩ − c ⟨w, v⟩+ ⟨w,w⟩
= |c|2 ∥v∥2 + ∥w∥2 − c ⟨v, w⟩ − c ⟨v, w⟩

2 Re [c ⟨v, w⟩] ≤ |c|2 ∥v∥2 + ∥w∥2
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At this point, a good choice of c is

c = ∥w∥
∥v∥
· | ⟨v, w⟩ |
⟨v, w⟩

since then

c ⟨v, w⟩ = ∥w∥
∥v∥
|⟨v, w⟩| ∈ R

|c| = ∥w∥
∥v∥

whence the inequality becomes

2∥w∥
∥v∥
|⟨v, w⟩| ≤ 2 ∥w∥2

|⟨v, w⟩| ≤ ∥v∥ ∥w∥ .

Thus:

Theorem 13.2.5 (Triangle inequality)
We always have

∥v∥+ ∥w∥ ≥ ∥v + w∥

with equality if and only if v and w are linearly dependent and point in the same
direction.

Exercise 13.2.6. Prove this by squaring both sides, and applying Cauchy-Schwarz.

In this way, our vector space now has a topological structure of a metric space.

§13.3 Orthogonality
Prototypical example for this section: Still Rn!

Our next goal is to give the geometric notion of “perpendicular”. The definition is easy
enough:

Definition 13.3.1. Two nonzero vectors v and w in an inner product space are orthog-
onal if ⟨v, w⟩ = 0.

As we expect from our geometric intuition in Rn, this implies independence:

Lemma 13.3.2 (Orthogonal vectors are independent)
Any set of pairwise orthogonal vectors v1, v2, . . . , vn, with ∥vi∥ ≠ 0 for each i, is
linearly independent.

Proof. Consider a dependence

a1v1 + · · ·+ anvn = 0

for ai in R or C. Then
0 =

〈
v1,
∑

aivi
〉

= a1 ∥v1∥2 .

Hence a1 = 0, since we assumed ∥v1∥ ≠ 0. Similarly a2 = · · · = am = 0.
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In light of this, we can now consider a stronger condition on our bases:

Definition 13.3.3. An orthonormal basis of a finite-dimensional inner product space
V is a basis e1, . . . , en such that ∥ei∥ = 1 for every i and ⟨ei, ej⟩ = 0 for any i ̸= j.

Example 13.3.4 (Rn and Cn have standard bases)
In Rn and Cn equipped with the standard dot product, the standard basis e1, . . . ,
en is also orthonormal.

This is no loss of generality:

Theorem 13.3.5 (Gram-Schmidt)
Let V be a finite-dimensional inner product space. Then it has an orthonormal
basis.

Sketch of Proof. One constructs the orthonormal basis explicitly from any basis e1, . . . ,
en of V . Define proju(v) = ⟨v,u⟩

⟨u,u⟩u. Then recursively define

u1 = e1

u2 = e2 − proju1(e2)
u3 = e3 − proju1(e3)− proju2(e3)

...
un = en − proju1(en)− · · · − projun−1(en).

One can show the ui are pairwise orthogonal and not zero.

Thus, we can generally assume our bases are orthonormal.
Worth remarking:

Example 13.3.6 (The dot product is the “only” inner form)
Let V be a finite-dimensional inner product space, and consider any orthonormal
basis e1, . . . , en. Then we have that

⟨a1e1 + · · ·+ anen, b1e1 + · · ·+ bnen⟩ =
n∑

i,j=1
aibj ⟨ei, ej⟩ =

n∑
i=1

aibi

owing to the fact that the {ei} are orthonormal.

And now you know why the dot product expression is so ubiquitous.

§13.4 Hilbert spaces
In algebra we are usually scared of infinity, and so when we defined a basis of a vanilla
vector space many chapters ago, we only allowed finite linear combinations. However, if
we have an inner product space, then it is a metric space and we can sometimes actually
talk about convergence.

Here is how it goes:
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Definition 13.4.1. A Hilbert space is an inner product space V , such that the
corresponding metric space is complete.

In that case, it will now often make sense to take infinite linear combinations, because
we can look at the sequence of partial sums and let it converge. Here is how we might
do it. Let’s suppose we have e1, e2, . . . an infinite sequence of vectors with norm 1 and
which are pairwise orthogonal. Suppose c1, c2, . . . , is a sequence of real or complex
numbers. Then consider the sequence

v1 = c1e1

v2 = c1e1 + c2e2

v3 = c1e1 + c2e2 + c3e3
...

Proposition 13.4.2 (Convergence criteria in a Hilbert space)
The sequence (vi) defined above converges if and only if

∑
|ci|2 <∞.

Proof. This will make more sense if you read Chapter 26, so you could skip this proof
if you haven’t read the chapter. The sequence vi converges if and only if it is Cauchy,
meaning that when i < j,

∥vj − vi∥2 = |ci+1|2 + · · ·+ |cj |2

tends to zero as i and j get large. This is equivalent to the sequence sn = |c1|2 + · · ·+ |cn|2
being Cauchy.

Since R is complete, sn is Cauchy if and only if it converges. Since sn consists of
nonnegative real numbers, converges holds if and only if sn is bounded, or equivalently if∑
|ci|2 <∞.

Thus, when we have a Hilbert space, we change our definition slightly:

Definition 13.4.3. An orthonormal basis for a Hilbert space V is a (possibly infinite)
sequence e1, e2, . . . , of vectors such that

• ⟨ei, ei⟩ = 1 for all i,

• ⟨ei, ej⟩ = 0 for i ̸= j, i.e. the vectors are pairwise orthogonal

• every element of V can be expressed uniquely as an infinite linear combination∑
i

ciei

where
∑
i |ci|

2 <∞, as described above.

That’s the official definition, anyways. (Note that if dimV <∞, this agrees with our
usual definition, since then there are only finitely many ei.) But for our purposes you
can mostly not worry about it and instead think:

A Hilbert space is an inner product space whose basis requires infinite
linear combinations, not just finite ones.

The technical condition
∑
|ci|2 <∞ is exactly the one which ensures the infinite sum

makes sense.
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§13.5 A few harder problems to think about
Problem 13A (Pythagorean theorem). Show that if ⟨v, w⟩ = 0 in an inner product
space, then ∥v∥2 + ∥w∥2 = ∥v + w∥2.

Problem 13B⋆ (Finite-dimensional =⇒ Hilbert). Show that a finite-dimensional inner
product space is a Hilbert space.

Problem 13C (Taiwan IMO camp). In a town there are n people and k clubs. Each
club has an odd number of members, and any two clubs have an even number of common
members. Prove that k ≤ n.

Problem 13D⋆ (Inner product structure of tensors). Let V and W be finite-dimensional
inner product spaces over k, where k is either R or C.

(a) Find a canonical way to make V ⊗k W into an inner product space too.

(b) Let e1, . . . , en be an orthonormal basis of V and f1, . . . , fm be an orthonormal basis
of W . What’s an orthonormal basis of V ⊗W?

Problem 13E (Putnam 2014). Let n be a positive integer. What is the largest k for
which there exist n× n matrices M1, . . . , Mk and N1, . . . , Nk with real entries such that
for all i and j, the matrix product MiNj has a zero entry somewhere on its diagonal if
and only if i ̸= j?

Problem 13F (Sequence space). Consider the space ℓ2 of infinite sequences of real
numbers a = (a1, a2, . . . ) satisfying

∑
i a

2
i <∞. We equip it with the dot product

⟨a, b⟩ =
∑
i

aibi.

Is this a Hilbert space? If so, identify a Hilbert basis.

Problem 13G (Kuratowski embedding). A Banach space is a normed vector space V ,
such that the corresponding metric space is complete. (So a Hilbert space is a special
case of a Banach space.)

Let (M,d) be any metric space. Prove that there exists a Banach space X and an
injective function f : M ↪→ X such that d(x, y) = ∥f(x)− f(y)∥ for any x and y.
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Now that we’ve worked hard to define abstract inner product spaces, I want to give an
(optional) application: how to set up Fourier analysis correctly, using this language.

For fun, I also prove a form of Arrow’s Impossibility Theorem using binary Fourier
analysis.

In what follows, we let T = R/Z denote the “circle group”, thought of as the additive
group of “real numbers modulo 1”. There is a canonical map e : T→ C sending T to the
complex unit circle, given by

e(θ) = exp(2πiθ).

§14.1 Synopsis
Suppose we have a domain Z and are interested in functions f : Z → C. Naturally, the
set of such functions form a complex vector space. We like to equip the set of such
functions with a positive definite inner product.

The idea of Fourier analysis is to then select an orthonormal basis for this set of
functions, say (eξ)ξ, which we call the characters; the indexing ξ are called frequencies.
In that case, since we have a basis, every function f : Z → C becomes a sum

f(x) =
∑
ξ

f̂(ξ)eξ

where f̂(ξ) are complex coefficients of the basis; appropriately we call f̂ the Fourier
coefficients. The variable x ∈ Z is referred to as the physical variable. This is generally
good because the characters are deliberately chosen to be nice “symmetric” functions,
like sine or cosine waves or other periodic functions. Thus we decompose an arbitrarily
complicated function into a sum of nice ones.

§14.2 A reminder on Hilbert spaces
For convenience, we record a few facts about orthonormal bases.

Proposition 14.2.1 (Facts about orthonormal bases)
Let V be a complex Hilbert space with inner form ⟨−,−⟩ and suppose x =

∑
ξ aξeξ

and y =
∑
ξ bξeξ where eξ are an orthonormal basis. Then

⟨x, x⟩ =
∑
ξ

|aξ|2

aξ = ⟨x, eξ⟩
⟨x, y⟩ =

∑
ξ

aξbξ.

Exercise 14.2.2. Prove all of these. (You don’t need any of the preceding section, it’s only
there to motivate the notation with lots of scary ξ’s.)

191
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In what follows, most of the examples will be of finite-dimensional inner product spaces
(which are thus Hilbert spaces), but the example of “square-integrable functions” will
actually be an infinite dimensional example. Fortunately, as I alluded to earlier, this is
no cause for alarm and you can mostly close your eyes and not worry about infinity.

§14.3 Common examples

§14.3.i Binary Fourier analysis on {±1}n

Let Z = {±1}n for some positive integer n, so we are considering functions f(x1, . . . , xn)
accepting binary values. Then the functions Z → C form a 2n-dimensional vector space
CZ , and we endow it with the inner form

⟨f, g⟩ = 1
2n
∑
x∈Z

f(x)g(x).

In particular,

⟨f, f⟩ = 1
2n
∑
x∈Z
|f(x)|2

is the average of the squares; this establishes also that ⟨−,−⟩ is positive definite.
In that case, the multilinear polynomials form a basis of CZ , that is the polynomials

χS(x1, . . . , xn) =
∏
s∈S

xs.

Exercise 14.3.1. Show that they’re actually orthonormal under ⟨−,−⟩. This proves they
form a basis, since there are 2n of them.

Thus our frequency set is actually the subsets S ⊆ {1, . . . , n}. Thus, we have a decompo-
sition

f =
∑

S⊆{1,...,n}
f̂(S)χS .

Example 14.3.2 (An example of binary Fourier analysis)
Let n = 2. Then binary functions {±1}2 → C have a basis given by the four
polynomials

1, x1, x2, x1x2.

For example, consider the function f which is 1 at (1, 1) and 0 elsewhere. Then we
can put

f(x1, x2) = x1 + 1
2 · x2 + 1

2 = 1
4 (1 + x1 + x2 + x1x2) .

So the Fourier coefficients are f̂(S) = 1
4 for each of the four S’s.

This notion is useful in particular for binary functions f : {±1}n → {±1}; for these
functions (and products thereof), we always have ⟨f, f⟩ = 1.

It is worth noting that the frequency ∅ plays a special role:
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Exercise 14.3.3. Show that
f̂(∅) = 1

|Z|
∑
x∈Z

f(x).

§14.3.ii Fourier analysis on finite groups Z

This time, suppose we have a finite abelian group Z, and consider functions Z → C; this
is a |Z|-dimensional vector space. The inner product is the same as before:

⟨f, g⟩ = 1
|Z|

∑
x∈Z

f(x)g(x).

To proceed, we’ll need to be able to multiply two elements of Z. This is a bit of a
nuisance since it actually won’t really matter what map I pick, so I’ll move briskly; feel
free to skip most or all of the remaining paragraph.

Definition 14.3.4. We select a symmetric non-degenerate bilinear form

· : Z × Z → T

satisfying the following properties:

• ξ · (x1 + x2) = ξ · x1 + ξ · x2 and (ξ1 + ξ2) · x = ξ1 · x + ξ2 · x (this is the word
“bilinear”)

• · is symmetric,

• For any ξ ̸= 0, there is an x with ξ · x ̸= 0 (this is the word “nondegenerate”).

Example 14.3.5 (The form on Z/nZ)
If Z = Z/nZ then ξ · x = (ξx)/n satisfies the above.

In general, it turns out finite abelian groups decompose as the sum of cyclic groups (see
Section 18.1), which makes it relatively easy to find such a ·; but as I said the choice
won’t matter, so let’s move on.

Now for the fun part: defining the characters.

Proposition 14.3.6 (eξ are orthonormal)
For each ξ ∈ Z we define the character

eξ(x) = e(ξ · x).

The |Z| characters form an orthonormal basis of the space of functions Z → C.

Proof. I recommend skipping this one, but it is:〈
eξ, eξ′

〉
= 1
|Z|

∑
x∈Z

e(ξ · x)e(ξ′ · x)

= 1
|Z|

∑
x∈Z

e(ξ · x)e(−ξ′ · x)

= 1
|Z|

∑
x∈Z

e
(
(ξ − ξ′) · x

)
.
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In this way, the set of frequencies is also Z, but the ξ ∈ Z play very different roles
from the “physical” x ∈ Z. Here is an example which might be enlightening.

Example 14.3.7 (Cube roots of unity filter)
Suppose Z = Z/3Z, with the inner form given by ξ · x = (ξx)/3. Let ω = exp(2

3πi)
be a primitive cube root of unity. Note that

eξ(x) =


1 ξ = 0
ωx ξ = 1
ω2x ξ = 2.

Then given f : Z → C with f(0) = a, f(1) = b, f(2) = c, we obtain

f(x) = a+ b+ c

3 · 1 + a+ ω2b+ ωc

3 · ωx + a+ ωb+ ω2c

3 · ω2x.

In this way we derive that the transforms are

f̂(0) = a+ b+ c

3

f̂(1) = a+ ω2b+ ωc

3

f̂(2) = a+ ωb+ ω2c

3 .

Exercise 14.3.8. Show that in analogy to f̂(∅) for binary Fourier analysis, we now have

f̂(0) = 1
|Z|

∑
x∈Z

f(x).

Olympiad contestants may recognize the previous example as a “roots of unity filter”,
which is exactly the point. For concreteness, suppose one wants to compute(

1000
0

)
+
(

1000
3

)
+ · · ·+

(
1000
999

)
.

In that case, we can consider the function

w : Z/3→ C.

such that w(0) = 1 but w(1) = w(2) = 0. By abuse of notation we will also think of w as
a function w : Z ↠ Z/3→ C. Then the sum in question is∑

n

(
1000
n

)
w(n) =

∑
n

(
1000
n

) ∑
k=0,1,2

ŵ(k)ωkn

=
∑

k=0,1,2
ŵ(k)

∑
n

(
1000
n

)
ωkn

=
∑

k=0,1,2
ŵ(k)(1 + ωk)1000.
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In our situation, we have ŵ(0) = ŵ(1) = ŵ(2) = 1
3 , and we have evaluated the desired

sum. More generally, we can take any periodic weight w and use Fourier analysis in order
to interchange the order of summation.

Example 14.3.9 (Binary Fourier analysis)
Suppose Z = {±1}n, viewed as an abelian group under pointwise multiplication
hence isomorphic to (Z/2Z)⊕n. Assume we pick the dot product defined by

ξ · x := 1
2
∑
i

ξi − 1
2 · xi − 1

2

where ξ = (ξ1, . . . , ξn) and x = (x1, . . . , xn).
We claim this coincides with the first example we gave. Indeed, let S ⊆ {1, . . . , n}
and let ξ ∈ {±1}n which is −1 at positions in S, and +1 at positions not in S.
Then the character χS from the previous example coincides with the character eξ
in the new notation. In particular, f̂(S) = f̂(ξ).
Thus Fourier analysis on a finite group Z subsumes binary Fourier analysis.

§14.3.iii Fourier series for functions L2([−π, π])
This is the most famous one, and hence the one you’ve heard of.

Definition 14.3.10. The space L2([−π, π]) consists of all functions f : [−π, π]→ C such
that the integral

∫
[−π,π] |f(x)|2 dx exists and is finite, modulo the relation that a function

which is zero “almost everywhere” is considered to equal zero.1
It is made into an inner product space according to

⟨f, g⟩ = 1
2π

∫
[−π,π]

f(x)g(x) dx.

It turns out (we won’t prove) that this is an (infinite-dimensional) Hilbert space!
Now, the beauty of Fourier analysis is that this space has a great basis:

Theorem 14.3.11 (The classical Fourier basis)
For each integer n, define

en(x) = exp(inx).

Then en form an orthonormal basis of the Hilbert space L2([−π, π]).

Thus this time the frequency set Z is infinite, and we have

f(x) =
∑
n

f̂(n) exp(inx) almost everywhere

for coefficients f̂(n) with
∑
n

∣∣∣f̂(n)
∣∣∣2 <∞. Since the frequency set is indexed by Z, we

call this a Fourier series to reflect the fact that the index is n ∈ Z.

1We won’t define this, yet, as it won’t matter to us for now. But we will elaborate more on this in the
parts on measure theory.

There is one point at which this is relevant. Often we require that the function f satisfies
f(−π) = f(π), so that f becomes a periodic function, and we can think of it as f : T → C. This
makes no essential difference since we merely change the value at one point.
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Exercise 14.3.12. Show once again

f̂(0) = 1
2π

∫
[−π,π]

f(x) dx.

§14.4 Summary, and another teaser
We summarize our various flavors of Fourier analysis in the following table.

Type Physical var Frequency var Basis functions
Binary {±1}n Subsets S ⊆ {1, . . . , n}

∏
s∈S xs

Finite group Z ξ ∈ Z, choice of · e(ξ · x)
Fourier series T or [−π, π] n ∈ Z exp(inx)
Discrete Z/nZ ξ ∈ Z/nZ e(ξx/n)

I snuck in a fourth row with Z = Z/nZ, but it’s a special case of the second row, so no
cause for alarm.

Alluding to the future, I want to hint at how Chapter 39 starts. Each one of these
is really a statement about how functions from G → C can be expressed in terms of
functions Ĝ→ C, for some “dual” Ĝ. In that sense, we could rewrite the above table as:

Name Domain G Dual Ĝ Characters
Binary {±1}n S ⊆ {1, . . . , n}

∏
s∈S xs

Finite group Z ξ ∈ Ẑ ∼= Z e(iξ · x)
Fourier series T ∼= [−π, π] n ∈ Z exp(inx)
Discrete Z/nZ ξ ∈ Z/nZ e(ξx/n)

It will turn out that in general we can say something about many different domains G,
once we know what it means to integrate a measure. This is the so-called Pontryagin
duality; and it is discussed as a follow-up bonus in Chapter 39.

§14.5 Parseval and friends
Here is a fun section in which you get to learn a lot of big names quickly. Basically, we
can take each of the three results from Proposition 14.2.1, translate it into the context of
our Fourier analysis (for which we have an orthonormal basis of the Hilbert space), and
get a big-name result.

Corollary 14.5.1 (Parseval theorem)
Let f : Z → C, where Z is a finite abelian group. Then

∑
ξ

|f̂(ξ)|2 = 1
|Z|

∑
x∈Z
|f(x)|2.

Similarly, if f : [−π, π]→ C is square-integrable then its Fourier series satisfies

∑
n

|f̂(n)|2 = 1
2π

∫
[−π,π]

|f(x)|2 dx.

Proof. Recall that ⟨f, f⟩ is equal to the square sum of the coefficients.
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Corollary 14.5.2 (Fourier inversion formula)
Let f : Z → C, where Z is a finite abelian group. Then

f̂(ξ) = 1
|Z|

∑
x∈Z

f(x)eξ(x).

Similarly, if f : [−π, π]→ C is square-integrable then its Fourier series is given by

f̂(n) = 1
2π

∫
[−π,π]

f(x) exp(−inx) dx.

Proof. Recall that in an orthonormal basis (eξ)ξ, the coefficient of eξ in f is ⟨f, eξ⟩.

Question 14.5.3. What happens when ξ = 0 above?

Corollary 14.5.4 (Plancherel theorem)
Let f : Z → C, where Z is a finite abelian group. Then

⟨f, g⟩ =
∑
ξ∈Z

f̂(ξ)ĝ(ξ).

Similarly, if f : [−π, π]→ C is square-integrable then

⟨f, g⟩ =
∑
n

f̂(n)ĝ(n).

Question 14.5.5. Prove this one in one line (like before).

§14.6 Application: Basel problem
One cute application about Fourier analysis on L2([−π, π]) is that you can get some
otherwise hard-to-compute sums, as long as you are willing to use a little calculus.

Here is the classical one:

Theorem 14.6.1 (Basel problem)
We have ∑

n≥1

1
n2 = π2

6 .

The proof is to consider the identity function f(x) = x, which is certainly square-
integrable. Then by Parseval, we have∑

n∈Z

∣∣∣f̂(n)
∣∣∣2 = ⟨f, f⟩ = 1

2π

∫
[−π,π]

|f(x)|2 dx.

A calculus computation gives
1

2π

∫
[−π,π]

x2 dx = π2

3 .
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On the other hand, we will now compute all Fourier coefficients. We have already that

f̂(0) = 1
2π

∫
[−π,π]

f(x) dx = 1
2π

∫
[−π,π]

x dx = 0.

For n ̸= 0, we have by definition (or “Fourier inversion formula”, if you want to use big
words) the formula

f̂(n) = ⟨f, exp(inx)⟩

= 1
2π

∫
[−π,π]

x · exp(inx) dx

= 1
2π

∫
[−π,π]

x exp(−inx) dx.

The anti-derivative is equal to 1
n2 exp(−inx)(1 + inx), which thus with some more

calculation gives that

f̂(n) = (−1)n

n
i.

So ∑
n

∣∣∣f̂(n)
∣∣∣2 = 2

∑
n≥1

1
n2

implying the result.

§14.7 Application: Arrow’s Impossibility Theorem
As an application of binary Fourier analysis, we now prove a form of Arrow’s theorem.

Consider n voters voting among 3 candidates A, B, C. Each voter specifies a tuple
vi = (xi, yi, zi) ∈ {±1}3 as follows:

• xi = 1 if person i ranks A ahead of B, and xi = −1 otherwise.

• yi = 1 if person i ranks B ahead of C, and yi = −1 otherwise.

• zi = 1 if person i ranks C ahead of A, and zi = −1 otherwise.

Tacitly, we only consider 3! = 6 possibilities for vi: we forbid “paradoxical” votes of the
form xi = yi = zi by assuming that people’s votes are consistent (meaning the preferences
are transitive).

For brevity, let x• = (x1, . . . , xn) and define y• and z• similarly. Then, we can consider
a voting mechanism

f : {±1}n → {±1}
g : {±1}n → {±1}
h : {±1}n → {±1}

such that

• f(x•) is the global preference of A vs. B,

• g(y•) is the global preference of B vs. C,

• and h(z•) is the global preference of C vs. A.

https://en.wikipedia.org/wiki/Arrow's_impossibility_theorem
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We’d like to avoid situations where the global preference (f(x•), g(y•), h(z•)) is itself
paradoxical.

Let Ef denote the average value of f across all 2n inputs. Define Eg and Eh similarly.
We’ll add an assumption that Ef = Eg = Eh = 0, which provides symmetry (and e.g.
excludes the possibility that f , g, h are constant functions which ignore voter input).
With that we will prove the following result:

Theorem 14.7.1 (Arrow Impossibility Theorem)
Assume that (f, g, h) always avoids paradoxical outcomes, and assume Ef = Eg =
Eh = 0. Then (f, g, h) is either a dictatorship or anti-dictatorship: there exists a
“dictator” k such that

f(x•) = ±xk, g(y•) = ±yk, h(z•) = ±zk

where all three signs coincide.

Unlike the usual Arrow theorem, we do not assume that f(+1, . . . ,+1) = +1 (hence
possibility of anti-dictatorship).

Proof. Suppose the voters each randomly select one of the 3! = 6 possible consistent
votes. In Problem 14B it is shown that the exact probability of a paradoxical outcome
for any functions f , g, h is given exactly by

1
4 + 1

4
∑

S⊆{1,...,n}

(
−1

3

)|S| (
f̂(S)ĝ(S) + ĝ(S)ĥ(S) + ĥ(S)f̂(S)

)
.

Assume that this probability (of a paradoxical outcome) equals 0. Then, we derive

1 =
∑

S⊆{1,...,n}
−
(
−1

3

)|S| (
f̂(S)ĝ(S) + ĝ(S)ĥ(S) + ĥ(S)f̂(S)

)
.

But now we can just use weak inequalities. We have f̂(∅) = Ef = 0 and similarly for
ĝ and ĥ, so we restrict attention to |S| ≥ 1. We then combine the famous inequality
|ab+ bc+ ca| ≤ a2 + b2 + c2 (which is true across all real numbers) to deduce that

1 =
∑

S⊆{1,...,n}
−
(
−1

3

)|S| (
f̂(S)ĝ(S) + ĝ(S)ĥ(S) + ĥ(S)f̂(S)

)

≤
∑

S⊆{1,...,n}

(1
3

)|S| (
f̂(S)2 + ĝ(S)2 + ĥ(S)2

)

≤
∑

S⊆{1,...,n}

(1
3

)1 (
f̂(S)2 + ĝ(S)2 + ĥ(S)2

)
= 1

3(1 + 1 + 1) = 1.

with the last step by Parseval. So all inequalities must be sharp, and in particular f̂ , ĝ,
ĥ are supported on one-element sets, i.e. they are linear in inputs. As f , g, h are ±1
valued, each f , g, h is itself either a dictator or anti-dictator function. Since (f, g, h) is
always consistent, this implies the final result.
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§14.8 A few harder problems to think about
Problem 14A (For calculus fans). Prove that

∑
n≥1

1
n4 = π4

90 .

Problem 14B. Let f, g, h : {±1}n → {±1} be any three functions. For each i, we
randomly select (xi, yi, zi) ∈ {±1}3 subject to the constraint that not all are equal (hence,
choosing among 23 − 2 = 6 possibilities). Prove that the probability that

f(x1, . . . , xn) = g(y1, . . . , yn) = h(z1, . . . , zn)

is given by the formula

1
4 + 1

4
∑

S⊆{1,...,n}

(
−1

3

)|S| (
f̂(S)ĝ(S) + ĝ(S)ĥ(S) + ĥ(S)f̂(S)

)



15 Duals, adjoint, and transposes

This chapter is dedicated to the basis-free interpretation of the transpose and conjugate
transpose of a matrix.

Poster corollary: we will see that symmetric matrices with real coefficients are diago-
nalizable and have real eigenvalues.

§15.1 Dual of a map
Prototypical example for this section: The example below.

We go ahead and now define a notion that will grow up to be the transpose of a matrix.

Definition 15.1.1. Let V and W be vector spaces. Suppose T : V →W is a linear map.
Then we actually get a map

T∨ : W∨ → V ∨

f 7→ f ◦ T.

This map is called the dual map.

Example 15.1.2 (Example of a dual map)
Work over R. Let’s consider V with basis e1, e2, e3 and W with basis f1, f2.
Suppose that

T (e1) = f1 + 2f2

T (e2) = 3f1 + 4f2

T (e3) = 5f1 + 6f2.

Now consider V ∨ with its dual basis e∨
1 , e∨

2 , e∨
3 and W∨ with its dual basis f∨

1 , f∨
2 .

Let’s compute T∨(f∨
1 ) = f∨

1 ◦ T : it is given by

f∨
1 (T (ae1 + be2 + ce3)) = f∨

1 ((a+ 3b+ 5c)f1 + (2a+ 4b+ 6c)f2)
= a+ 3b+ 5c.

So accordingly we can write

T∨(f∨
1 ) = e∨

1 + 3e∨
2 + 5e∨

3

Similarly,
T∨(f∨

2 ) = 2e∨
1 + 4e∨

2 + 6e∨
3 .

This determines T∨ completely.

If we write the matrices for T and T∨ in terms of our basis, we now see that

T =
[
1 3 5
2 4 6

]
and T∨ =

1 2
3 4
5 6

 .
201
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So in our selected basis, we find that the matrices are transposes: mirror images of each
other over the diagonal.

Of course, this should work in general.

Theorem 15.1.3 (Transpose interpretation of T∨)
Let V and W be finite-dimensional k-vector spaces. Then, for any T : V →W , the
following two matrices are transposes:

• The matrix for T : V →W expressed in the basis (ei), (fj).

• The matrix for T∨ : W∨ → V ∨ expressed in the basis (f∨
j ), (e∨

i ).

Proof. The (i, j)th entry of the matrix T corresponds to the coefficient of fi in T (ej),
which corresponds to the coefficient of e∨

j in f∨
i ◦ T .

The nice part of this is that the definition of T∨ is basis-free. So it means that if we
start with any linear map T , and then pick whichever basis we feel like, then T and T∨

will still be transposes.

§15.2 Identifying with the dual space

For the rest of this chapter, though, we’ll now bring inner products into the picture.
Earlier I complained that there was no natural isomorphism V ∼= V ∨. But in fact,

given an inner form we can actually make such an identification: that is we can naturally
associate every linear map ξ : V → k with a vector v ∈ V .

To see how we might do this, suppose V = R3 for now with an orthonormal basis
e1, e2, e3. How might we use the inner product to represent a map from V → R? For
example, take ξ ∈ V ∨ by ξ(e1) = 3, ξ(e2) = 4 and ξ(e3) = 5. Actually, I claim that

ξ(v) = ⟨v, 3e1 + 4e2 + 5e3⟩

for every v.

Question 15.2.1. Check this.

And this works beautifully in the real case.

Theorem 15.2.2 (V ∼= V ∨ for real inner forms)
Let V be a finite-dimensional real inner product space and V ∨ its dual. Then the
map V → V ∨ by

v 7→ ⟨−, v⟩ ∈ V ∨

is an isomorphism of real vector spaces.

Proof. It suffices to show that the map is injective and surjective.

• Injective: suppose ⟨v, v1⟩ = ⟨v, v2⟩ for every vector v ∈ V . This means ⟨v, v1 − v2⟩ =
0 for every vector v ∈ V . This can only happen if v1 − v2 = 0; for example, take
v = v1 − v2 and use positive definiteness.



15 Duals, adjoint, and transposes 203

• Surjective: take an orthonormal basis e1, . . . en and let e∨
1 , . . . , e∨

n be the dual basis
on V ∨. Then e1 maps to e∨

1 , et cetera.

Actually, since we already know dimV = dimV ∨ we only had to prove one of the
above. As a matter of personal taste, I find the proof of injectivity more elegant, and the
proof of surjectivity more enlightening, so I included both. Thus

If a real inner product space V is given an inner form, then V and V ∨

are canonically isomorphic.

Unfortunately, things go awry if V is complex. Here is the result:

Theorem 15.2.3 (V versus V ∨ for complex inner forms)
Let V be a finite-dimensional complex inner product space and V ∨ its dual. Then
the map V → V ∨ by

v 7→ ⟨−, v⟩ ∈ V ∨

is a bijection of sets.

Wait, what? Well, the proof above shows that it is both injective and surjective, but
why is it not an isomorphism? The answer is that it is not a linear map: since the form
is sesquilinear we have for example

iv 7→ ⟨−, iv⟩ = −i ⟨−, v⟩

which has introduced a minus sign! In fact, it is an anti-linear map, in the sense we
defined before.

Eager readers might try to fix this by defining the isomorphism v 7→ ⟨v,−⟩ instead.
However, this also fails, because the right-hand side is not even an element of V ∨: it is
an “anti-linear”, not linear.

And so we are stuck. Fortunately, we will only need the “bijection” result for what
follows, so we can continue on anyways. (If you want to fix this, Problem 15D gives a
way to do so.)

§15.3 The adjoint (conjugate transpose)
We will see that, as a result of the flipping above, the conjugate transpose is actually
the better concept for inner product spaces: since it can be defined using only the inner
product without making mention to dual spaces at all.

Definition 15.3.1. Let V and W be finite-dimensional inner product spaces, and let
T : V → W . The adjoint (or conjugate transpose) of T , denoted T † : W → V , is
defined as follows: for every vector w ∈W , we let T †(w) ∈ V be the unique vector with〈

v, T †(w)
〉
V

= ⟨T (v), w⟩W

for every v ∈ V .

Some immediate remarks about this definition:

• Our T † is well-defined, because v 7→ ⟨T (v), w⟩W is some function in V ∨, and hence
by the bijection earlier it should be uniquely of the form ⟨−, v⟩ for some v ∈ V .
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• This map T † is indeed a linear map (why?).

• The niceness of this definition is that it doesn’t make reference to any basis or even
V ∨, so it is the “right” definition for a inner product space.

Example 15.3.2 (Example of an adjoint map)
We’ll work over C, so the conjugates are more visible. Let’s consider V with
orthonormal basis e1, e2, e3 and W with orthonormal basis f1, f2. We put

T (e1) = if1 + 2f2

T (e2) = 3f1 + 4f2

T (e3) = 5f1 + 6if2.

We compute T †(f1). It is the unique vector x ∈ V such that

⟨v, x⟩V = ⟨T (v), f1⟩W

for any v ∈ V . If we expand v = ae1 + be2 + ce3 the above equality becomes

⟨ae1 + be2 + ce3, x⟩V = ⟨T (ae1 + be2 + ce3), f1⟩W
= ia+ 3b+ 5c.

However, since x is in the second argument, this means we actually want to take

T †(f1) = −ie1 + 3e2 + 5e3

so that the sesquilinearity will conjugate the i.

The pattern continues, though we remind the reader that we need the basis to be
orthonormal to proceed.

Theorem 15.3.3 (Adjoints are conjugate transposes)
Fix an orthonormal basis of a finite-dimensional inner product space V . Let
T : V → V be a linear map. If we write T as a matrix in this basis, then the matrix
T † (in the same basis) is the conjugate transpose of the matrix of T ; that is, the
(i, j)th entry of T∨ is the complex conjugate of the (j, i)th entry of T .

Proof. One-line version: take v and w to be basis elements, and this falls right out.
Full proof: let

T =

a11 . . . a1n
... . . . ...
an1 . . . ann


in this basis e1, . . . , en. Then, letting w = ei and v = ej we deduce that

〈
ei, T

†(ej)
〉

= ⟨T (ei), ej⟩ = aji =⇒
〈
T †(ej), ei

〉
= aji

for any i, which is enough to deduce the result.
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§15.4 Eigenvalues of normal maps

We now come to the advertised theorem. Restrict to the situation where T : V → V .
You see, the world would be a very beautiful place if it turned out that we could pick a
basis of eigenvectors that was also orthonormal. This is of course far too much to hope
for; even without the orthonormal condition, we saw that Jordan form could still have
1’s off the diagonal.

However, it turns out that there is a complete characterization of exactly when our
overzealous dream is true.

Definition 15.4.1. We say a linear map T (from a finite-dimensional inner product
space to itself) is normal if TT † = T †T .

We say a complex T is self-adjoint or Hermitian if T = T †; i.e. as a matrix in any
orthonormal basis, T is its own conjugate transpose. For real T we say “self-adjoint”,
“Hermitian” or symmetric.

Theorem 15.4.2 (Normal ⇐⇒ diagonalizable with orthonormal basis)
Let V be a finite-dimensional complex inner product space. A linear map T : V → V
is normal if and only if one can pick an orthonormal basis of eigenvectors.

Exercise 15.4.3. Show that if there exists such an orthonormal basis then T : V → V is
normal, by writing T as a diagonal matrix in that basis.

Proof. This is long, and maybe should be omitted on a first reading. If T has an
orthonormal basis of eigenvectors, this result is immediate.

Now assume T is normal. We first prove T is diagonalizable; this is the hard part.

Claim 15.4.4. If T is normal, then kerT = kerT r = kerT † for r ≥ 1. (Here T r is T
applied r times.)

Proof of Claim. Let S = T † ◦ T , which is self-adjoint. We first note that S is Hermitian
and kerS = kerT . To see it’s Hermitian, note ⟨Sv,w⟩ = ⟨Tv, Tw⟩ = ⟨v, Sw⟩. Taking
v = w also implies kerS ⊆ kerT (and hence equality since obviously kerT ⊆ kerS).

First, since we have
〈
Sr(v), Sr−2(v)

〉
=
〈
Sr−1(v), Sr−1(v)

〉
, an induction shows that

kerS = kerSr for r ≥ 1. Now, since T is normal, we have Sr = (T †)r ◦ T r, and thus we
have the inclusion

kerT ⊆ kerT r ⊆ kerSr = kerS = kerT

where the last equality follows from the first claim. Thus in fact kerT = kerT r.
Finally, to show equality with kerT † we

⟨Tv, Tv⟩ =
〈
v, T †Tv

〉
=
〈
v, TT †v

〉
=
〈
T †v, T †v

〉
. ■

Now consider the given T , and any λ.

Question 15.4.5. Show that (T − λid)† = T † − λid. Thus if T is normal, so is T − λid.
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In particular, for any eigenvalue λ of T , we find that ker(T − λid) = ker(T − λid)r. This
implies that all the Jordan blocks of T have size 1; i.e. that T is in fact diagonalizable.
Finally, we conclude that the eigenvectors of T and T † match, and the eigenvalues are
complex conjugates.

So, diagonalize T . We just need to show that if v and w are eigenvectors of T with
distinct eigenvalues, then they are orthogonal. (We can use Gram-Schmidt on any
eigenvalue that appears multiple times.) To do this, suppose T (v) = λv and T (w) = µw
(thus T †(w) = µw). Then

λ ⟨v, w⟩ = ⟨λv,w⟩ = ⟨Tv,w⟩ =
〈
v, T †(w)

〉
= ⟨v, µw⟩ = µ ⟨v, w⟩ .

Since λ ̸= µ, we conclude ⟨v, w⟩ = 0.

This means that not only can we write

T =


λ1 . . . . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


but moreover that the basis associated with this matrix happens to be orthonormal
vectors.

As a corollary:

Theorem 15.4.6 (Hermitian matrices have real eigenvalues)
A Hermitian matrix T is diagonalizable, and all its eigenvalues are real.

Proof. Obviously Hermitian =⇒ normal, so write it in the orthonormal basis of
eigenvectors. To see that the eigenvalues are real, note that T = T † means λi = λi for
every i.

§15.5 A few harder problems to think about
Problem 15A⋆ (Double dual). Let V be a finite-dimensional vector space. Prove that

V → (V ∨)∨

v 7→ (ξ 7→ ξ(v))

gives an isomorphism. (This is significant because the isomorphism is canonical, and in
particular does not depend on the choice of basis. So this is more impressive.)

Problem 15B (Fundamental theorem of linear algebra). Let T : V →W be a map of
finite-dimensional k-vector spaces. Prove that

dim imT = dim imT∨ = dimV − dim kerT = dimW − dim kerT∨.

Problem 15C† (Row rank is column rank). A m×n matrix M of real numbers is given.
The column rank of M is the dimension of the span in Rm of its n column vectors. The
row rank of M is the dimension of the span in Rn of its m row vectors. Prove that the
row rank and column rank are equal.
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Problem 15D (The complex conjugate spaces). Let V = (V,+, ·) be a complex vector
space. Define the complex conjugate vector space, denoted V = (V,+, ∗) by changing
just the multiplication:

c ∗ v = c · v.

Show that for any sesquilinear form on V , if V is finite-dimensional, then

V → V ∨

v 7→ ⟨−, v⟩

is an isomorphism of complex vector spaces.

Problem 15E (T † vs T∨). Let V and W be real inner product spaces and let T : V →W
be a linear map. Show that the following diagram commutes:

W V

W∨ V ∨

T †

∼= ∼=

T∨

Here the isomorphisms are v 7→ ⟨−, v⟩. Thus, for real inner product spaces, T † is just T∨

with the duals eliminated (by Theorem 15.2.2).

Problem 15F (Polynomial criteria for normality). Let V be a complex inner product
space and let T : V → V be a linear map. Show that T is normal if and only if there is a
polynomial1 p ∈ C[t] such that

T † = p(T ).

Problem 15G (Kronecker product of matrices). Find an equivalence between the
following two definitions of the Kronecker product, the former from a mathematician
and the latter from a computer scientist:

• Suppose A : V1 →W1 and B : V2 →W2 are linear maps of finite-dimensional vector
spaces over R. Then we define A⊗B : V1 ⊗ V2 → W1 ⊗W2 on simple tensors by
v1 ⊗ v2 7→ A(v1)⊗B(v2).

• Suppose A is an m× n matrix and B is a p× q matrix. Then A⊗B is an operator
which takes a q × n matrix X and returns the p×m matrix BXA⊤.

1Here, we mean p(T ) in the same composition sense as in Cayley-Hamilton.

https://en.wikipedia.org/wiki/Kronecker_product
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