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0 Sales pitches

This chapter contains a pitch for each part, to help you decide what you want to read
and to elaborate more on how they are interconnected.

For convenience, here is again the dependency plot that appeared in the frontmatter.

Ch 1,3-5

Abs Alg
Ch 2,6-8

Topology
Ch 9-15,18

Lin Alg

Ch 16

Grp Act

Ch 17

Grp Classif

Ch 19-22

Rep Th

Ch 23-25

Quantum
Ch 26-30

Calc

Ch 31-34

Cmplx Ana

Ch 35-39

Measure/Pr

Ch 43-52

Diff Geo

Ch 53-59

Alg NT 1

Ch 60-63

Alg NT 2

Ch 64-66

Alg Top 1

Ch 67-70

Cat Th

Ch 71-76

Alg Top 2

Ch 77-81

Alg Geo 1

Ch 82-87

Alg Geo 2-3

Ch 88-94

Set Theory

§0.1 The basics
I. Starting Out.

I made a design decision that the first part should have a little bit of both algebra
and topology: so this first chapter begins by defining a group, while the second
chapter begins by defining a metric space. The intention is so that newcomers
get to see two different examples of “sets with additional structure” in somewhat
different contexts, and to have a minimal amount of literacy as these sorts of
definitions appear over and over.1

II. Basic Abstract Algebra.
The algebraically inclined can then delve into further types of algebraic structures:
some more details of groups, and then rings and fields — which will let you
generalize Z, Q, R, C. So you’ll learn to become familiar with all sorts of other
nouns that appear in algebra, unlocking a whole host of objects that one couldn’t
talk about before.

1In particular, I think it’s easier to learn what a homeomorphism is after seeing group isomorphism,
and what a homomorphism is after seeing continuous map.
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We’ll also come to ideals, which generalize the GCD in Z that you might know of.
For example, you know in Z that any integer can be written in the form 3a+ 5b for
a, b ∈ Z, since gcd(3, 5) = 1. We’ll see that this statement is really a statement of
ideals: “(3, 5) = 1 in Z”, and thus we’ll understand in what situations it can be
generalized, e.g. to polynomials.

III. Basic Topology.
The more analytically inclined can instead move into topology, learning more about
spaces. We’ll find out that “metric spaces” are actually too specific, and that it’s
better to work with topological spaces, which are based on the so-called open
sets. You’ll then get to see the buddings of some geometrical ideals, ending with
the really great notion of compactness, a powerful notion that makes real analysis
tick.
One example of an application of compactness to tempt you now: a continuous
function f : [0, 1]→ R always achieves a maximum value. (In contrast, f : (0, 1)→ R
by x 7→ 1/x does not.) We’ll see the reason is that [0, 1] is compact.

§0.2 Abstract algebra
IV. Linear Algebra.

In high school, linear algebra is often really unsatisfying. You are given these arrays
of numbers, and they’re manipulated in some ways that don’t really make sense.
For example, the determinant is defined as this funny-looking sum with a bunch of
products that seems to come out of thin air. Where does it come from? Why does
det(AB) = detA detB with such a bizarre formula?
Well, it turns out that you can explain all of these things! The trick is to not think
of linear algebra as the study of matrices, but instead as the study of linear maps.
In earlier chapters we saw that we got great generalizations by speaking of “sets
with enriched structure” and “maps between them”. This time, our sets are vector
spaces and our maps are linear maps. We’ll find out that a matrix is actually
just a way of writing down a linear map as an array of numbers, but using the
“intrinsic” definitions we’ll de-mystify all the strange formulas from high school and
show you where they all come from.
In particular, we’ll see easy proofs that column rank equals row rank, determinant
is multiplicative, trace is the sum of the diagonal entries. We’ll see how the dot
product works, and learn all the words starting with “eigen-”. We’ll even have a
bonus chapter for Fourier analysis showing that you can also explain all the big
buzz-words by just being comfortable with vector spaces.

V. More on Groups.
Some of you might be interested in more about groups, and this chapter will give
you a way to play further. It starts with an exploration of group actions, then
goes into a bit on Sylow theorems, which are the tools that let us try to classify
all groups.

VI. Representation Theory.
If G is a group, we can try to understand it by implementing it as a matrix, i.e.
considering embeddings G ↪→ GLn(C). These are called representations of G; it
turns out that they can be decomposed into irreducible ones. Astonishingly we
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will find that we can basically characterize all of them: the results turn out to be
short and completely unexpected.
For example, we will find out that there are finitely many irreducible representations
of a given finite group G; if we label them V1, V2, . . . , Vr, then we will find that r
is the number of conjugacy classes of G, and moreover that

|G| = (dimV1)2 + · · ·+ (dimVr)2

which comes out of nowhere!
The last chapter of this part will show you some unexpected corollaries. Here is one
of them: let G be a finite group and create variables xg for each g ∈ G. A |G| × |G|
matrix M is defined by setting the (g, h)th entry to be the variable xg·h. Then
this determinant will turn out to factor, and the factors will correspond to the Vi
we described above: there will be an irreducible factor of degree dimVi appearing
dimVi times. This result, called the Frobenius determinant, is said to have
given birth to representation theory.

VII. Quantum Algorithms.
If you ever wondered what Shor’s algorithm is, this chapter will use the built-up
linear algebra to tell you!

§0.3 Real and complex analysis
VIII. Calculus 101.

In this part, we’ll use our built-up knowledge of metric and topological spaces to
give short, rigorous definitions and theorems typical of high school calculus. That
is, we’ll really define and prove most everything you’ve seen about limits, series,
derivatives, and integrals.
Although this might seem intimidating, it turns out that actually, by the time we
start this chapter, the hard work has already been done: the notion of limits, open
sets, and compactness will make short work of what was swept under the rug in
AP calculus. Most of the proofs will thus actually be quite short. We sit back
and watch all the pieces slowly come together as a reward for our careful study of
topology beforehand.
That said, if you are willing to suspend belief, you can actually read most of the
other parts without knowing the exact details of all the calculus here, so in some
sense this part is “optional”.

IX. Complex Analysis.
It turns out that holomorphic functions (complex-differentiable functions) are
close to the nicest things ever: they turn out to be given by a Taylor series (i.e. are
basically polynomials). This means we’ll be able to prove unreasonably nice results
about holomorphic functions C→ C, like

– they are determined by just a few inputs,
– their contour integrals are all zero,
– they can’t be bounded unless they are constant,
– . . . .
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We then introduce meromorphic functions, which are like quotients of holomor-
phic functions, and find that we can detect their zeros by simply drawing loops
in the plane and integrating over them: the famous residue theorem appears.
(In the practice problems, you will see this even gives us a way to evaluate real
integrals that can’t be evaluated otherwise.)

X. Measure Theory.
Measure theory is the upgraded version of integration. The Riemann integration is
for a lot of purposes not really sufficient; for example, if f is the function equals 1 at
rational numbers but 0 at irrational numbers, we would hope that

∫ 1
0 f(x) dx = 0,

but the Riemann integral is not capable of handling this function f .
The Lebesgue integral will handle these mistakes by assigning a measure to a
generic space Ω, making it into a measure space. This will let us develop a richer
theory of integration where the above integral does work out to zero because the
“rational numbers have measure zero”. Even the development of the measure will
be an achievement, because it means we’ve developed a rigorous, complete way of
talking about what notions like area and volume mean — on any space, not just
Rn! So for example the Lebesgue integral will let us integrate functions over any
measure space.

XI. Probability (TO DO).
Using the tools of measure theory, we’ll be able to start giving rigorous definitions
of probability, too. We’ll see that a random variable is actually a function
from a measure space of worlds to R, giving us a rigorous way to talk about its
probabilities. We can then start actually stating results like the law of large
numbers and central limit theorem in ways that make them both easy to state
and straightforward to prove.

XII. Differential Geometry.
Multivariable calculus is often confusing because of all the partial derivatives. But
we’ll find out that, armed with our good understanding of linear algebra, that we’re
really looking at a total derivative: at every point of a function f : Rn → R we
can associate a linear map Df which captures in one object the notion of partial
derivatives. Set up this way, we’ll get to see versions of differential forms and
Stokes’ theorem, and we finally will know what the notation dx really means. In
the end, we’ll say a little bit about manifolds in general.

§0.4 Algebraic number theory

XIV. Algebraic NT I: Rings of Integers.

Why is 3 +
√

5 the conjugate of 3−
√

5? How come the norm
∥∥∥a+ b

√
5
∥∥∥ = a2− 5b2

used in Pell’s equations just happens to be multiplicative? Why is it we can do
factoring into primes in Z[i] but not in Z[

√
−5]? All these questions and more will

be answered in this part, when we learn about number fields, a generalization
of Q and Z to things like Q(

√
5) and Z[

√
5]. We’ll find out that we have unique

factorization into prime ideals, that there is a real multiplicative norm in play here,
and so on. We’ll also see that Pell’s equation falls out of this theory.

XV. Algebraic NT II: Galois and Ramification Theory.
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All the big buzz-words come out now: Galois groups, the Frobenius, and friends.
We’ll see quadratic reciprocity is just a shadow of the behavior of the Frobenius
element, and meet the Chebotarev density theorem, which generalizes greatly
the Dirichlet theorem on the infinitude of primes which are a (mod n). Towards
the end, we’ll also state Artin reciprocity, one of the great results of class field
theory, and how it generalizes quadratic reciprocity and cubic reciprocity.

§0.5 Algebraic topology
XVI. Algebraic Topology I: Homotopy.

What’s the difference between an annulus and disk? Well, one of them has a “hole”
in it, but if we are just given intrinsic topological spaces it’s hard to make this
notion precise. The fundamental group π1(X) and more general homotopy
group will make this precise — we’ll find a way to define an abelian group π1(X)
for every topological space X which captures the idea there is a hole in the space,
by throwing lassos into the space and seeing if we can reel them in.
Amazingly, the fundamental group π1(X) will, under mild conditions, tell you about
ways to cover X with a so-called covering projection. One picture is that one
can wrap a real line R into a helix shape and then project it down into the circle
S1. This will turn out to correspond to the fact that π1(S1) = Z which has only
one subgroup. More generally the subgroups of π1(X) will be in bijection with
ways to cover the space X!

XVII. Category Theory.
What do fields, groups, manifolds, metric spaces, measure spaces, modules, repre-
sentations, rings, topological spaces, vector spaces, all have in common? Answer:
they are all “objects with additional structure”, with maps between them.
The notion of category will appropriately generalize all of them. We’ll see that all
sorts of constructions and ideas can be abstracted into the framework of a category,
in which we only think about objects and arrows between them, without probing
too hard into the details of what those objects are. This results in drawing many
commutative diagrams.
For example, any way of taking an object in one category and getting another one
(for example π1 as above, from the category of spaces into the category of groups)
will probably be a functor. We’ll unify G×H, X × Y , R× S, and anything with
the × symbol into the notion of a product, and then even more generally into a
limit. Towards the end, we talk about abelian categories and talk about the
famous snake lemma, five lemma, and so on.

XVIII. Algebraic Topology II: Homology.
Using the language of category theory, we then resume our adventures in algebraic
topology, in which we define the homology groups which give a different way of
noticing holes in a space, in a way that is longer to define but easier to compute in
practice. We’ll then reverse the construction to get so-called cohomology rings
instead, which give us an even finer invariant for telling spaces apart.

§0.6 Algebraic geometry
XIX. Algebraic Geometry I: Classical Varieties.
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We begin with a classical study of classical complex varieties: the study of
intersections of polynomial equations over C. This will naturally lead us into the
geometry of rings, giving ways to draw pictures of ideals, and motivating Hilbert’s
nullstellensatz. The Zariski topology will show its face, and then we’ll play
with projective varieties and quasi-projective varieties, with a bonus detour
into Bézout’s theorem. All this prepares us for our journey into schemes.

XX. Algebraic Geometry II: Affine Schemes.
We now get serious and delve into Grothendieck’s definition of an affine scheme:
a generalization of our classical varieties that allows us to start with any ring A and
construct a space SpecA on it. We’ll equip it with its own Zariski topology and
then a sheaf of functions on it, making it into a locally ringed space; we will find
that the sheaf can be understood effectively in terms of localization on it. We’ll
find that the language of commutative algebra provides elegant generalizations of
what’s going on geometrically: prime ideals correspond to irreducible closed subsets,
radical ideals correspond to closed subsets, maximal ideals correspond to closed
points, and so on. We’ll draw lots of pictures of spaces and examples to accompany
this.

§0.7 Set theory
XXI. Set Theory I: ZFC, Ordinals, and Cardinals.

Why is Russell’s paradox such a big deal and how is it resolved? What is this
Zorn’s lemma that everyone keeps talking about? In this part we’ll learn the
answers to these questions by giving a real description of the Zermelo-Frankel
axioms, and the axiom of choice, delving into the details of how math is built
axiomatically at the very bottom foundations. We’ll meet the ordinal numbers
and cardinal numbers and learn how to do transfinite induction with them.

XXII. Set Theory II: Model Theory and Forcing.
The continuum hypothesis states that there are no cardinalities between the
size of the natural numbers and the size of the real numbers. It was shown to be
independent of the axioms — one cannot prove or disprove it. How could a result
like that possibly be proved? Using our understanding of the ZF axioms, we’ll
develop a bit of model theory and then use forcing in order to show how to
construct entire models of the universe in which the continuum hypothesis is true
or false.



1 Groups
A group is one of the most basic structures in higher mathematics. In this chapter I

will tell you only the bare minimum: what a group is, and when two groups are the same.

§1.1 Definition and examples of groups
Prototypical example for this section: The additive group of integers (Z,+) and the cyclic
group Z/mZ. Just don’t let yourself forget that most groups are non-commutative.

A group consists of two pieces of data: a set G, and an associative binary operation
⋆ with some properties. Before I write down the definition of a group, let me give two
examples.

Example 1.1.1 (Additive integers)
The pair (Z,+) is a group: Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set and the associative
operation is addition. Note that

• The element 0 ∈ Z is an identity: a+ 0 = 0 + a = a for any a.

• Every element a ∈ Z has an additive inverse: a+ (−a) = (−a) + a = 0.

We call this group Z.

Example 1.1.2 (Nonzero rationals)
Let Q× be the set of nonzero rational numbers. The pair (Q×, ·) is a group: the set
is Q× and the associative operation is multiplication.

Again we see the same two nice properties.

• The element 1 ∈ Q× is an identity: for any rational number, a · 1 = 1 · a = a.

• For any rational number x ∈ Q×, we have an inverse x−1, such that

x · x−1 = x−1 · x = 1.

From this you might already have a guess what the definition of a group is.
Definition 1.1.3. A group is a pair G = (G, ⋆) consisting of a set of elements G, and a
binary operation ⋆ on G, such that:

• G has an identity element, usually denoted 1G or just 1, with the property that

1G ⋆ g = g ⋆ 1G = g for all g ∈ G.

• The operation is associative, meaning (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for any a, b, c ∈ G.
Consequently we generally don’t write the parentheses.

• Each element g ∈ G has an inverse, that is, an element h ∈ G such that

g ⋆ h = h ⋆ g = 1G.

43
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Remark 1.1.4 (Unimportant pedantic point) — Some authors like to add a “closure”
axiom, i.e. to say explicitly that g ⋆ h ∈ G. This is implied already by the fact that
⋆ is a binary operation on G, but is worth keeping in mind for the examples below.

Remark 1.1.5 — It is not required that ⋆ is commutative (a ⋆ b = b ⋆ a). So we say
that a group is abelian if the operation is commutative and non-abelian otherwise.

Example 1.1.6 (Non-Examples of groups)
• The pair (Q, ·) is NOT a group. (Here Q is rational numbers.) While there is

an identity element, the element 0 ∈ Q does not have an inverse.

• The pair (Z, ·) is also NOT a group. (Why?)

• Let Mat2×2(R) be the set of 2× 2 real matrices. Then (Mat2×2(R), ·) (where
· is matrix multiplication) is NOT a group. Indeed, even though we have an
identity matrix [

1 0
0 1

]
we still run into the same issue as before: the zero matrix does not have a
multiplicative inverse.
(Even if we delete the zero matrix from the set, the resulting structure is still
not a group: those of you that know some linear algebra might recall that any
matrix with determinant zero cannot have an inverse.)

Let’s resume writing down examples. Here are some more abelian examples of
groups:

Example 1.1.7 (Complex unit circle)
Let S1 denote the set of complex numbers z with absolute value one; that is

S1 := {z ∈ C | |z| = 1} .

Then (S1,×) is a group because

• The complex number 1 ∈ S1 serves as the identity, and

• Each complex number z ∈ S1 has an inverse 1
z which is also in S1, since∣∣z−1∣∣ = |z|−1 = 1.

There is one thing I ought to also check: that z1 × z2 is actually still in S1. But this
follows from the fact that |z1z2| = |z1| |z2| = 1.

Example 1.1.8 (Addition mod n)
Here is an example from number theory: Let n > 1 be an integer, and consider the
residues (remainders) modulo n. These form a group under addition. We call this
the cyclic group of order n, and denote it as Z/nZ, with elements 0, 1, . . . . The
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identity is 0.

Example 1.1.9 (Multiplication mod p)
Let p be a prime. Consider the nonzero residues modulo p, which we denote by
(Z/pZ)×. Then ((Z/pZ)×,×) is a group.

Question 1.1.10. Why do we need the fact that p is prime?

(Digression: the notation Z/nZ and (Z/pZ)× may seem strange but will make sense when
we talk about rings and ideals. Set aside your worry for now.)

Here are some non-abelian examples:

Example 1.1.11 (General linear group)
Let n be a positive integer. Then GLn(R) is defined as the set of n× n real matrices
which have nonzero determinant. It turns out that with this condition, every matrix
does indeed have an inverse, so (GLn(R),×) is a group, called the general linear
group.

(The fact that GLn(R) is closed under × follows from the linear algebra fact that
det(AB) = detA detB, proved in later chapters.)

Example 1.1.12 (Special linear group)
Following the example above, let SLn(R) denote the set of n × n matrices whose
determinant is actually 1. Again, for linear algebra reasons it turns out that
(SLn(R),×) is also a group, called the special linear group.

Example 1.1.13 (Symmetric groups)
Let Sn be the set of permutations of {1, . . . , n}. By viewing these permutations as
functions from {1, . . . , n} to itself, we can consider compositions of permutations.
Then the pair (Sn, ◦) (here ◦ is function composition) is also a group, because

• There is an identity permutation, and

• Each permutation has an inverse.

The group Sn is called the symmetric group on n elements.

Example 1.1.14 (Dihedral group)
The dihedral group of order 2n, denoted D2n, is the group of symmetries of a
regular n-gon A1A2 . . . An, which includes rotations and reflections. It consists of
the 2n elements {

1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1
}
.

The element r corresponds to rotating the n-gon by 2π
n , while s corresponds to

reflecting it across the line OA1 (here O is the center of the polygon). So rs means
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“reflect then rotate” (like with function composition, we read from right to left).
In particular, rn = s2 = 1. You can also see that rks = sr−k.

Here is a picture of some elements of D10.
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3
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Trivia: the dihedral group D12 is my favorite example of a non-abelian group, and is the
first group I try for any exam question of the form “find an example. . . ”.

More examples:

Example 1.1.15 (Products of groups)
Let (G, ⋆) and (H, ∗) be groups. We can define a product group (G ×H, ·), as
follows. The elements of the group will be ordered pairs (g, h) ∈ G×H. Then

(g1, h1) · (g2, h2) = (g1 ⋆ g2, h1 ∗ h2) ∈ G×H

is the group operation.

Question 1.1.16. What are the identity and inverses of the product group?

Example 1.1.17 (Trivial group)
The trivial group, often denoted 0 or 1, is the group with only an identity element.
I will use the notation {1}.

Exercise 1.1.18. Which of these are groups?

(a) Rational numbers with odd denominators (in simplest form), where the operation is
addition. (This includes integers, written as n/1, and 0 = 0/1).

(b) The set of rational numbers with denominator at most 2, where the operation is addition.

(c) The set of rational numbers with denominator at most 2, where the operation is
multiplication.

(d) The set of nonnegative integers, where the operation is addition.

§1.2 Properties of groups

Prototypical example for this section: (Z/pZ)× is possibly best.

Abuse of Notation 1.2.1. From now on, we’ll often refer to a group (G, ⋆) by just G.
Moreover, we’ll abbreviate a ⋆ b to just ab. Also, because the operation ⋆ is associative,
we will omit unnecessary parentheses: (ab)c = a(bc) = abc.
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Abuse of Notation 1.2.2. From now on, for any g ∈ G and n ∈ N we abbreviate

gn = g ⋆ · · · ⋆ g︸ ︷︷ ︸
n times

.

Moreover, we let g−1 denote the inverse of g, and g−n = (g−1)n.

In mathematics, a common theme is to require that objects satisfy certain minimalistic
properties, with certain examples in mind, but then ignore the examples on paper and try
to deduce as much as you can just from the properties alone. (Math olympiad veterans
are likely familiar with “functional equations” in which knowing a single property about
a function is enough to determine the entire function.) Let’s try to do this here, and see
what we can conclude just from knowing Definition 1.1.3.

It is a law in Guam and 37 other states that I now state the following proposition.

Fact 1.2.3. Let G be a group.

(a) The identity of a group is unique.

(b) The inverse of any element is unique.

(c) For any g ∈ G, (g−1)−1 = g.

Proof. This is mostly just some formal manipulations, and you needn’t feel bad skipping
it on a first read.

(a) If 1 and 1′ are identities, then 1 = 1 ⋆ 1′ = 1′.

(b) If h and h′ are inverses to g, then 1G = g ⋆ h =⇒ h′ = (h′ ⋆ g) ⋆ h = 1G ⋆ h = h.

(c) Trivial; omitted.

Now we state a slightly more useful proposition.

Proposition 1.2.4 (Inverse of products)
Let G be a group, and a, b ∈ G. Then (ab)−1 = b−1a−1.

Proof. Direct computation. We have

(ab)(b−1a−1) = a(bb−1)a−1 = aa−1 = 1G.

Similarly, (b−1a−1)(ab) = 1G as well. Hence (ab)−1 = b−1a−1.

Finally, we state a very important lemma about groups, which highlights why having
an inverse is so valuable.

Lemma 1.2.5 (Left multiplication is a bijection)
Let G be a group, and pick a g ∈ G. Then the map G→ G given by x 7→ gx is a
bijection.
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Exercise 1.2.6. Check this by showing injectivity and surjectivity directly. (If you don’t
know what these words mean, consult Appendix E.)

Example 1.2.7
Let G = (Z/7Z)× (as in Example 1.1.9) and pick g = 3. The above lemma states
that the map x 7→ 3 · x is a bijection, and we can see this explicitly:

1 ×37−→ 3 (mod 7)

2 ×37−→ 6 (mod 7)

3 ×37−→ 2 (mod 7)

4 ×37−→ 5 (mod 7)

5 ×37−→ 1 (mod 7)

6 ×37−→ 4 (mod 7).

The fact that the map is injective is often called the cancellation law. (Why do you
think so?)

Abuse of Notation 1.2.8 (Later on, sometimes the identity is denoted 0 instead of 1).
You don’t need to worry about this for a few chapters, but I’ll bring it up now anyways.
In most of our examples up until now the operation ⋆ was thought of like multiplication
of some sort, which is why 1 = 1G was a natural notation for the identity element.

But there are groups like Z = (Z,+) where the operation ⋆ is thought of as addition,
in which case the notation 0 = 0G might make more sense instead. (In general, whenever
an operation is denoted +, the operation is almost certainly commutative.) We will
eventually start doing so too when we discuss rings and linear algebra.

§1.3 Isomorphisms
Prototypical example for this section: Z ∼= 10Z.

First, let me talk about what it means for groups to be isomorphic. Consider the two
groups

• Z = ({. . . ,−2,−1, 0, 1, 2, . . . } ,+).

• 10Z = ({. . . ,−20,−10, 0, 10, 20, . . . } ,+).

These groups are “different”, but only superficially so – you might even say they only
differ in the names of the elements. Think about what this might mean formally for a
moment.

Specifically the map
ϕ : Z→ 10Z by x 7→ 10x

is a bijection of the underlying sets which respects the group operation. In symbols,

ϕ(x+ y) = ϕ(x) + ϕ(y).

In other words, ϕ is a way of re-assigning names of the elements without changing the
structure of the group. That’s all just formalism for capturing the obvious fact that
(Z,+) and (10Z,+) are the same thing.

Now, let’s do the general definition.
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Definition 1.3.1. Let G = (G, ⋆) and H = (H, ∗) be groups. A bijection ϕ : G→ H is
called an isomorphism if

ϕ(g1 ⋆ g2) = ϕ(g1) ∗ ϕ(g2) for all g1, g2 ∈ G.

If there exists an isomorphism from G to H, then we say G and H are isomorphic and
write G ∼= H.

Note that in this definition, the left-hand side ϕ(g1 ⋆ g2) uses the operation of G while
the right-hand side ϕ(g1) ∗ ϕ(g2) uses the operation of H.

Example 1.3.2 (Examples of isomorphisms)
Let G and H be groups. We have the following isomorphisms.

(a) Z ∼= 10Z, as above.

(b) There is an isomorphism
G×H ∼= H ×G

by the map (g, h) 7→ (h, g).

(c) The identity map id : G→ G is an isomorphism, hence G ∼= G.

(d) There is another isomorphism of Z to itself: send every x to −x.

Example 1.3.3 (Primitive roots modulo 7)
As a nontrivial example, we claim that Z/6Z ∼= (Z/7Z)×. The bijection is

ϕ(a mod 6) = 3a mod 7.

• This map is a bijection by explicit calculation:

(30, 31, 32, 33, 34, 35) ≡ (1, 3, 2, 6, 4, 5) (mod 7).

(Technically, I should more properly write 30 mod 6 = 1 and so on to be pedantic.)

• Finally, we need to verify that this map respects the group action. In other
words, we want to see that ϕ(a+ b) = ϕ(a)ϕ(b) since the operation of Z/6Z is
addition while the operation of (Z/7Z)× is multiplication. That’s just saying
that 3a+b mod 6 ≡ 3a mod 63b mod 6 (mod 7), which is true.

Example 1.3.4 (Primitive roots)
More generally, for any prime p, there exists an element g ∈ (Z/pZ)× called a
primitive root modulo p such that 1, g, g2, . . . , gp−2 are all different modulo p. One
can show by copying the above proof that

Z/(p− 1)Z ∼= (Z/pZ)× for all primes p.

The example above was the special case p = 7 and g = 3.
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Exercise 1.3.5. Assuming the existence of primitive roots, establish the isomorphism
Z/(p− 1)Z ∼= (Z/pZ)× as above.

It’s not hard to see that ∼= is an equivalence relation (why?). Moreover, because we
really only care about the structure of groups, we’ll usually consider two groups to be
the same when they are isomorphic. So phrases such as “find all groups” really mean
“find all groups up to isomorphism”.

§1.4 Orders of groups, and Lagrange’s theorem
Prototypical example for this section: (Z/pZ)×.

As is typical in math, we use the word “order” for way too many things. In groups,
there are two notions of order.

Definition 1.4.1. The order of a group G is the number of elements of G. We denote
this by |G|. Note that the order may not be finite, as in Z. We say G is a finite group
just to mean that |G| is finite.

Example 1.4.2 (Orders of groups)
For a prime p, |(Z/pZ)×| = p− 1. In other words, the order of (Z/pZ)× is p− 1. As
another example, the order of the symmetric group Sn is n! and the order of the
dihedral group D2n is 2n.

Definition 1.4.3. The order of an element g ∈ G is the smallest positive integer n
such that gn = 1G, or ∞ if no such n exists. We denote this by ord g.

Example 1.4.4 (Examples of orders)
The order of −1 in Q× is 2, while the order of 1 in Z is infinite.

Question 1.4.5. Find the order of each of the six elements of Z/6Z, the cyclic group on six
elements. (See Example 1.1.8 if you’ve forgotten what Z/6Z means.)

Example 1.4.6 (Primitive roots)
If you know olympiad number theory, this coincides with the definition of an order
of a residue mod p. That’s why we use the term “order” there as well. In particular,
a primitive root is precisely an element g ∈ (Z/pZ)× such that ord g = p− 1.

You might also know that if xn ≡ 1 (mod p), then the order of x (mod p) must divide n.
The same is true in a general group for exactly the same reason.

Fact 1.4.7. If gn = 1G then ord g divides n.

Also, you can show that any element of a finite group has a finite order. The proof is
just an olympiad-style pigeonhole argument. Consider the infinite sequence 1G, g, g2, . . . ,
and find two elements that are the same.
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Fact 1.4.8. Let G be a finite group. For any g ∈ G, ord g is finite.

What’s the last property of (Z/pZ)× that you know from olympiad math? We have
Fermat’s little theorem: for any a ∈ (Z/pZ)×, we have ap−1 ≡ 1 (mod p). This is no
coincidence: exactly the same thing is true in a more general setting.

Theorem 1.4.9 (Lagrange’s theorem for orders)
Let G be any finite group. Then x|G| = 1G for any x ∈ G.

Keep this result in mind! We’ll prove it later in the generality of Theorem 3.4.1.

§1.5 Subgroups
Prototypical example for this section: SLn(R) is a subgroup of GLn(R).

Earlier we saw that GLn(R), the n× n matrices with nonzero determinant, formed a
group under matrix multiplication. But we also saw that a subset of GLn(R), namely
SLn(R), also formed a group with the same operation. For that reason we say that
SLn(R) is a subgroup of GLn(R). And this definition generalizes in exactly the way you
expect.

Definition 1.5.1. Let G = (G, ⋆) be a group. A subgroup of G is exactly what you
would expect it to be: a group H = (H, ⋆) where H is a subset of G. It’s a proper
subgroup if H ̸= G.

Remark 1.5.2 — To specify a group G, I needed to tell you both what the set G
was and the operation ⋆ was. But to specify a subgroup H of a given group G, I
only need to tell you who its elements are: the operation of H is just inherited from
the operation of G.

Example 1.5.3 (Examples of subgroups)
(a) 2Z is a subgroup of Z, which is isomorphic to Z itself!

(b) Consider again Sn, the symmetric group on n elements. Let T be the set of
permutations τ : {1, . . . , n} → {1, . . . , n} for which τ(n) = n. Then T is a
subgroup of Sn; in fact, it is isomorphic to Sn−1.

(c) Consider the group G×H (Example 1.1.15) and the elements {(g, 1H) | g ∈ G}.
This is a subgroup of G × H (why?). In fact, it is isomorphic to G by the
isomorphism (g, 1H) 7→ g.

Example 1.5.4 (Stupid examples of subgroups)
For any group G, the trivial group {1G} and the entire group G are subgroups of G.

Next is an especially important example that we’ll talk about more in later chap-
ters.
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Example 1.5.5 (Subgroup generated by an element)
Let x be an element of a group G. Consider the set

⟨x⟩ =
{
. . . , x−2, x−1, 1, x, x2, . . .

}
.

This is also a subgroup of G, called the subgroup generated by x.

Exercise 1.5.6. If ordx = 2015, what is the above subgroup equal to? What if ordx =∞?

Finally, we present some non-examples of subgroups.

Example 1.5.7 (Non-examples of subgroups)
Consider the group Z = (Z,+).

(a) The set {0, 1, 2, . . . } is not a subgroup of Z because it does not contain inverses.

(b) The set {n3 | n ∈ Z} = {. . . ,−8,−1, 0, 1, 8, . . . } is not a subgroup because it is
not closed under addition; the sum of two cubes is not in general a cube.

(c) The empty set ∅ is not a subgroup of Z because it lacks an identity element.

§1.6 Groups of small orders
Just for fun, here is a list of all groups of order less than or equal to ten (up to isomorphism,
of course).

1. The only group of order 1 is the trivial group.

2. The only group of order 2 is Z/2Z.

3. The only group of order 3 is Z/3Z.

4. The only groups of order 4 are
• Z/4Z, the cyclic group on four elements,
• Z/2Z× Z/2Z, called the Klein Four Group.

5. The only group of order 5 is Z/5Z.

6. The groups of order six are
• Z/6Z, the cyclic group on six elements.
• S3, the permutation group of three elements. This is the first non-abelian

group.
Some of you might wonder where Z/2Z× Z/3Z is. All I have to say is: Chinese
remainder theorem!
You might wonder where D6 is in this list. It’s actually isomorphic to S3.

7. The only group of order 7 is Z/7Z.

8. The groups of order eight are more numerous.
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• Z/8Z, the cyclic group on eight elements.

• Z/4Z× Z/2Z.

• Z/2Z× Z/2Z× Z/2Z.

• D8, the dihedral group with eight elements, which is not abelian.

• A non-abelian group Q8, called the quaternion group. It consists of eight
elements ±1, ±i, ±j, ±k with i2 = j2 = k2 = ijk = −1.

9. The groups of order nine are

• Z/9Z, the cyclic group on nine elements.

• Z/3Z× Z/3Z.

10. The groups of order 10 are

• Z/10Z ∼= Z/5Z× Z/2Z (again Chinese remainder theorem).

• D10, the dihedral group with 10 elements. This group is non-abelian.

§1.7 Unimportant long digression

A common question is: why these axioms? For example, why associative but not
commutative? This answer will likely not make sense until later, but here are some
comments that may help.

One general heuristic is: Whenever you define a new type of general object, there’s
always a balancing act going on. On the one hand, you want to include enough constraints
that your objects are “nice”. On the other hand, if you include too many constraints,
then your definition applies to too few objects.

So, for example, we include “associative” because that makes our lives easier and most
operations we run into are associative. In particular, associativity is required for the
inverse of an element to necessarily be unique. However we don’t include “commutative”,
because examples below show that there are lots of non-abelian groups we care about.
(But we introduce another name “abelian” because we still want to keep track of it.)

Another comment: a good motivation for the inverse axioms is that you get a large
amount of symmetry. The set of positive integers with addition is not a group, for
example, because you can’t subtract 6 from 3: some elements are “larger” than others.
By requiring an inverse element to exist, you get rid of this issue. (You also need identity
for this; it’s hard to define inverses without it.)

Even more abstruse comment: Problem 1F† shows that groups are actually shadows
of the so-called symmetric groups (defined later, also called permutation groups). This
makes rigorous the notion that “groups are very symmetric”.

§1.8 A few harder problems to think about

Problem 1A. What is the joke in the following figure? (Source: [Ge].)
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Problem 1B. Prove Lagrange’s theorem for orders in the special case that G is a finite
abelian group.

Problem 1C. Show that D6 ∼= S3 but D24 ̸∼= S4.

Problem 1D⋆. Let p be a prime. Show that if G is a group of order p then G ∼= Z/pZ.

Problem 1E (A hint for Cayley’s theorem). Find a subgroup H of S8 which is isomorphic
to D8, and write the isomorphism explicitly.

Problem 1F†. Let G be a finite group.1 Show that there exists a positive integer n
such that

(a) (Cayley’s theorem) G is isomorphic to some subgroup of the symmetric group Sn.

(b) (Representation Theory) G is isomorphic to some subgroup of the general linear
group GLn(R). (This is the group of invertible n× n matrices.)

Problem 1G. Find the smallest integer n such that the symmetric group Sn has a
subgroup isomorphic to the dihedral group D2018 of order 2018.

Problem 1H (IMO SL 2005 C5). There are n markers, each with one side white and
the other side black. In the beginning, these n markers are aligned in a row so that their
white sides are all up. In each step, if possible, we choose a marker whose white side is
up (but not one of the outermost markers), remove it, and reverse the closest marker to
the left of it and also reverse the closest marker to the right of it.

Prove that if n ≡ 1 (mod 3) it’s impossible to reach a state with only two markers
remaining. (In fact the converse is true as well.)

Problem 1I. Let p be a prime and F1 = F2 = 1, Fn+2 = Fn+1 + Fn be the Fibonacci
sequence. Show that F2p(p2−1) is divisible by p.

1In other words, permutation groups can be arbitrarily weird. I remember being highly unsettled by
this theorem when I first heard of it, but in hindsight it is not so surprising.
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At the time of writing, I’m convinced that metric topology is the morally correct way
to motivate point-set topology as well as to generalize normal calculus.1 So here is my
best attempt.

The concept of a metric space is very “concrete”, and lends itself easily to visualization.
Hence throughout this chapter you should draw lots of pictures as you learn about new
objects, like convergent sequences, open sets, closed sets, and so on.

§2.1 Definition and examples of metric spaces
Prototypical example for this section: R2, with the Euclidean metric.

Definition 2.1.1. A metric space is a pair (M,d) consisting of a set of points M and
a metric d : M ×M → R≥0. The distance function must obey:

• For any x, y ∈M , we have d(x, y) = d(y, x); i.e. d is symmetric.

• The function d must be positive definite which means that d(x, y) ≥ 0 with
equality if and only if x = y.

• The function d should satisfy the triangle inequality: for all x, y, z ∈M ,

d(x, z) + d(z, y) ≥ d(x, y).

Abuse of Notation 2.1.2. Just like with groups, we will abbreviate (M,d) as just M .

Example 2.1.3 (Metric spaces of R)
(a) The real line R is a metric space under the metric d(x, y) = |x− y|.

(b) The interval [0, 1] is also a metric space with the same distance function.

(c) In fact, any subset S of R can be made into a metric space in this way.

Example 2.1.4 (Metric spaces of R2)
(a) We can make R2 into a metric space by imposing the Euclidean distance function

d ((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

(b) Just like with the first example, any subset of R2 also becomes a metric space
after we inherit it. The unit disk, unit circle, and the unit square [0, 1]2 are
special cases.

1Also, “metric” is a fun word to say.

55
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Example 2.1.5 (Taxicab on R2)
It is also possible to place the taxicab distance on R2:

d ((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| .

For now, we will use the more natural Euclidean metric.

Example 2.1.6 (Metric spaces of Rn)
We can generalize the above examples easily. Let n be a positive integer.

(a) We let Rn be the metric space whose points are points in n-dimensional Euclidean
space, and whose metric is the Euclidean metric

d ((a1, . . . , an) , (b1, . . . , bn)) =
√

(a1 − b1)2 + · · ·+ (an − bn)2.

This is the n-dimensional Euclidean space.

(b) The open unit ball Bn is the subset of Rn consisting of those points (x1, . . . , xn)
such that x2

1 + · · ·+ x2
n < 1.

(c) The unit sphere Sn−1 is the subset of Rn consisting of those points (x1, . . . , xn)
such that x2

1 + · · ·+ x2
n = 1, with the inherited metric. (The superscript n− 1

indicates that Sn−1 is an n − 1 dimensional space, even though it lives in n-
dimensional space.) For example, S1 ⊆ R2 is the unit circle, whose distance
between two points is the length of the chord joining them. You can also think
of it as the “boundary” of the unit ball Bn.

Example 2.1.7 (Function space)
We can let M be the space of continuous functions f : [0, 1]→ R and define the metric
by d(f, g) =

∫ 1
0 |f − g| dx. (It admittedly takes some work to check d(f, g) = 0

implies f = g, but we won’t worry about that yet.)

Here is a slightly more pathological example.

Example 2.1.8 (Discrete space)
Let S be any set of points (either finite or infinite). We can make S into a discrete
space by declaring

d(x, y) =
{

1 if x ̸= y

0 if x = y.

If |S| = 4 you might think of this space as the vertices of a regular tetrahedron,
living in R3. But for larger S it’s not so easy to visualize. . .

Example 2.1.9 (Graphs are metric spaces)
Any connected simple graph G can be made into a metric space by defining the
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distance between two vertices to be the graph-theoretic distance between them. (The
discrete metric is the special case when G is the complete graph on S.)

Question 2.1.10. Check the conditions of a metric space for the metrics on the discrete
space and for the connected graph.

Abuse of Notation 2.1.11. From now on, we will refer to Rn with the Euclidean metric
by just Rn. Moreover, if we wish to take the metric space for a subset S ⊆ Rn with the
inherited metric, we will just write S.

§2.2 Convergence in metric spaces
Prototypical example for this section: The sequence 1

n (for n = 1, 2, . . . ) in R.

Since we can talk about the distance between two points, we can talk about what it
means for a sequence of points to converge. This is the same as the typical epsilon-delta
definition, with absolute values replaced by the distance function.

Definition 2.2.1. Let (xn)n≥1 be a sequence of points in a metric space M . We say
that xn converges to x if the following condition holds: for all ε > 0, there is an integer
N (depending on ε) such that d(xn, x) < ε for each n ≥ N . This is written

xn → x

or more verbosely as
lim
n→∞

xn = x.

We say that a sequence converges in M if it converges to a point in M .

You should check that this definition coincides with your intuitive notion of “converges”.

Abuse of Notation 2.2.2. If the parent space M is understood, we will allow ourselves to
abbreviate “converges in M” to just “converges”. However, keep in mind that convergence
is defined relative to the parent space; the “limit” of the space must actually be a point
in M for a sequence to converge.

x1

x2

x3

x4

x5
x6

x7

x8

x9
x

Example 2.2.3
Consider the sequence x1 = 1, x2 = 1.4, x3 = 1.41, x4 = 1.414, . . . .

(a) If we view this as a sequence in R, it converges to
√

2.

(b) However, even though each xi is in Q, this sequence does NOT converge when
we view it as a sequence in Q!
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Question 2.2.4. What are the convergent sequences in a discrete metric space?

§2.3 Continuous maps

In calculus you were also told (or have at least heard) of what it means for a function to
be continuous. Probably something like

A function f : R→ R is continuous at a point p ∈ R if for every ε > 0 there
exists a δ > 0 such that |x− p| < δ =⇒ |f(x)− f(p)| < ε.

Question 2.3.1. Can you guess what the corresponding definition for metric spaces is?

All we have do is replace the absolute values with the more general distance functions:
this gives us a definition of continuity for any function M → N .

Definition 2.3.2. Let M = (M,dM ) and N = (N, dN ) be metric spaces. A function
f : M → N is continuous at a point p ∈M if for every ε > 0 there exists a δ > 0 such
that

dM (x, p) < δ =⇒ dN (f(x), f(p)) < ε.

Moreover, the entire function f is continuous if it is continuous at every point p ∈M .

Notice that, just like in our definition of an isomorphism of a group, we use the metric
of M for one condition and the metric of N for the other condition.

This generalization is nice because it tells us immediately how we could carry over
continuity arguments in R to more general spaces like C. Nonetheless, this definition is
kind of cumbersome to work with, because it makes extensive use of the real numbers
(epsilons and deltas). Here is an equivalent condition.

Theorem 2.3.3 (Sequential continuity)
A function f : M → N of metric spaces is continuous at a point p ∈M if and only if
the following property holds: if x1, x2, . . . is a sequence in M converging to p, then
the sequence f(x1), f(x2), . . . in N converges to f(p).

Proof. One direction is not too hard:

Exercise 2.3.4. Show that ε-δ continuity implies sequential continuity at each point.

Conversely, we will prove if f is not ε-δ continuous at p then it does not preserve
convergence.

If f is not continuous at p, then there is a “bad” ε > 0, which we now consider fixed.
So for each choice of δ = 1/n, there should be some point xn which is within δ of p, but
which is mapped more than ε away from f(p). But then the sequence xn converges to p,
and f(xn) is always at least ε away from f(p), contradiction.

Example application showcasing the niceness of sequential continuity:
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Proposition 2.3.5 (Composition of continuous functions is continuous)
Let f : M → N and g : N → L be continuous maps of metric spaces. Then their
composition g ◦ f is continuous.

Proof. Dead simple with sequences: Let p ∈M be arbitrary and let xn → p in M . Then
f(xn)→ f(p) in N and g(f(xn))→ g(f(p)) in L, QED.

Question 2.3.6. Let M be any metric space and D a discrete space. When is a map
f : D →M continuous?

§2.4 Homeomorphisms
Prototypical example for this section: The unit circle S1 is homeomorphic to the boundary
of the unit square.

When do we consider two groups to be the same? Answer: if there’s a structure-
preserving map between them which is also a bijection. For metric spaces, we do exactly
the same thing, but replace “structure-preserving” with “continuous”.

Definition 2.4.1. Let M and N be metric spaces. A function f : M → N is a homeo-
morphism if it is a bijection, and both f : M → N and its inverse f−1 : N → M are
continuous. We say M and N are homeomorphic.

Needless to say, homeomorphism is an equivalence relation.
You might be surprised that we require f−1 to also be continuous. Here’s the reason:

you can show that if ϕ is an isomorphism of groups, then ϕ−1 also preserves the group
operation, hence ϕ−1 is itself an isomorphism. The same is not true for continuous
bijections, which is why we need the new condition.

Example 2.4.2 (Homeomorphism ̸= continuous bijection)
(a) There is a continuous bijection from [0, 1) to the circle, but it has no continuous

inverse.

(b) Let M be a discrete space with size |R|. Then there is a continuous function
M → R which certainly has no continuous inverse.

Note that this is the topologist’s definition of “same” – homeomorphisms are “continuous
deformations”. Here are some examples.

Example 2.4.3 (Examples of homeomorphisms)
(a) Any space M is homeomorphic to itself through the identity map.

(b) The old saying: a doughnut (torus) is homeomorphic to a coffee cup. (Look this
up if you haven’t heard of it.)

(c) The unit circle S1 is homeomorphic to the boundary of the unit square. Here’s
one bijection between them, after an appropriate scaling:
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Example 2.4.4 (Metrics on the unit circle)
It may have seemed strange that our metric function on S1 was the one inherited
from R2, meaning the distance between two points on the circle was defined to be
the length of the chord. Wouldn’t it have made more sense to use the circumference
of the smaller arc joining the two points?

In fact, it doesn’t matter: if we consider S1 with the “chord” metric and the “arc”
metric, we get two homeomorphic spaces, as the map between them is continuous.

The same goes for Sn−1 for general n.

Example 2.4.5 (Homeomorphisms really don’t preserve size)
Surprisingly, the open interval (−1, 1) is homeomorphic to the real line R! One
bijection is given by

x 7→ tan(xπ/2)

with the inverse being given by t 7→ 2
π arctan(t).

This might come as a surprise, since (−1, 1) doesn’t look that much like R; the
former is “bounded” while the latter is “unbounded”.

§2.5 Extended example/definition: product metric
Prototypical example for this section: R× R is R2.

Here is an extended example which will occur later on. Let M = (M,dM ) and
N = (N, dN ) be metric spaces (say, M = N = R). Our goal is to define a metric space
on M ×N .

Let pi = (xi, yi) ∈ M ×N for i = 1, 2. Consider the following metrics on the set of
points M ×N :

dmax(p1, p2) := max {dM (x1, x2), dN (y1, y2)}

dEuclid(p1, p2) :=
√
dM (x1, x2)2 + dN (y1, y2)2

dtaxicab (p1, p2) := dM (x1, x2) + dN (y1, y2).

All of these are good candidates. We are about to see it doesn’t matter which one we
use:

Exercise 2.5.1. Verify that

dmax(p1, p2) ≤ dEuclid(p1, p2) ≤ dtaxicab(p1, p2) ≤ 2dmax(p1, p2).

Use this to show that the metric spaces we obtain by imposing any of the three metrics are
homeomorphic, with the homeomorphism being just the identity map.

Definition 2.5.2. Hence we will usually simply refer to the metric on M ×N , called
the product metric. It will not be important which of the three metrics we select.
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Example 2.5.3 (R2)
If M = N = R, we get R2, the Euclidean plane. The metric dEuclid is the one we
started with, but using either of the other two metric works fine as well.

The product metric plays well with convergence of sequences.

Proposition 2.5.4 (Convergence in the product metric is by component)
We have (xn, yn)→ (x, y) if and only if xn → x and yn → y.

Proof. We have dmax ((x, y), (xn, yn)) = max {dM (x, xn), dN (y, yn)} and the latter ap-
proaches zero as n→∞ if and only if dM (x, xn)→ 0 and dN (y, yn)→ 0.

Let’s see an application of this:

Proposition 2.5.5 (Addition and multiplication are continuous)
The addition and multiplication maps are continuous maps R× R→ R.

Proof. For multiplication: for any n we have

xnyn = (x+ (xn − x)) (y + (yn − y))
= xy + y(xn − x) + x(yn − y) + (xn − x)(yn − y)

=⇒ |xnyn − xy| ≤ |y| |xn − x|+ |x| |yn − y|+ |xn − x| |yn − y| .

As n → ∞, all three terms on the right-hand side tend to zero. The proof that
+: R× R→ R is continuous is similar (and easier): one notes for any n that

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y|

and both terms on the right-hand side tend to zero as n→∞.

Problem 2C covers the other two operations, subtraction and division. The upshot of this
is that, since compositions are also continuous, most of your naturally arising real-valued
functions will automatically be continuous as well. For example, the function 3x

x2+1 will
be a continuous function from R→ R, since it can be obtained by composing +, ×, ÷.

§2.6 Open sets

Prototypical example for this section: The open disk x2 + y2 < r2 in R2.

Continuity is really about what happens “locally”: how a function behaves “close to a
certain point p”. One way to capture this notion of “closeness” is to use metrics as we’ve
done above. In this way we can define an r-neighborhood of a point.

Definition 2.6.1. Let M be a metric space. For each real number r > 0 and point
p ∈M , we define

Mr(p) := {x ∈M : d(x, p) < r} .

The set Mr(p) is called an r-neighborhood of p.
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M

p

Mr(p)

r

We can rephrase convergence more succinctly in terms of r-neighborhoods. Specifically,
a sequence (xn) converges to x if for every r-neighborhood of x, all terms of xn eventually
stay within that r-neighborhood.

Let’s try to do the same with functions.

Question 2.6.2. In terms of r-neighborhoods, what does it mean for a function f : M → N
to be continuous at a point p ∈M?

Essentially, we require that the pre-image of every ε-neighborhood has the property
that some δ-neighborhood exists inside it. This motivates:

Definition 2.6.3. A set U ⊆M is open in M if for each p ∈ U , some r-neighborhood
of p is contained inside U . In other words, there exists r > 0 such that Mr(p) ⊆ U .

Abuse of Notation 2.6.4. Note that a set being open is defined relative to the parent
space M . However, if M is understood we can abbreviate “open in M” to just “open”.

p

x2 + y2 < 1

Figure 2.1: The set of points x2 + y2 < 1 in R2 is open in R2.

Example 2.6.5 (Examples of open sets)
(a) Any r-neighborhood of a point is open.

(b) Open intervals of R are open in R, hence the name! This is the prototypical
example to keep in mind.

(c) The open unit ball Bn is open in Rn for the same reason.

(d) In particular, the open interval (0, 1) is open in R. However, if we embed it in
R2, it is no longer open!

(e) The empty set ∅ and the whole set of points M are open in M .

Example 2.6.6 (Non-examples of open sets)
(a) The closed interval [0, 1] is not open in R. There is no ε-neighborhood of the

point 0 which is contained in [0, 1].
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(b) The unit circle S1 is not open in R2.

Question 2.6.7. What are the open sets of the discrete space?

Here are two quite important properties of open sets.

Proposition 2.6.8 (Intersections and unions of open sets)
(a) The intersection of finitely many open sets is open.

(b) The union of open sets is open, even if there are infinitely many.

Question 2.6.9. Convince yourself this is true.

Exercise 2.6.10. Exhibit an infinite collection of open sets in R whose intersection is the
set {0}. This implies that infinite intersections of open sets are not necessarily open.

The whole upshot of this is:

Theorem 2.6.11 (Open set condition)
A function f : M → N of metric spaces is continuous if and only if the pre-image of
every open set in N is open in M .

Proof. I’ll just do one direction. . .

Exercise 2.6.12. Show that δ-ε continuity follows from the open set condition.

Now assume f is continuous. First, suppose V is an open subset of the metric space N ;
let U = fpre(V ). Pick x ∈ U , so y = f(x) ∈ V ; we want an open neighborhood of x
inside U .

N

y

ε

V

f

M

x
δ

U = fpre(V )

As V is open, there is some small ε-neighborhood around y which is contained inside V .
By continuity of f , we can find a δ such that the δ-neighborhood of x gets mapped by f
into the ε-neighborhood in N , which in particular lives inside V . Thus the δ-neighborhood
lives in U , as desired.
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§2.7 Closed sets
Prototypical example for this section: The closed unit disk x2 + y2 ≤ r2 in R2.

It would be criminal for me to talk about open sets without talking about closed sets.
The name “closed” comes from the definition in a metric space.

Definition 2.7.1. Let M be a metric space. A subset S ⊆ M is closed in M if the
following property holds: let x1, x2, . . . be a sequence of points in S and suppose that
xn converges to x in M . Then x ∈ S as well.

Abuse of Notation 2.7.2. Same caveat: we abbreviate “closed in M” to just “closed”
if the parent space M is understood.

Here’s another way to phrase it. The limit points of a subset S ⊆M are defined by

limS := {p ∈M : ∃(xn) ∈ S such that xn → p} .

Thus S is closed if and only if S = limS.

Exercise 2.7.3. Prove that limS is closed even if S isn’t closed. (Draw a picture.)

For this reason, limS is also called the closure of S in M , and denoted S. It is simply
the smallest closed set which contains S.

Example 2.7.4 (Examples of closed sets)
(a) The empty set ∅ is closed in M for vacuous reasons: there are no sequences of

points with elements in ∅.

(b) The entire space M is closed in M for tautological reasons. (Verify this!)

(c) The closed interval [0, 1] in R is closed in R, hence the name. Like with open
sets, this is the prototypical example of a closed set to keep in mind!

(d) In fact, the closed interval [0, 1] is even closed in R2.

Example 2.7.5 (Non-examples of closed sets)
Let S = (0, 1) denote the open interval. Then S is not closed in R because the
sequence of points

1
2 ,

1
4 ,

1
8 , . . .

converges to 0 ∈ R, but 0 /∈ (0, 1).

I should now warn you about a confusing part of this terminology. Firstly, “most”
sets are neither open nor closed.

Example 2.7.6 (A set neither open nor closed)
The half-open interval [0, 1) is neither open nor closed in R.

Secondly, it’s also possible for a set to be both open and closed; this will be
discussed in Chapter 7.

The reason for the opposing terms is the following theorem:
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Theorem 2.7.7 (Closed sets are complements of open sets)
Let M be a metric space, and S ⊆M any subset. Then the following are equivalent:

• The set S is closed in M .

• The complement M \ S is open in M .

Exercise 2.7.8 (Great). Prove this theorem! You’ll want to draw a picture to make it clear
what’s happening: for example, you might take M = R2 and S to be the closed unit disk.

§2.8 A few harder problems to think about
Problem 2A. Let M = (M,d) be a metric space. Show that

d : M ×M → R

is itself a continuous function (where M ×M is equipped with the product metric).

Problem 2B. Are Q and N homeomorphic subspaces of R?

Problem 2C (Continuity of arithmetic continued). Show that subtraction is a continuous
map − : R× R→ R, and division is a continuous map ÷ : R× R>0 → R.

Problem 2D. Exhibit a function f : R→ R such that f is continuous at x ∈ R if and
only if x = 0.

Problem 2E. Prove that a function f : R → R which is strictly increasing must be
continuous at some point.

Problem 2F. Someone on the Internet posted the question “is 1/x a continuous
function?”, leading to great controversy on Twitter. How should you respond?
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